Recent Developments and Persistent Challenges in Seismic Hazard Assessment for Dams in the Central and Eastern United States

National Dam Safety Program Technical Seminar | February 2023

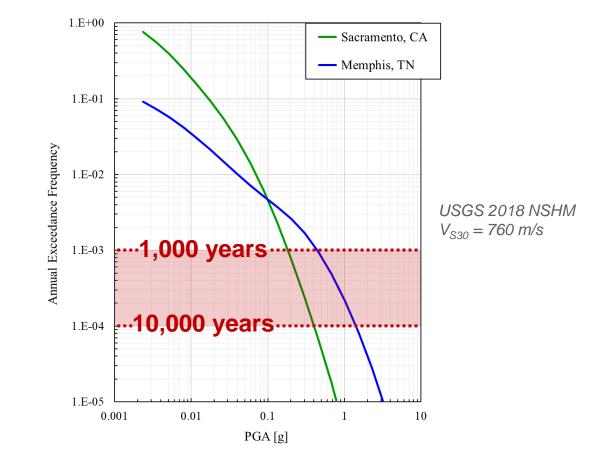
Christie Hale (Geosyntec Consultants)

Outline

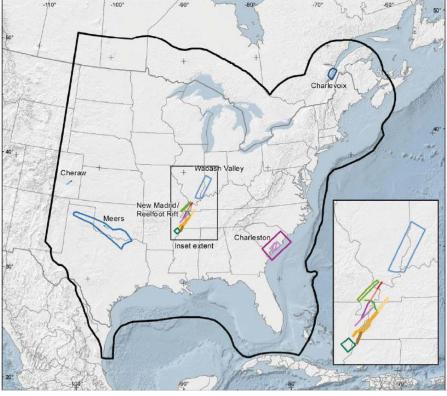
- Recent Developments
- Persistent Challenges

Recent Developments

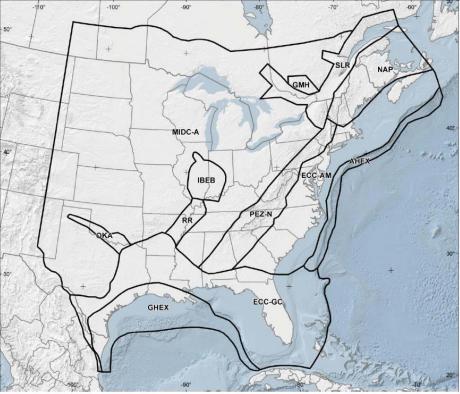
Realization of Seismic Hazard in Central and Eastern U.S. (CEUS)


Largest Historical Earthquakes in Continental U.S.

Location	Date	Magnitude
Cascadia subduction zone	1700	~ 9
Fort Tejon, California	1857	7.9
San Francisco, California	1906	7.8
Imperial Valley, California	1892	7.8
New Madrid, Missouri	1811 (12/16)	7.7
New Madrid, Missouri	1812 (02/07)	7.7
New Madrid, Missouri	1812 (01/23)	7.5
Owens Valley, California	1872	7.4
Landers, California	1992	7.3
Hebgen Lake, Montana	1959	7.3
Kern County, California	1952	7.3
Eureka, California	1922	7.3
Charleston, South Carolina	1886	7.3
California – Oregon Coast	1873	7.3

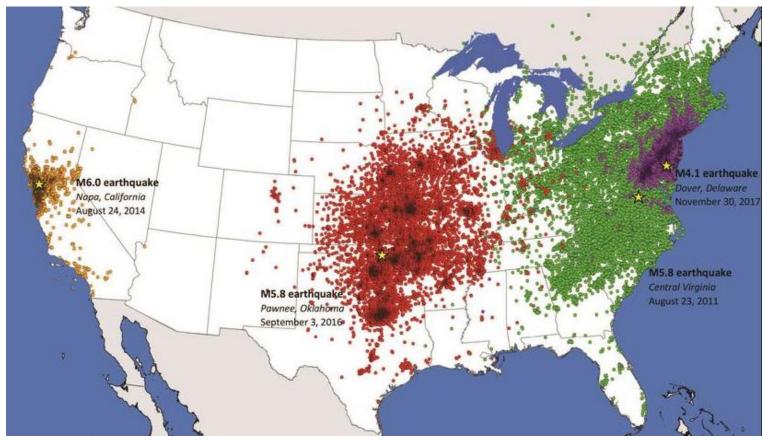

FEMA

National Earthquake Information Center



Seismic Source Characterization

Repeated Large Magnitude Earthquakes



EPRI / DOE / NRC (2012)

Ground Motion Characterization

Ground motions attenuate differently in CEUS

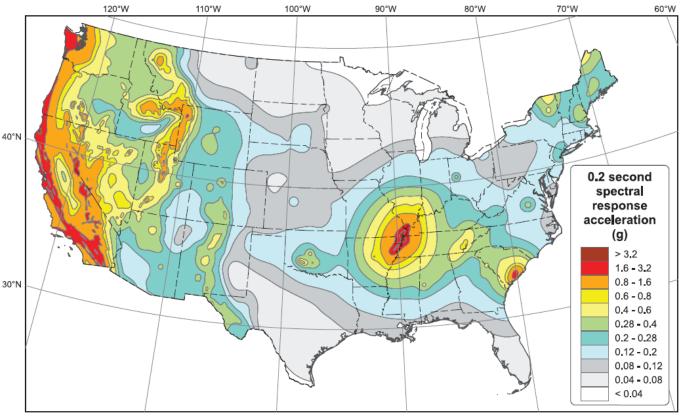
Ground Motion Characterization

NGA-East (Goulet et al., 2018)

- 17 median models
- Frequency-dependent weights
- 3 ergodic standard deviation models
- 3 non-ergodic standard deviation models
- Magnitude and R_{RUP} dependent
- Reference site condition:
 - □ V_{S30} = 3,000 m/s
 - Kappa (κ) = 0.006 s

The B. John Garrick Institute for the Risk Sciences UCLA ENGINEERING	NGA-East: Central and Eastern North America Groun Ground-Motion Model Tool developed by Silvia Mazzo
	source: Report PEER 2018/08 - Central and Eastern North America Ground-Motio Christine Goulet, Yousef Bozorgnia, Norman Abrahamson, Nicolas Kuehn, Linda ،
	https://apps.peer.berkeley.edu/publications/peer_reports/reports_2018/I
right). Model limits are given in the Model-Limits	iome input values (Models and Types) are to be selected from a pull-down menu, others require numeric box. Values outside these limits are not allowed. d in the report. The WeightedAvg model for both the Median and Sigma (σ) uses the weights recommende

User					Median					
Median Model: Magnitude:			Quantity		(WeightedAvg) [M=6.2, Rrup=25km.	σ (Ergodic	Median - 1*σ (Ergodic	Median + 1*σ (Ergodic		
Rrup (km):	25		lan		Vs30=3000m/s		WeightedAvg	WeightedAvg	Frequen	
σ Type:	Ergodic		ğ	Period (sec)	1	Model)	Model)	Model)	(Hz)	
σ Model:	WeightedAvg			0.01	0.2176	0.6150	0.1177	0.4026	100	
N-sigma:	1			0.02	0.3069	0.6148	0.1659	0.5675	50	
		.		0.025	0.3471	0.6197	0.1868	0.6450	40	
Model	Limits			0.03	0.3702	0.6238	0.1984	0.6907	33.3	
	(WeightedAvg,			0.04	0.3986	0.6411	0.2099	0.7567	25	
Median Model:	1, 2,, 16, 17)			0.05	0.4052	0.6552	0.2105	0.7803	20	
Magnitude:	(4-8.2)			0.075	0.3676	0.6523	0.1915	0.7057	13.3	
Rrup (km):	(0-1500)		(B	0.1	0.3293	0.6352	0.1745	0.6214	10	
	(Erogodic,		چ ا	0.15	0.2696	0.6247	0.1444	0.5035	6.67	
σ Туре:	SingleStation)		Spectrum PSA	0.2	0.2191	0.6284	0.1169	0.4107	5	
	(WeightedAvg,		ε	0.25	0.1869	0.6326	0.0993	0.3518	4	
σ Model:	Central, High,		E	0.3	0.1634	0.6367	0.0864	0.3088	3.33	
	Low)		l Se	0.4	0.1311	0.6429	0.0689	0.2493	2.5	
N-sigma:	(>=0)			0.5	0.1080	0.6445	0.0567	0.2058	2	
			Ise	0.74	0.0744	0.6414	0.0392	0.1413	1.35	
all values are for	r Vs30=3000m/s		Response	0.75	0.0735	0.6413	0.0387	0.1395	1.33	
			se	1	0.0517	0.6328	0.0275	0.0974	1	
			œ	1.5	0.0297	0.6155	0.0160	0.0549	0.67	
				2	0.0190	0.6014	0.0104	0.0347	0.5	
			[3	0.0090	0.5779	0.0051	0.0161	0.33	
			[4	0.0052	0.5646	0.0030	0.0092	0.25	
				4.5	0.0041	0.5605	0.0024	0.0073	0.22	
			[5	0.0034	0.5569	0.0019	0.0059	0.2	
			[7.5	0.0016	0.5475	0.0009	0.0027	0.13	
			[10	0.0009	0.5433	0.0005	0.0015	0.1	
	Peak Ground Acc	eleration	ı (g)	PGA	0.1860	0.6150	0.1005	0.3440	PGA	
	Peak Ground Ve			PGV	6.8385	0.6112	3.7111	12,6015	PGV	

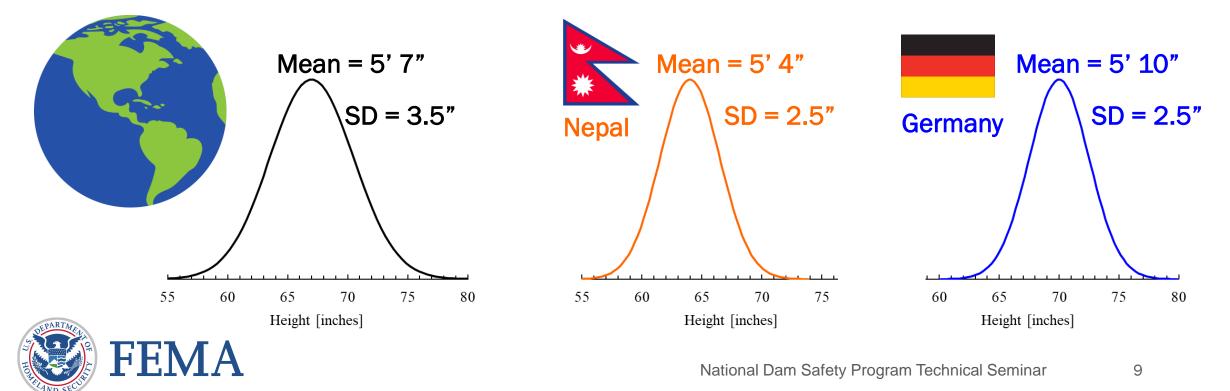

https://www.risksciences.ucla.edu/nhr3/gmto PEER / risksciences.ucla / Silvia Mazzoni, 2020

Regional Seismic Hazard Assessments

Latest USGS National Seismic Hazard Model is 2018

- EQ Catalog (2017)
- NGA-East
- Expanded V_{S30}
- Expanded periods

2018 NSHM, 2% in 50 years probability of exceedance, NEHRP site class B/C ($V_{s30} = 760$ m/s)


What's coming?

Move from ergodic to non-ergodic ground motion models

Analogy: Estimate height of a human

Ergodic = global

Non-ergodic = specific

Persistent Challenges

Primer on Deterministic Seismic Hazard Analysis (DSHA)

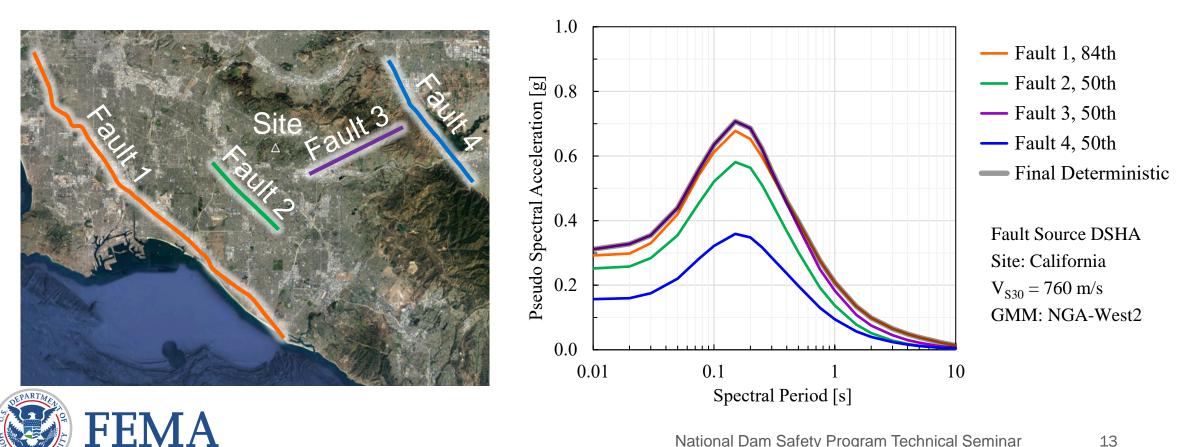
Methodology – Three Steps:

- 1. Identify and characterize seismic sources
- 2. For each source, define the deterministic scenario
 - 1. Magnitude (M_W)
 - 2. Distance (R_{RUP} , R_{JB} , R_X , etc.)
 - 3. Ground Motion Level (50th, 84th-percentile)
- 3. Calculate response spectra for each scenario

Primer on DSHA for Fault Source

Example: 1. Identify and characterize seismic sources

2. For each source, define the deterministic scenario



			$\left(1\right)$		2			3
Fault Name	Dip °	SOF	Mag	R _{RUP} km	R_{JB} km	R _X km	Slip Rate mm/yr	GM Level
Fault 1	88	SS	7.2	21.3	20.8	22.1	2.00	84 th
Fault 2	71	RV	6.4	10.2	5.9	9.5	0.10	50 th
Fault 3	90	SS	6.6	6.2	6.2	-6.2	0.15	50 th
Fault 4	50	RVO	6.7	18.2	15.9	22.6	0.25	50 th

Primer on DSHA for Fault Source

Example: 3. Calculate the response spectra

Guidance Documents

Recommend or require a deterministic seismic hazard analysis (DSHA):

FERC Chapter 13 (2018)

6.0 GUIDELINES

These guidelines are provided in this section to **establish the requirements** for a seismic hazard evaluation at a particular site. The seismic design criteria for that site are then to be based on the results of such an evaluation.

6.3 Deterministic Development of Earthquake Ground Motions

A deterministic evaluation should always be conducted for the site to obtain the target spectrum for each source (identified in the geologic/seismologic studies) significant to the site. As noted in

6.4 Probabilistic Development of Earthquake Ground Motions

If sufficient information, or if a logic tree can be reasonably constructed, for the seismic sources that can affect the site, then a probabilistic seismic hazard analysis (PSHA) may be completed for the site. It is essential that the seismologic as well as the geologic data pertinent to each source be

Guidance Documents

Recommend or require a deterministic seismic hazard analysis:

FERC Chapter 13 (2018)

6.0 GUIDELINES

These guidelines are provided in this section to **establish the requirements** for a seismic hazard evaluation at a particular site. The seismic design criteria for that site are then to be based on the results of such an evaluation.

6.3 Deterministic Development of Earthquake Ground Motions

A deterministic evaluation should always be conducted for the site to obtain the target spectrum for each source (identified in the geologic/seismologic studies) significant to the site. As noted in

- California DSOD (2018)
- USACE ER 1110-2-1806 (2016)

Guidance Documents

Criteria assume the source is characterized as a known fault

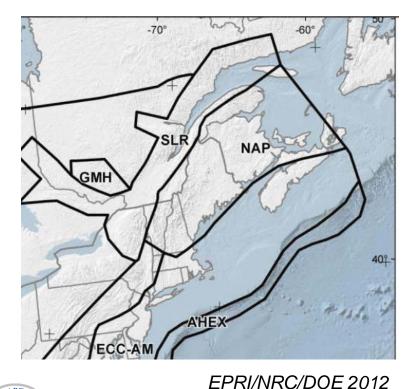
- Use area of fault \rightarrow Magnitude
- Use location of fault \rightarrow Distance
- Use slip rate of fault \rightarrow Ground Motion Level

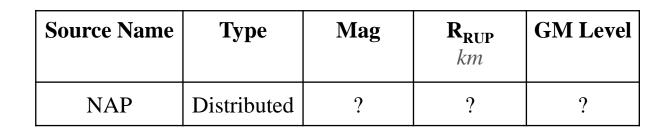
In many areas of the Central and Eastern U.S., don't know where the faults are, but know that there is seismic hazard

Distributed seismicity sources are a significant contributor to the hazard

How do you perform a DSHA for a distributed seismicity source?

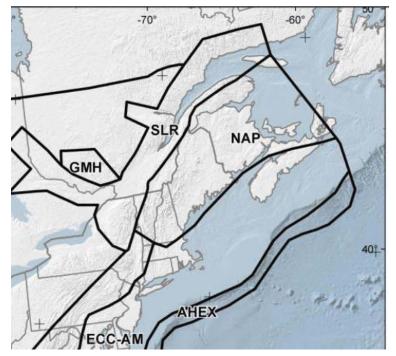
Issues


- Cannot use source geometry to calculate magnitude
- Cannot use location to calculate distance
- Cannot use slip rate to calculate ground motion level


Three Different Approaches:

- 1. Purely deterministic approach
- 2. Purely probabilistic approach
- 3. Probabilistically-informed DSHA approach

- 1. Purely Deterministic Approach
 - Site is in the Northeast region of the United States

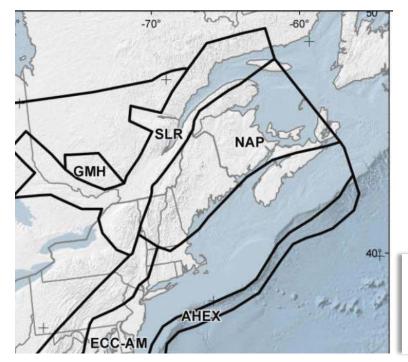


How do you define the scenario?

National Dam Safety Program Technical Seminar

- 1. Purely Deterministic Approach
 - Site is in the Northeast region of the United States

Source Name	Туре	Mag	R_{RUP} km	GM Level
NAP	Distributed	7.18	0	50 th

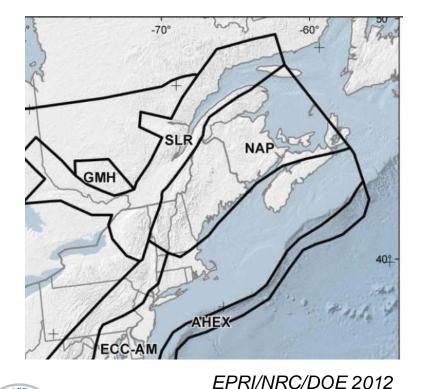

NAP Mag = M_{max} from CEUS 2012

Most practitioners would agree M 7.18 at 0 km is too conservative. Question becomes: how far do you back off of M 7.18 at 0 km?

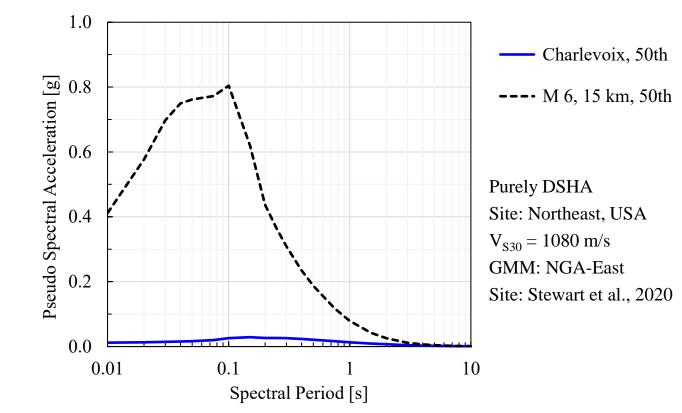
EPRI/NRC/DOE 2012

- 1. Purely Deterministic Approach
 - One option: arbitrarily consider a M 6 6.5 at 10 15 km

Source Name	Туре	Mag	R_{RUP} km	GM Level
NAP	Distributed	6	15	50 th


FERC Chapter 13 Section 3 (2018)

The distance from the site to such areal seismic sources is usually assigned as a "depth" below the site and typically varies from 5 to 15 km. Data from instrumental seismicity (which would include the depth of each event) are necessary for assigning this depth. The maximum moment magnitude considered for such zones is typically $M = 6\frac{1}{2} \pm \frac{1}{4}$.



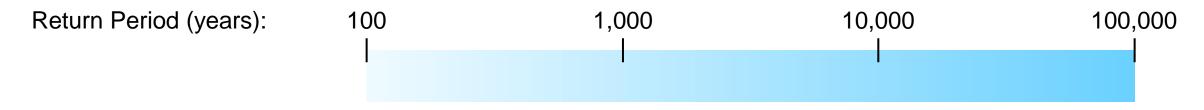
EPRI/NRC/DOE 2012

- 1. Purely Deterministic Approach
 - One option: arbitrarily consider a M 6 6.5 at 10 15 km

FEMA

2. Purely Probabilistic Approach

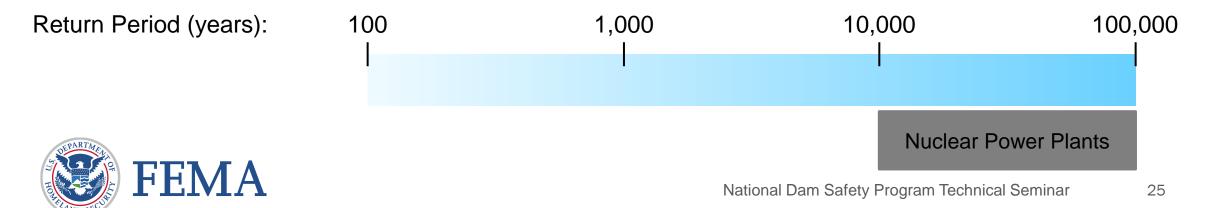
- Forgo DSHA all together
- Perform Probabilistic Seismic Hazard Analysis (PSHA)
- No longer need to select a single Magnitude, Distance, and Ground Motion Level
- Critical decision: return period of the ground motion


- 2. Purely Probabilistic Approach
 - Forgo DSHA all together
 - Perform Probabilistic Seismic Hazard Analysis (PSHA)
 - No longer need to select a single Magnitude, Distance, and Ground Motion Level
 - Critical decision: return period of the ground motion
 - Case-by-case basis
 - Considering downstream consequences
 - Considering dam owner, stakeholder, and public risk tolerance

- 2. Purely Probabilistic Approach
 - Forgo DSHA all together
 - Perform Probabilistic Seismic Hazard Analysis (PSHA)
 - No longer need to select a single Magnitude, Distance, and Ground Motion Level
 - Critical decision: return period of the ground motion

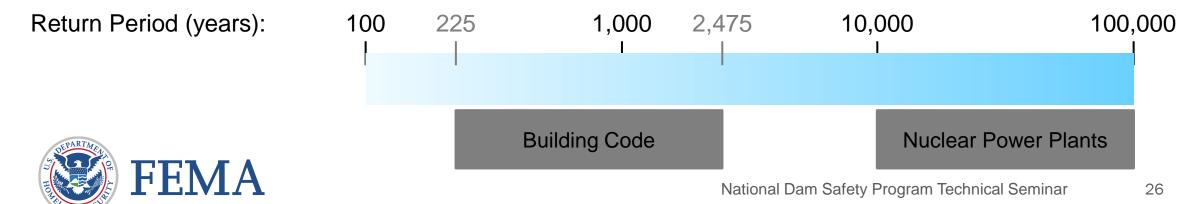
Case-by-case basis

Considering downstream consequences



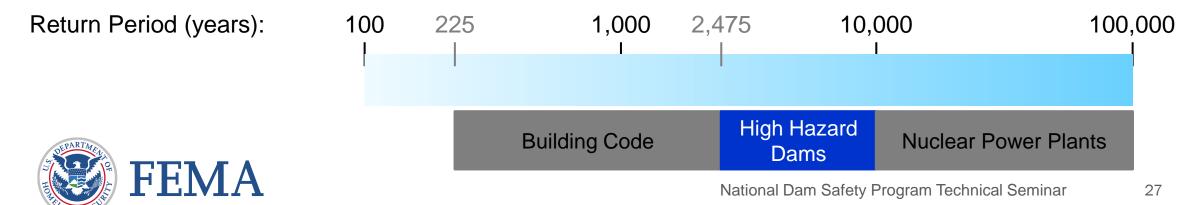
- 2. Purely Probabilistic Approach
 - Forgo DSHA all together
 - Perform Probabilistic Seismic Hazard Analysis (PSHA)
 - No longer need to select a single Magnitude, Distance, and Ground Motion Level
 - Critical decision: return period of the ground motion

Case-by-case basis


Considering downstream consequences

- 2. Purely Probabilistic Approach
 - Forgo DSHA all together
 - Perform Probabilistic Seismic Hazard Analysis (PSHA)
 - No longer need to select a single Magnitude, Distance, and Ground Motion Level
 - Critical decision: return period of the ground motion

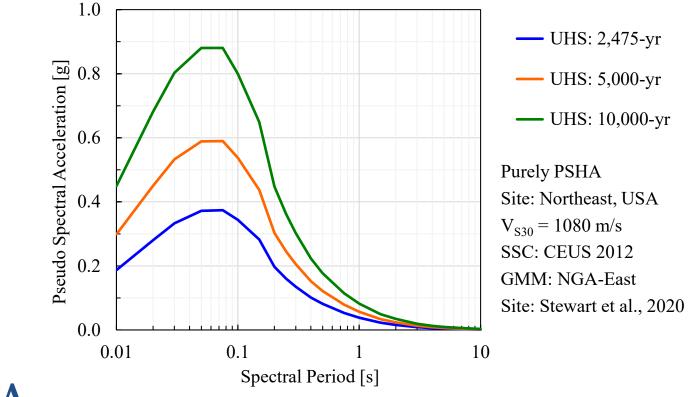
Case-by-case basis


Considering downstream consequences

- 2. Purely Probabilistic Approach
 - Forgo DSHA all together
 - Perform Probabilistic Seismic Hazard Analysis (PSHA)
 - No longer need to select a single Magnitude, Distance, and Ground Motion Level
 - Critical decision: return period of the ground motion

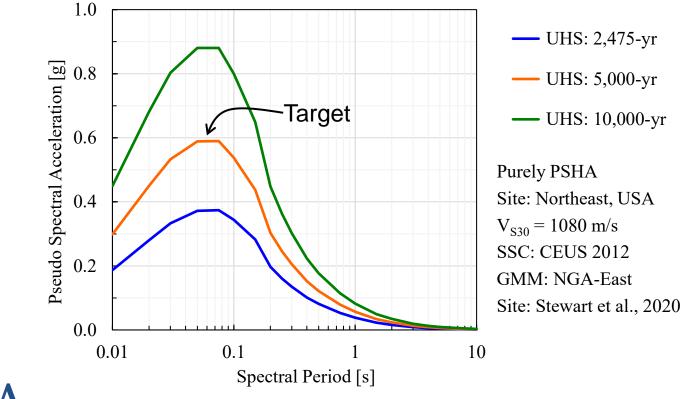
Case-by-case basis

Considering downstream consequences

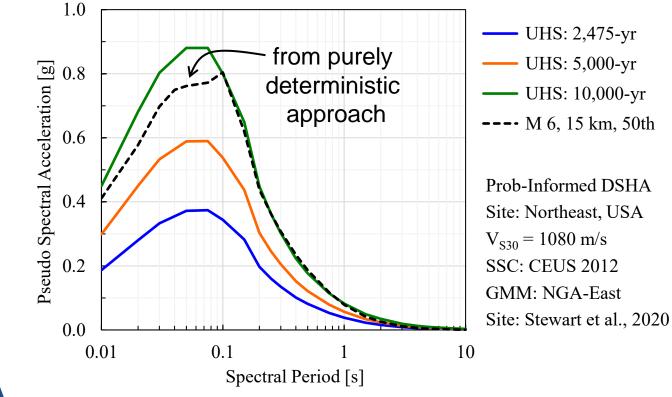

2. Purely Probabilistic Approach

Guidance document summary – return period of ground motion

Guidance Document	Hazard Classification	Return Period (years)
FERC Chapter 13 (2018)	Deterministic based - no explicit guidance	Deterministic based - no explicit guidance
California DSOD (2018)	Deterministic based - no explicit guidance	Deterministic based - no explicit guidance
USACE (2016)	Deterministic based - no explicit guidance	Deterministic based - no explicit guidance
CDA Dam Safety Guidelines (2013)	High - Extreme	2,475 - 10,000
USDA NRCS (2019)	High	10,000
Montana DNRC (2020)	High	5,000 - 10,000
ICOLD Bulletin 72 (2010)	Moderate - High	3,000 - 10,000
Global Standard – Tailings (2020)	High - Extreme	2,475 - 10,000
U.S. Bureau of Reclamation (2015)	Risk based - all return periods	Risk based - all return periods



- 2. Purely Probabilistic Approach
 - Perform PSHA, construct Uniform Hazard Response Spectra (UHS)



- 3. Probabilistically-Informed DSHA Approach
 - Select a deterministic scenario that approximates a target UHS from a PSHA

- 3. Probabilistically-Informed DSHA Approach
 - Comparison with purely deterministic approach

- 3. Probabilistically-Informed DSHA Approach
 - Evaluate results from a deaggregation analysis

What magnitude and distance are appropriate for the distributed seismicity source?

							Magr	nitude							
		5.0 - 5.2	5.2 - 5.4	5.4 - 5.6	5.6 - 5.8	5.8 - 6.0	6.0 - 6.2	6.2 - 6.4	6.4 - 6.6	6.6 - 6.8	6.8 - 7.0	7.0 - 7.2	7.2 +		
	0 - 10	2%	2%	1%	1%	1%	0%	0%	0%	0%	0%	0%	0%	100%	
	10 -20	5%	5%	4%	3%	2%	2%	1%	1%	0%	0%	0%	0%	92%	
	20 - 30	3%	3%	3%	3%	2%	2%	1%	1%	1%	0%	0%	0%	68%	<u>e</u>
Ē	30 - 50	2%	2%	2%	2%	2%	2%	2%	2%	1%	1%	1%	0%	49%	entile
Distance [km]	50 - 70	0%	0%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	31%	
nce	70 - 90	0%	0%	0%	0%	0%	0%	1%	1%	1%	0%	0%	0%	23%	с Ф
sta	90 - 120	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	0%	1%	19%	nce
Ō	120 - 150	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	14%	Dista
	150 - 200	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	10%	ā
	200 - 250	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	6%	
	250+	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	2%	4%	
		12%	24%	35%	46%	55%	64%	71%	78%	84%	89%	93%	100%		
							Magnitude	Percentile							

Observation: A broad range of magnitude and distance pairs

contribute to the ground shaking hazard at the site

- 3. Probabilistically-Informed DSHA Approach
 - Evaluate results from a deaggregation analysis

What magnitude and distance are appropriate for the distributed seismicity source?

							Magr	vitudo							
						F 9 G 0	-		64 66	66 69	69 70	70 70	7.2.1		
-	0 40	5.0 - 5.2	5.2 - 5.4	5.4 - 5.6	5.6 - 5.8	5.8 - 6.0	6.0 - 6.2	6.2 - 6.4	6.4 - 6.6	6.6 - 6.8	6.8 - 7.0	7.0 - 7.2	7.2 +	1000	
	0 - 10	2%	2%	1%	1%	1%	0%		0%	0%	0%	0%	0%	100%	
	10 -20	5%	5%	4%	3%	2%	2%	1%	1%	0%	0%	0%	0%	92%	
	20 - 30	3%	3%	3%	3%	2%	2%	1%	1%	1%	0%	0%	0%	68%	entile
Ē	30 - 50	2%	2%	2%	2%	2%	2%	2%	2%	1%	1%	1%	0%	49%	en
Distance [km]	· 50 - 70	0%	0%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	31%	•
DC6	70 - 90	0%	0%	0%	0%	0%	0%	1%	1%	1%	0%	0%	0%	23%	С С
sta	90 - 120	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	0%	1%	19%	JUC
Ē	120 - 150	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	14%	Dista
	150 - 200	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	10%	
	200 - 250	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	6%	
	250+	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	2%	4%	
		12%	24%	35%	46%	55%	64%	71%	78%	84%	89%	93%	100%		
		12/0	24 /0	5570	40 /0				1070	04 /0	0970	9370	10070		
							wagnitude	Percentile							

Trying to do something in line with the fault source approach

Looking for an above average magnitude, closer than average distance

- 3. Probabilistically-Informed DSHA Approach
 - Evaluate results from a deaggregation analysis

What magnitude and distance are appropriate for the distributed seismicity source?

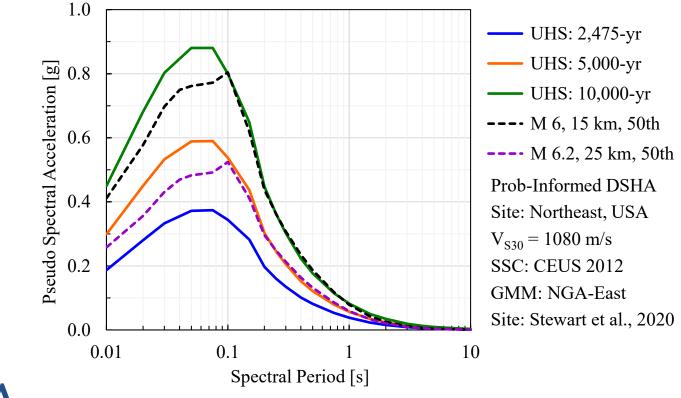
							Moor	vitude							
		5.0 - 5.2	5.2 - 5.4	5.4 - 5.6	5.6 - 5.8	5.8 - 6.0	6.0 - 6.2		6.4 - 6.6	6.6 - 6.8	69 70	7.0 - 7.2	7.2 +		
	0 - 10	3.0 - 3.2 2%	5.2 - 5.4 2%	5.4 - 5.0 1%	5.0 - 5.8 1%	5.8 - 0.0 1%	0.0 - 0.2		0.4 - 0.0	0.0 - 0.8		0%	0%	100%	
	10 -20	2 % 5%	5%	4%	3%	2%	2%		1%	0%	0%	0%	0%	92%	
	20 - 30	3%	3%	3%	3%	2%	2%		1%	1%		0%	0%	68%	<u>e</u>
Ē	30 - 50	2%	2%	2%	2%	2%	2%	2%	2%	1%	1%	1%	0%	49%	ercentile
Distance [km]	50 - 70	0%	0%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	31%	
nce	70 - 90	0%	0%	0%	0%	0%	0%	1%	1%	1%	0%	0%	0%	23%	ъ
ista	90 - 120	0%	0%	0%	0%	0%	0%		1%	1%		0%	1%	19%	Distance
	120 - 150	0%	0%	0%	0%		0%		0%	1%		1%	1%	14%	lista
	150 - 200	0%	0%	0%	0%		0%		0%	1%		1%	1%	10%	
	200 - 250	0%		0%	0%		0%		0%	0%	0%	0%	1%	6%	
_	250+	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	2%	4%	
		400/	040/	050/	400/		0.404	740/	700/	040/	000/	000/	4000/		
		12%	24%	35%	46%		64% Magnituda	71%	78%	84%	89%	93%	100%		
							wagnitude	Percentile							

Trying to do something in line with the fault source approach

Looking for an above average magnitude, closer than average distance

- 3. Probabilistically-Informed DSHA Approach
 - Evaluate results from a deaggregation analysis

What magnitude and distance are appropriate for the distributed seismicity source?


							Mag	itudo							
		5.0 - 5.2	5.2 - 5.4	5.4 - 5.6	5.6 - 5.8	5.8 - 6.0	6.0 - 6.2		6.4 - 6.6	6.6 - 6.8	6.8 - 7.0	7.0 - 7.2	7.2 +		
	0 - 10	2%	2%	1%	1%	1%	0%	0%	0%	0%	0%	0%	0%	100%	
	10_20	5%	5%	4%	3%	2%	2%	1%	1%	0%	0%	0%	0%	92%	_
	20 - 30	3%	3%	3%	3%	2%	2%	1%	1%	1%	0%	0%	0%	68%	e
E	30 - 50	2%	2%	2%	2%	2%	2%	2%	2%	1%	1%	1%	0%	49%	
Distance [km]	50 - 70	0%	0%	1%	1%	1%	1%	1%	1%	1%	1%	0%	0%	31%	erc
nce	70 - 90	0%	0%	0%	0%	0%	0%	1%	1%	1%	0%	0%	0%	23%	с С
sta	90 - 120	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	0%	1%	19%	nce
ā	120 - 150	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	14%	ista
	150 - 200	0%	0%	0%	0%	0%	0%	0%	0%	1%	1%	1%	1%	10%	Ō
	200 - 250	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	6%	
	250+	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	1%	2%	4%	
		12%	24%	35%	46%	55%	64%	71%	78%	84%	89%	93%	100%		
		1270	2470	3570	40 %		Magnitude		1070	04 70	0970	9370	10070		
							magintaac								

Trying to do something in line with the fault source approach

Looking for an above average magnitude, closer than average distance

- 3. Probabilistically-Informed DSHA Approach
 - Select a deterministic scenario that approximates a target UHS from a PSHA

Discussion

Challenges and considerations for each approach

- Purely deterministic
 - Arbitrarily selecting a M 6 6.5 at 10 15 km does not recognize the widely varying seismic environments of different regions
 - Ground motions from DSHA associated with a wide range of return periods
- Purely probabilistic
 - Advantage of accounting for broad distribution of scenarios
 - This approach, by itself, does not meet the current regulatory requirements
- Probabilistically-informed DSHA
 - Inconsistency between fault and distributed seismicity sources
 - Why not just use the UHS that you're targeting?

Selection of a magnitude and distance for a distributed seismicity source is a major challenge and practitioners are almost always looking at insights from a PSHA to make this decision.

When a DSHA is required by regulations, a probabilistically-informed DSHA with a carefully selected return period is a reasonable approach.

When a DSHA is not required, a PSHA with a carefully selected return period is preferred because of the ability to account for the broad distribution of magnitudes, distances, and ground motion levels that contribute to the ground shaking hazard at the Site.

38

Selection of a magnitude and distance for a distributed seismicity source is a major challenge and practitioners are almost always looking at insights from a PSHA to make this decision.

When a DSHA is required by regulations, a probabilistically-informed DSHA with a carefully selected return period is a reasonable approach.

When a DSHA is not required, a PSHA with a carefully selected return period is preferred because of the ability to account for the broad distribution of magnitudes, distances, and ground motion levels that contribute to the ground shaking hazard at the Site.

39

THANK YOU

Christie Hale Seismic Hazard Analyst <u>chale@geosyntec.com</u>

engineers | scientists | innovators

