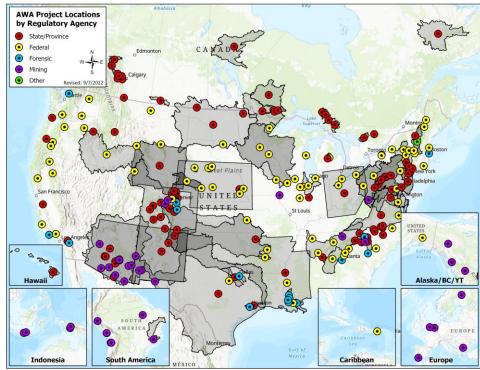
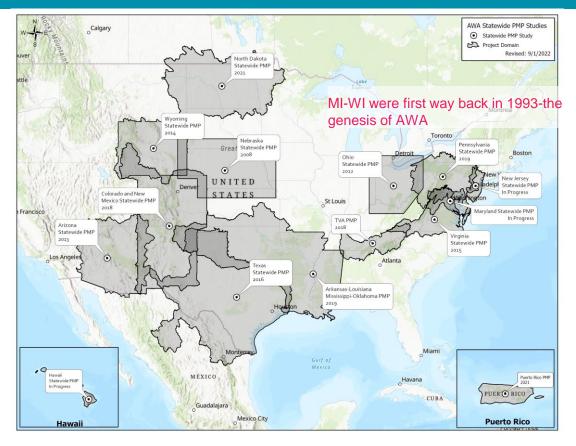
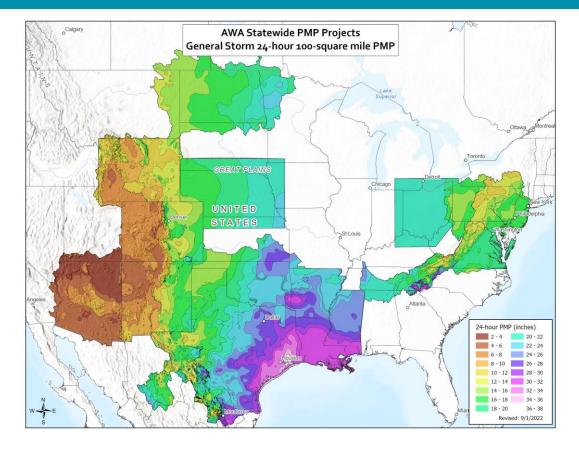

Introduction to Hydrology loadings, climate change and extreme precipitation Probable Maximum Precipitation-20 years of Updating the HMRs and What to Expect through 2100

Applied Weather Associates (AWA) Bill Kappel National Dam Safety Program Technical Seminar for 2023, Emmitsburg, MD


PMP Development History

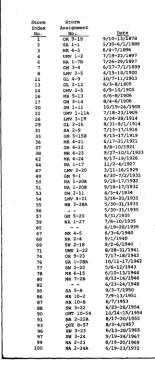

Overall PMP Development Today and What's Next

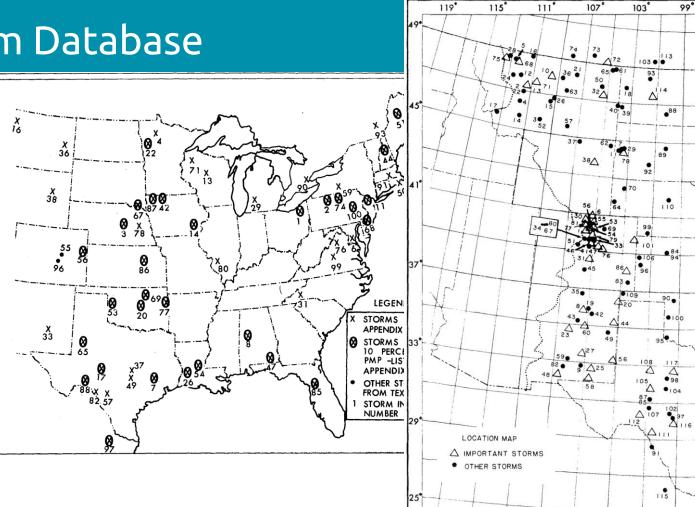
- Statewide studies a big part of the mix
- What's next
 - PRECIP act
 - Public-Private partnership
 - Updates
 - Storage
 - Access


AWA Statewide Project Locations

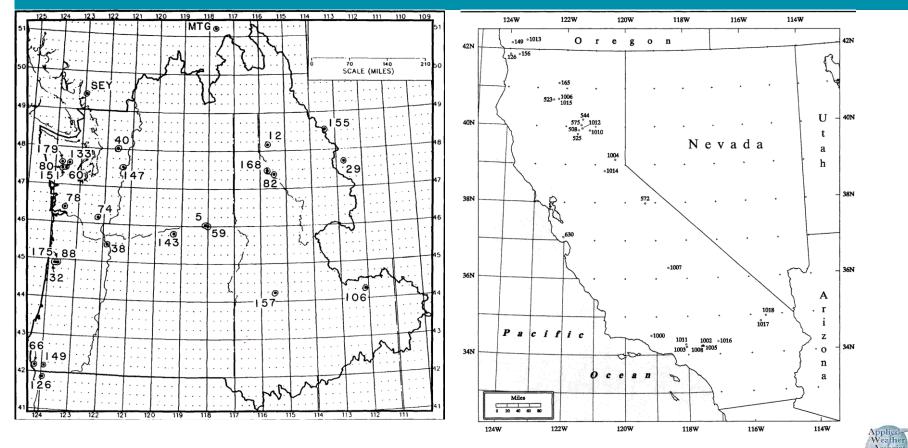
Applied Weather Associates

AWA Statewide PMP Depths All together


Applied Weather Associates

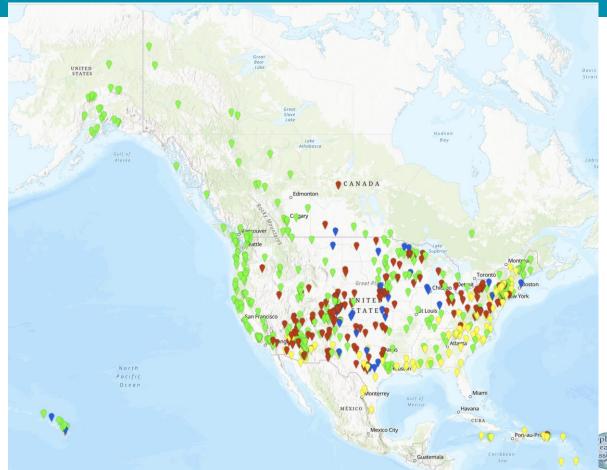

AWA Statewide Progress Improvements

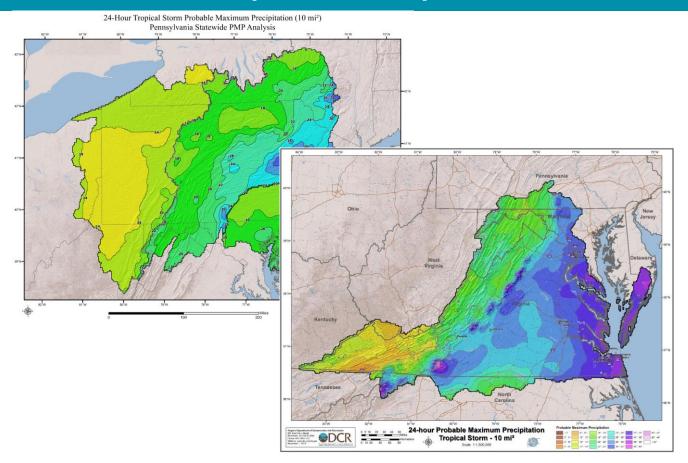
- Continual updates to the storm database
- PMP by storm type and season
- Meteorological analyses of many other aspects
- Storm based temporal patterns
- Storm based spatial patterns
- Input for probabilistic assessments



Su

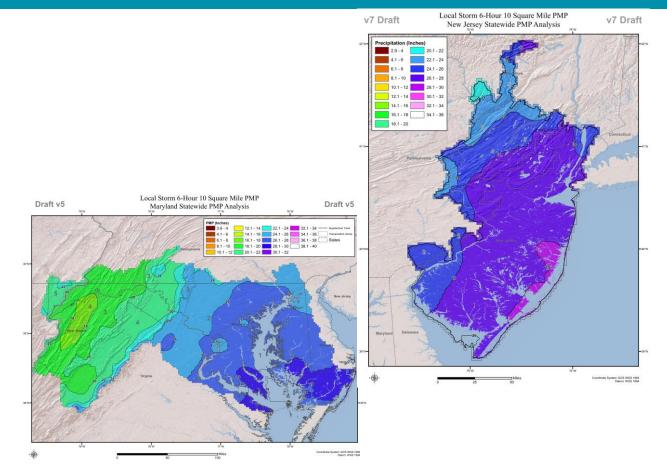
99"


HMR Storm Database (2)


8

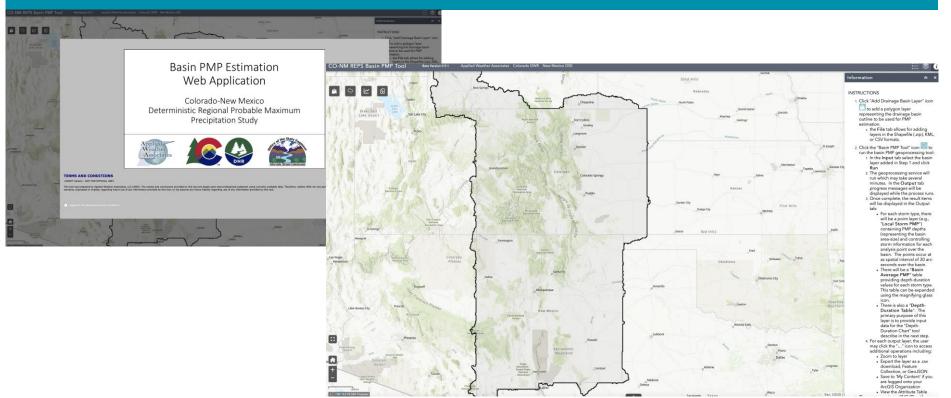
AWA SPAS Storm Database

- Nearly 1000 storms analyzed
- Provide
 numerous
 outputs
 - For PMP
 - Hydro
 Calibration
 - Temporal/Spatial
 - ARFs



AWA Statewide Output Examples-East

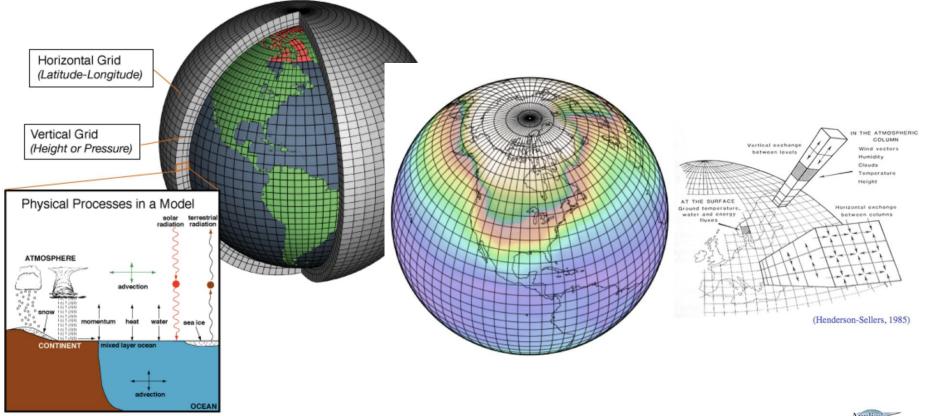
AWA Statewide Output Examples-East (2)


Weather

Statewide Projects-Now and What's Next

- Huge amounts of data/results over time
- Web interface for all studies for consistency
- No need desktop GIS
 - Corrects version control \bigcirc
 - Incorporate updates and improvements for all states Ο
 - Include new storms
 - Include updated methods/climate data
- Provide consolidated support and maintenance
- Continually updated storm database

AWA Web PMP Tool Example



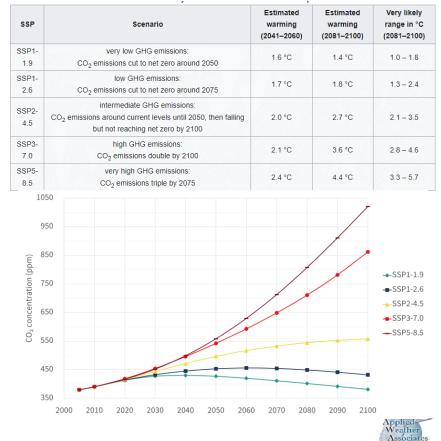
Climate Change, PMP, and Dam Safety

• So what's next? Does PMP change in a changing climate?

Global Climate Model-General Circulation Model

Climate Model Background

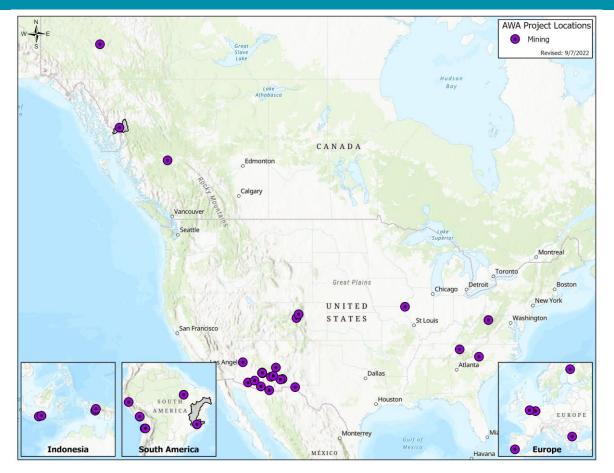
- Global Models are downscaled using Regional Climate Models
 - To better replicate local climate/topography
 - To better capture local meteorological conditions
- . Two types of downscaling
 - Statistical
 - Dynamic


Climate Model Background (2)

- Various research groups conduct climate change modeling
 - Share data via CMIP6 group
- Shared Socioeconomic Pathway (SSP)
 - SSP account for unknown future GHG emissions
- SSP scenarios used as boundary conditions for CMIP6 GCMs
 - Commonly use SSP 4.5 and 8.5

CMIP6 Climate Model Projections

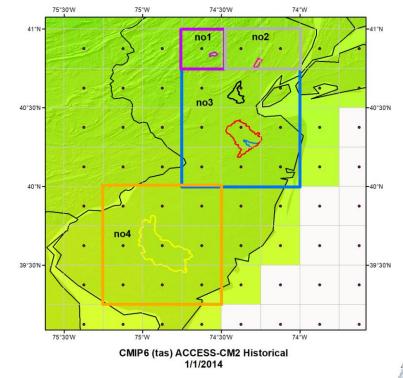
- The **SSP 4.5** intermediate GHG emissions: CO2 emissions around current levels until 2050, then falling but not reaching net zero by 2100
- The **SSP 8.5** very high GHG emissions: CO2 emissions triple by 2075



Within Uncertainty" Term

- The meaning of "within uncertainty" for this analysis
- Multiple sources of uncertainty and varying ranges of uncertainty
 - Gauge/Observed Precipitation
 - Point measurement 5 to 15% percent for long-term series, and as high as 75% for individual storm events
 - Frequency Analysis
 - Typically, 24-hour 100-year error bounds are approximately +/-18%
 - Climate Projections
 - Regional Models can be quite large 20 to >50%
 - PMP Storm In-place Maximization Factor
 - Range between 5 and 30%, with an average around 20%
- Consider +/- 20% to be within uncertainty of the analysis results.

AWA Climate Change Study Locations

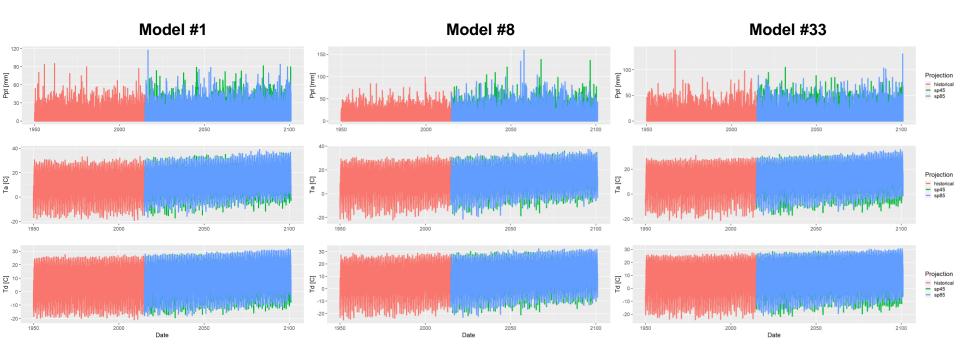


CMIP6 Climate Model Projections-NJ Example

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

- Total of 35 climate models
- 9 models did not have all data
 - (6) Missing years and/or variables
 - (3) 30-days per month
- Used 26 models on daily time step
 - Temperature
 - Relative humidity
 - Precipitation

Region#	Basin	Domain
NJ_Region_1	Shongum	41.0, -74.75, 40.75, -74.5
NJ_Region_2	Orange	41.0, -74.5, 40.75, -74.0
NJ_Region_3	New Market, Durernal, Englishtown	40.75, -74.75, 40.0, -74.0
NJ_Region_4	Lenape	40.0, -75.25, 39.25, -74.5

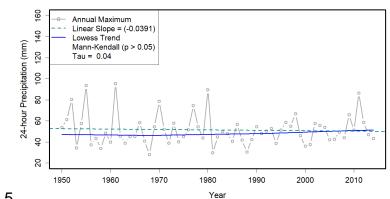

Climate Model Projections Used

- 26 models on daily time step
 - Temperature (tas)
 - Relative humidity (hurs)
 - Precipitation (pr)

		Relativ	Relative Humidity (hurs)			cipitation	(pr)	Temperature (tas)			
Model #	MODEL NAME	HISTORICAL	SSP45	SSP85	HISTORICAL	SSP45	SSP85	HISTORICAL	SSP45	SSP85	
1	ACCESS-CM2	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
2	ACCESS-ESM1-5	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
4	CanESM5	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
5	CESM2-WACCM	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
6	CESM2	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
7	CMCC-CM2-SR5	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
8	CMCC-ESM2	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
9	CNRM-CM6-1	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
10	CNRM-ESM2-1	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
11	EC-Earth3-Veg-LR	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
12	EC-Earth3	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
13	FGOALS-g3	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
14	GFDL-CM4_gr1	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
15	GFDL-CM4_gr2	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
16	GFDL-ESM4	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
17	GISS-E2-1-G	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
21	INM-CM4-8	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
22	INM-CM5-0	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
23	IPSL-CM6A-LR	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
26	MIROC-ES2L	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
27	MIROC6	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
28	MPI-ESM1-2-HR	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
29	MPI-ESM1-2-LR	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
30	MRI-ESM2-0	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
33	NorESM2-MM	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	
34	TaiESM1	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	1950-2014	2015-2100	2015-2100	

Climate Model Analysis Input (Model 1, 8, 33)

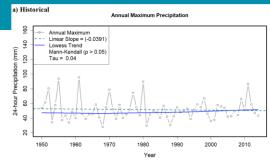
Climate Change Analysis Methods

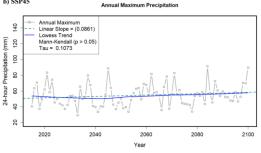

- 1) Trend Analysis for 1-day, 3-day, and Annual
 - Model projections (Historic, SSP45, SSP85)
 - All Season, Summer, Winter
- 2) Monthly Analysis
 - Model projections (Historic, SSP45, SSP85)
 - Precipitation and temperature
- 3) Precipitation Frequency Analysis for 1-day, 3-day, and Annual
 - All Season, Summer, and Winter
 - Model projections (Historic, SSP45, SSP85)
 - Estimate PF for 1-year through 1000-year
 - Quantify changes

Model Trend Analysis (1-day Example)

Annual Maximum Precipitation

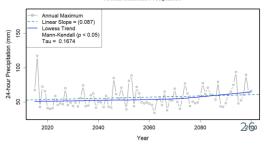
- 1-day AMS Trend Analysis (Mann-Kendall)
- 1) Model 1
 - trend depends on period investigated
 - Historical: no trend
 - SP45: no trend
 - SP85: increasing trend
- 2) Model 2
 - trend depends on period investigated
 - Historical: no trend
 - SP45: no trend
 - SP85: no trend
- 3) Model 4
 - trend depends on period investigated
 - Historical: no trend
 - SP45: no trend
 - SP85: increasing trend


- 4) Model 5
 - trend depends on period investigated
 - Historical: no trend
 - SP45: increasing trend
 - SP85: no trend
- 5) Model 6
 - trend depends on period investigated
 - Historical: no trend
 - SP45: no trend
 - SP85: no trend

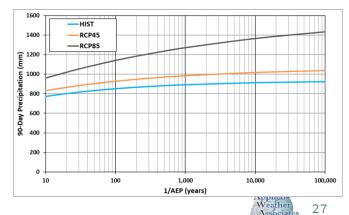

Completed for 1-day, 3-day, annual, and by season

Climate Model Trend Results

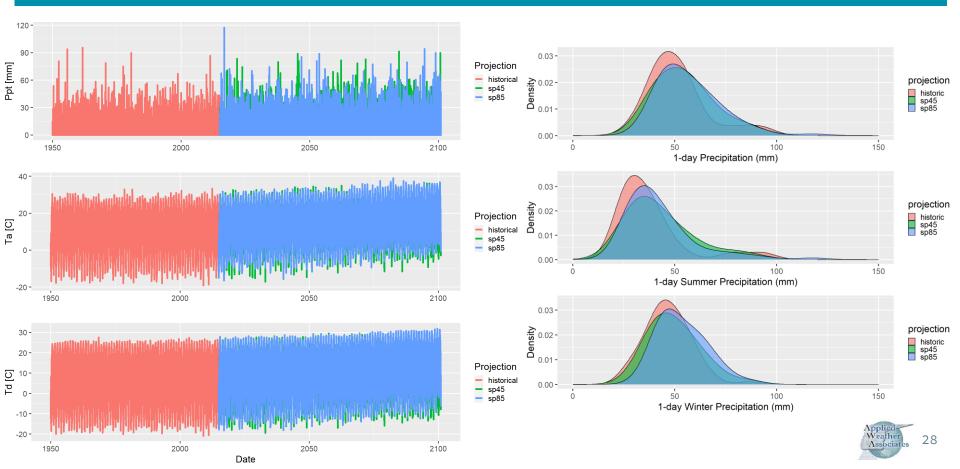
		Precipitation		Temperature
	1-day	3-day	Annual	1-day
Historic	24 – no trend	26 – no trend	26 – no trend	7 – no trend
	1 – increase	0 – increase	0 – increase	19 – <mark>increase</mark>
	1 – decrease	0 – decrease	0 – decrease	0 – decrease
SSP45	20 – no trend	18 – no trend	17 – no trend	1 – no trend
	6 – increase	4 – increase	9 – increase	25 – <mark>increase</mark>
	0 – decrease	0 – decrease	0 – decrease	0 – decrease
SSP85	11 – no trend	14 – no trend	4 – no trend	0 – no trend
	15 – increase	12 – increase	22 – increase	26 – increase
	0 – decrease	0 – decrease	0 – decrease	0 – decrease



b) SSP45


c) SSP85

Annual Maximum Precipitation



Frequency Analysis (L-moments)

- 1-day, 3-day, 365-day L-moment Frequency Analysis (Historic, SSP45, SSP85)
- All Precipitation, Summer, Winter
 - Identification of Probability Distribution
 - Goodness-of-fit measures
 - L-moment Ratio Diagram
 - The regional weighted average L-Skewness and L-Kurtosis tend to be near the GEV distribution
 - Derivation of Uncertainty bounds
 - Monte-carlo simulation
 - Point Value Annual Exceedance Estimates
 - Compare 10-, 50-, 100-, 500-, and 1000-year AEPs

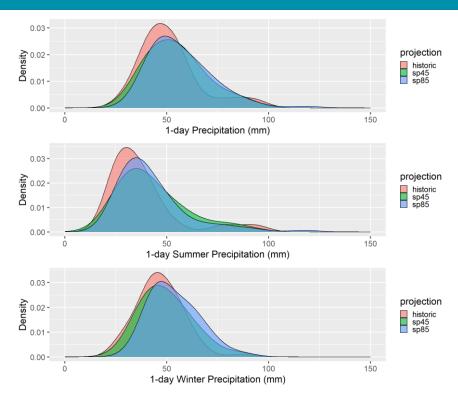
Climate Model (Model 1)

Frequency Analysis (Model 1 Example)

	10yr	50yr	100yr	500yr	1000yr		P	ct Chang	e		Average
Historical	70.1	92.8	103.5	131.1	144.3	-	-	-	-	-	
SP45	73.7	90.7	97.5	112.5	118.5	105%	98%	94%	86%	82%	93%
SP85	76.1	99.1	109.9	137.6	150.9	108%	107%	106%	105%	105%	106%

*** 1-Day Summer

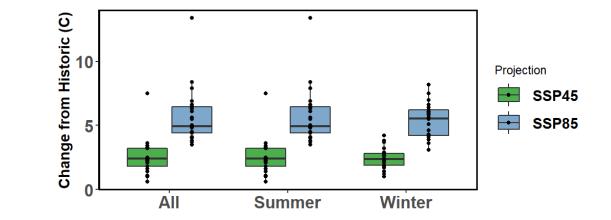
		10yr	50yr	100yr	500yr	1000yr		Р	ct Chang	e		Average
н	listorical	56.4	92.4	114.3	188.1	233.4	-	-	-	-	-	
S	P45	63.8	91.3	104.8	141.4	159.7	113%	99%	92%	75%	68%	89%
S	P85	62.2	93.9	111.3	163.5	192.4	110%	102%	97%	87%	82%	96%


*** 1-Day Winter

	10yr	50yr	100yr	500yr	1000yr		P	ct Chang	e		Average
Historical	61.0	70.6	73.9	80.1	82.3	-	-	-	-	-	
SP45	66.9	81.6	87.4	99.8	104.8	110%	116%	118%	125%	127%	119%
SP85	69.6	84.5	90.6	104.3	109.9	114%	120%	123%	130%	134%	124%

*** 3-Day	/ Precip	itation									
	10yr	50yr	100yr	500yr	1000yr		F	ct Chang	e		Average
Historical	103.1	135.3	149.9	186.1	202.7	-	-	-	-	-	
SP45	110.2	137.5	148.7	173.7	184.2	107%	102%	99%	93%	91%	98%
SP85	120.1	157.5	174.1	214.8	233.2	116%	116%	116%	115%	115%	116%

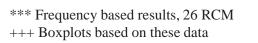
* 3-Da	y Sum	mer									
	10yr	50yr	100yr	500yr	1000yr		F	ct Chang	e		Average
Historical	86.9	133.2	160.3	247.7	299.3	-	-	-	-	-	
SP45	96.2	128.8	143.5	180.0	196.8	111%	97%	90%	73%	66%	87%
SP85	99.2	142.1	163.9	224.5	255.7	114%	107%	102%	91%	85%	100%

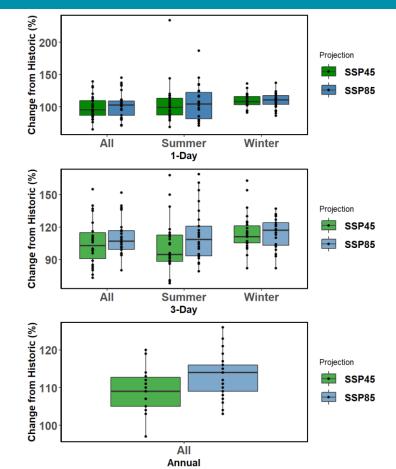

* 3-Day	Winte	r									
	10yr	50yr	100yr	500yr	1000yr		P	ct Chang	e		Average
Historical	91.9	123.6	138.9	179.6	199.7	-	-	-	-	-	
SP45	101.0	130.2	142.8	172.3	185.2	110%	105%	103%	96%	93%	101%
SP85	110.0	146.3	163.3	206.8	227.5	120%	118%	118%	115%	114%	117%

*** 365-D	ау										
	10yr	50yr	100yr	500yr	1000yr		F	ct Chang	e		Average
Historical	1379	1462	1486	1526	1538	-	-	-	-	-	
SP45	1517	1626	1658	1708	1722	110%	111%	112%	112%	112%	111%
SP85	1571	1691	1728	1792	1812	114%	116%	116%	117%	118%	116%

Summary Temperature Annual Maximum

• 1-day (ssp45; ssp85)

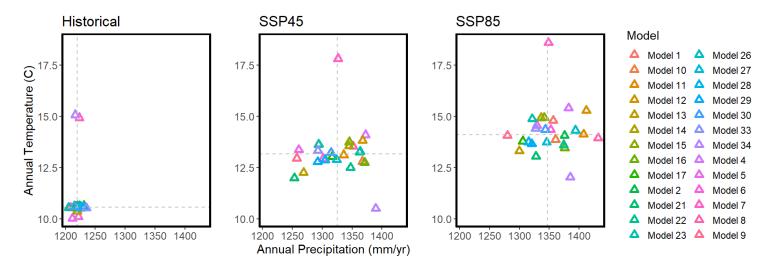

- All = 2.4 C; 4.9 C
- Summer = 2.4 C; 4.9 C
- Winter = 2.4 C; 5.5 C



*** Frequency based results, 26 RCM +++ Boxplots based on these data

Summary Precipitation Frequency

- 1-day (sp45; sp85)
 - All = -4%; 3%
 - Summer = -1%; 4%
 - Winter = 8%; 11%
- **3-day**
 - All = 3%; 7%
 - Summer = -5%; 9%
 - Winter = 11%; 17%
- Annual
 - All = 9%; 14%



Summary Annual Temperature and Precipitation

- Annual Climatology (temp, ppt)
 - Historical = 10.6 C; 1220 mm
 - SSP45 = 13.2 C; 1325 mm (2.6 C; 109%)
 - SSP85 = 14.1 C; 1347 mm (3.5 C; 110%)

Application of Climate Change Results

Annual Maximum/Frequency Analysis

		SSP	45			SSP	85	
	Mean	Median	Min	Max	Mean	Median	Min	Max
Temperature 1-Day; C	2.5	2.4	0.6	7.5	5.6	4.9	3.5	13.4
Temperature 1-Day Summer; C	2.5	2.4	0.6	7.5	5.6	4.9	3.5	13.4
Temperature 1-Day Winter PF; C	2.4	2.4	1.0	4.2	5.4	5.5	3.1	8.2
Precipitation 1-Day PF; %	-1	-4	-35	39	2	3	-29	45
Precipitation 1-Day Summer PF; %	4	-1	-31	134	6	4	-29	87
Precipitation 1-Day Winter PF; %	9	8	-9	36	10	11	-14	37
Precipitation 3-Day PF; %	5	3	-27	55	11	7	-20	52
Precipitation 3-Day Summer PF; %	3	-5	-32	68	13	9	-21	69
Precipitation 3-Day Winter PF; %	14	11	-18	63	15	17	-18	37
Precipitation Annual PF; %	9	9	-3	20	14	14	3	26

Climate Change Projections from 2015 through 2100

Application of Climate Change Results (2)

- Results are presented as median values based on model ensemble
- Design Storm and Routing Applications
 - Recommend SSP45 climate scenario as "likely", SSP85 as "unlikely"
- Results are through 2100 and can be scaled to other periods
 - Example, for 2050 adjustment scale 2100 results by 0.59.

	2050	2100
1-Day Summer PF; %	-1	-1
1-Day Winter PF; %	5	8
3-Day Summer PF; %	-3	-5
3-Day Winter PF; %	7	11

Climate Change Projections from 2015 through 2100

Conclusion

TREND

- Increase in Ta and Td
- SSP45 Ppt most show No Trend/Change
- SSP85 Ppt most show increase trend

FREQUENCY

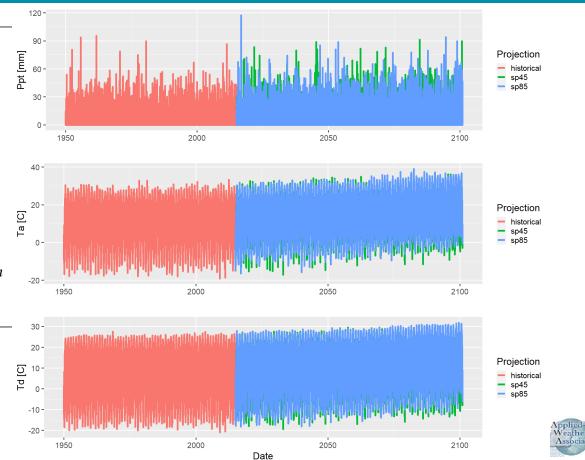
- <u>1-day</u> SSP45 and SSP85 confidence for **no change** in summer or winter season Ppt magnitude by 2100
 greatest change most likely in winter seasons
- <u>3-day</u> SSP45 and SSP85 confidence for no change in summer or winter season in Ppt magnitude by 2100

- greatest change most likely in winter season

<u>Annual</u> – SSP45 and SSP85 confidence for no change of Ppt magnitude by 2100 and increase Temp by 2100

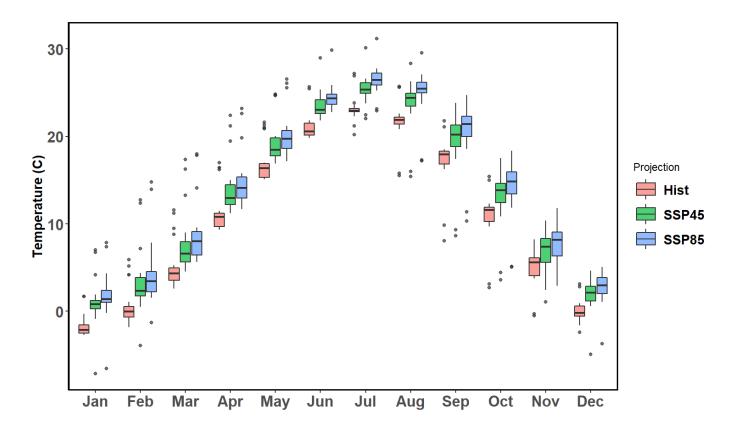
CLIMATOLOGY

- <u>Monthly Climatology</u> slight **increase** (<20%) in Ppt and **increase** Temp by 2100
- <u>Annual Climatology</u> slight **increase** (<20%) in annual Ppt and **increase** in annual Temp by 2100

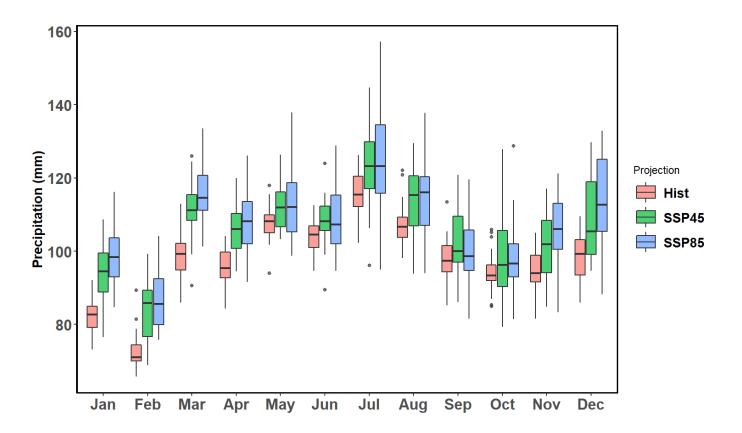


Questions

Bill Kappel Chief Meteorologist Applied Weather Associates billkappel@appliedweatherassociates.com 719-488-4311


Doug Hultstrand, PhD

Senior HydroMeteorologist Applied Weather Associates dhultstrand@appliedweatherassociates.com 720.771.5840


36

Summary Monthly Temperature

Summary Monthly Precipitation

Application of Climate Change Results (3)

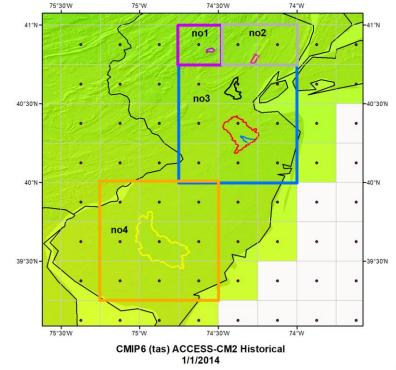
Monthly Temperature Analysis

	Hist	orical	SS	P45	SS	P85	Mean	Delta	Media	n Delta
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	-1.7	-2.2	0.9	0.8	1.7	1.4	2.6	3.4	3.0	3.5
February	0.5	-0.1	3.2	2.4	4.1	3.5	2.7	3.6	2.4	3.5
March	5.0	4.4	7.6	6.6	8.6	8.0	2.6	3.6	2.3	3.7
April	11.3	10.8	13.9	12.9	14.8	14.1	2.6	3.5	2.2	3.3
May	16.8	16.4	19.2	18.5	20.1	19.7	2.4	3.3	2.1	3.4
June	21.1	20.6	23.5	23.0	24.5	24.4	2.5	3.5	2.5	3.8
July	23.2	22.9	25.4	25.4	26.5	26.4	2.3	3.3	2.5	3.5
August	21.6	21.9	23.8	24.4	25.0	25.4	2.2	3.4	2.5	3.6
September	17.2	17.9	19.3	20.2	20.6	21.4	2.1	3.4	2.3	3.5
October	10.8	11.6	13.0	13.9	14.1	14.9	2.1	3.3	2.3	3.3
November	4.9	5.6	6.8	7.4	7.7	8.1	1.9	2.8	1.8	2.5
December	0.0	-0.2	2.0	2.1	2.7	3.0	1.9	2.7	2.3	3.2

Application of Climate Change Results (4)

Monthly Precipitation Analysis

	Hist	orical	SS	P45	SS	P85	Mean	Delta	Media	n Delta
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	82.3	82.7	93.8	94.5	98.0	98.4	1.14	1.14	1.14	1.19
February	72.7	71.0	84.4	85.9	86.5	85.6	1.16	1.21	1.21	1.21
March	98.6	99.3	111.2	111.2	115.6	114.5	1.13	1.12	1.12	1.15
April	95.7	95.3	106.4	106.1	108.4	108.1	1.11	1.11	1.11	1.13
May	107.9	108.2	112.0	112.0	112.9	112.0	1.04	1.04	1.04	1.04
June	104.1	104.5	108.5	108.1	108.8	107.2	1.04	1.03	1.03	1.03
July	115.5	115.5	123.0	123.2	124.6	123.2	1.06	1.07	1.07	1.07
August	107.1	106.7	113.2	115.4	114.8	116.0	1.06	1.08	1.08	1.09
September	97.3	97.4	102.5	100.0	99.7	98.7	1.05	1.03	1.03	1.01
October	94.5	93.3	97.9	96.2	98.5	96.7	1.04	1.03	1.03	1.04
November	94.7	94.0	101.2	101.8	105.1	106.1	1.07	1.08	1.08	1.13
December	97.8	99.3	108.4	105.4	113.3	112.7	1.11	1.06	1.06	1.13



Region 2 - Climate Change Results

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

- Total of 35 climate models
- 9 models did not have all data
 - (6) Missing years and/or variables
 - (3) 30-days per month
- Used 26 models on daily time step
 - Temperature
 - Relative humidity
 - Precipitation

Region#	Basin	Domain
NJ_Region_1	Shongum	41.0, -74.75, 40.75, -74.5
NJ_Region_2	Orange	41.0, -74.5, 40.75, -74.0
NJ_Region_3	New Market, Durernal, Englishtown	40.75, -74.75, 40.0, -74.0
NJ_Region_4	Lenape	40.0, -75.25, 39.25, -74.5

Climate Change Analysis Methods (2)

- 1) Trend Analysis for 1-day, 3-day, and Annual
 - Model projections (Historic, SSP45, SSP85)
 - All Season, Summer, Winter
- 2) Monthly Analysis
 - Model projections (Historic, SSP45, SSP85)
 - Precipitation and temperature
- 3) Precipitation Frequency Analysis for 1-day, 3-day, and Annual
 - All Season, Summer, and Winter
 - Model projections (Historic, SSP45, SSP85)
 - Estimate PF for 1-year through 1000-year
 - Quantify changes

		Precipitation	-	Temperature
	1-day	3-day	Annual	1-day
Historic	24 – no trend	24 – no trend	26 – no trend	7 – no trend
	1 – increase	1 – increase	0 – increase	19 – <mark>increase</mark>
	1 – decrease	1 – decrease	0 – decrease	0 – decrease
SSP45	19 – no trend	20 – no trend	15 – no trend	1 – no trend
	7 – increase	6 – increase	11 – increase	25 – <mark>increase</mark>
	0 – decrease	0 – decrease	0 – decrease	0 – decrease
SSP85	9 – no trend	13 – no trend	3 – no trend	0 – no trend
	17 – increase	13 – increase	23 – increase	26 – increase
	0 – decrease	0 – decrease	0 – decrease	0 – decrease

Region 2 - Climate Change Results (3)

Annual Maximum/Frequency Analysis

		SSF	P 45			SSP	85	
	Mean	Median	Min	Max	Mean	Median	Min	Max
Temperature 1-Day; C	2.5	2.3	0.7	7.3	5.5	4.9	3.3	12.6
Temperature 1-Day Summer; C	2.5	2.3	0.7	7.3	5.5	4.9	3.3	12.6
Temperature 1-Day Winter PF; C	2.4	2.4	1.2	4.2	5.4	5.6	3.1	8.6
Precipitation 1-Day PF; %	0	-5	-31	36	3	2	-29	43
Precipitation 1-Day Summer PF; %	1	-4	-31	83	3	-1	-33	75
Precipitation 1-Day Winter PF; %	8	6	-10	29	10	12	-19	26
Precipitation 3-Day PF; %	4	2	-31	66	10	10	-15	53
Precipitation 3-Day Summer PF; %	1	-7	-36	52	11	3	-28	64
Precipitation 3-Day Winter PF; %	14	11	-16	61	15	15	-12	52
Precipitation Annual PF; %	9	9	-3	22	14	14	2	26

Region 2 - Application of Climate Change Results

Monthly Temperature Analysis

	Hist	orical	SS	P45	SS	P85	Mean	Delta	Media	n Delta
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	-0.6	-0.9	2.1	2.0	2.9	2.7	2.7	3.5	2.9	3.6
February	1.5	1.0	4.2	3.5	5.1	4.5	2.7	3.6	2.5	3.4
March	5.9	5.3	8.4	7.4	9.4	8.8	2.6	3.5	2.1	3.5
April	12.0	11.6	14.6	13.6	15.4	14.5	2.6	3.4	2.0	2.9
May	17.5	17.1	19.9	19.1	20.8	20.3	2.4	3.3	2.1	3.2
June	21.9	21.4	24.3	24.0	25.3	25.1	2.5	3.5	2.6	3.7
July	24.0	23.9	26.3	26.3	27.4	27.3	2.3	3.4	2.4	3.4
August	22.6	22.9	24.8	25.3	25.9	26.3	2.2	3.3	2.5	3.4
September	18.2	19.0	20.3	21.2	21.5	22.2	2.1	3.3	2.2	3.2
October	11.9	12.7	14.1	15.0	15.2	16.0	2.1	3.2	2.3	3.3
November	6.1	6.8	7.9	8.5	8.9	9.4	1.8	2.8	1.8	2.6
December	1.2	1.1	3.2	3.5	3.9	4.2	2.0	2.7	2.4	3.1

Monthly Precipitation Analysis

	Hist	orical	SS	P45	SS	P85	Mean	Delta	Media	n Delta
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	82.3	82.6	93.7	93.9	97.3	97.7	1.14	1.14	1.14	1.18
February	73.6	72.0	86.0	86.8	87.6	86.2	1.17	1.20	1.20	1.20
March	99.7	100.9	112.5	111.4	117.1	116.4	1.13	1.10	1.10	1.15
April	95.3	94.3	105.0	103.5	107.9	108.0	1.10	1.10	1.10	1.14
May	104.6	104.3	108.9	109.5	109.5	107.7	1.04	1.05	1.05	1.03
June	99.9	99.9	103.0	104.2	104.4	103.3	1.03	1.04	1.04	1.03
July	111.9	111.5	119.1	118.6	120.4	117.8	1.06	1.06	1.06	1.06
August	105.4	104.9	111.7	112.8	113.5	114.0	1.06	1.08	1.08	1.09
September	93.8	93.2	100.0	97.8	96.6	95.2	1.07	1.05	1.05	1.02
October	92.6	92.6	95.5	94.6	97.2	94.9	1.03	1.02	1.02	1.02
November	94.0	94.0	100.9	101.1	104.8	104.1	1.07	1.08	1.08	1.11
December	98.5	99.4	108.7	106.4	114.1	113.3	1.10	1.07	1.07	1.14

Region 2 - Conclusion

TREND

- Increase in Ta and Td
- SSP45 Ppt most show No Trend/Change
- SSP85 Ppt most show increase trend

FREQUENCY

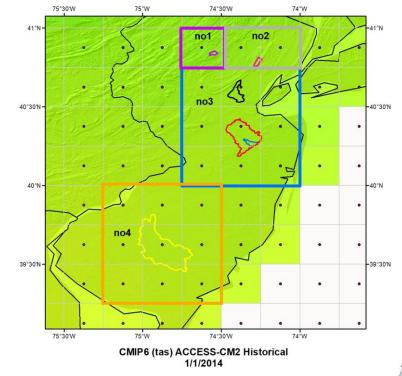
- <u>1-day</u> SSP45 and SSP85 confidence for **no change** in summer or winter season Ppt magnitude by 2100
 greatest change most likely in winter seasons
- <u>3-day</u> SSP45 and SSP85 confidence for no change in summer or winter season in Ppt magnitude by 2100

- greatest change most likely in winter season

<u>Annual</u> – SSP45 and SSP85 confidence for no change of Ppt magnitude by 2100 and increase Temp by 2100

CLIMATOLOGY

- <u>Monthly Climatology</u> slight **increase** (<20%) in Ppt and **increase** Temp by 2100
- <u>Annual Climatology</u> slight **increase** (<20%) in annual Ppt and **increase** in annual Temp by 2100



Region 3 - Climate Change Results

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

- Total of 35 climate models
- 9 models did not have all data
 - (6) Missing years and/or variables
 - (3) 30-days per month
- Used 26 models on daily time step
 - Temperature
 - Relative humidity
 - Precipitation

Region#	Basin	Domain
NJ_Region_1	Shongum	41.0, -74.75, 40.75, -74.5
NJ_Region_2	Orange	41.0, -74.5, 40.75, -74.0
NJ_Region_3	New Market, Durernal, Englishtown	40.75, -74.75, 40.0, -74.0
NJ_Region_4	Lenape	40.0, -75.25, 39.25, -74.5

Climate Change Analysis Methods (4)

- 1) Trend Analysis for 1-day, 3-day, and Annual
 - Model projections (Historic, SSP45, SSP85)
 - All Season, Summer, Winter
- 2) Monthly Analysis
 - Model projections (Historic, SSP45, SSP85)
 - Precipitation and temperature
- 3) Precipitation Frequency Analysis for 1-day, 3-day, and Annual
 - All Season, Summer, and Winter
 - Model projections (Historic, SSP45, SSP85)
 - Estimate PF for 1-year through 1000-year
 - Quantify changes

		Precipitation	-	Temperature
	1-day	3-day	Annual	1-day
Historic	24 – no trend	26 – no trend	26 – no trend	6 – no trend
	1 – increase	0 – increase	0 – increase	20 – <mark>increase</mark>
	1 – decrease	0 – decrease	0 – decrease	0 – decrease
SSP45	18 – no trend	19 – no trend	19 – no trend	0 – no trend
	8 – increase	7 – increase	7 – increase	26 – increase
	0 – decrease	0 – decrease	0 – decrease	0 – decrease
SSP85	9 – no trend	13 – no trend	5 – no trend	0 – no trend
	17 – increase	13 – increase	21 – increase	26 – increase
	0 – decrease	0 – decrease	0 – decrease	0 – decrease

Region 3 - Climate Change Results (2)

Annual Maximum/Frequency Analysis

		SSI	P 45			SSP	85	
	Mean	Median	Min	Max	Mean	Median	Min	Max
Temperature 1-Day; C	2.4	2.2	0.5	6.3	5.4	4.9	3.3	11.1
Temperature 1-Day Summer; C	2.4	2.2	0.5	6.3	5.4	4.9	3.3	11.1
Temperature 1-Day Winter PF; C	2.5	2.5	1.1	4.0	5.3	5.5	2.9	8.1
Precipitation 1-Day PF; %	-3	-7	-23	28	1	0	-27	42
Precipitation 1-Day Summer PF; %	1	-6	-35	59	5	5	-39	54
Precipitation 1-Day Winter PF; %	5	4	-17	36	7	9	-24	26
Precipitation 3-Day PF; %	2	1	-33	44	10	4	-18	67
Precipitation 3-Day Summer PF; %	-2	-7	-44	43	9	5	-23	61
Precipitation 3-Day Winter PF; %	9	7	-16	63	12	10	-15	43
Precipitation Annual PF; %	9	10	-6	21	14	14	-2	31

Region 3 - Application of Climate Change Results

Monthly Temperature Analysis

	Hist	orical	SS	P45	SS	P85	Mean	Delta	Media	n Delta
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	0.3	0.1	2.9	2.9	3.7	3.5	2.6	3.4	2.8	3.5
February	2.4	2.0	4.9	4.2	5.8	5.1	2.6	3.4	2.2	3.1
March	6.6	6.0	9.1	8.1	10.0	9.5	2.5	3.4	2.1	3.5
April	12.5	12.1	15.0	14.1	15.8	14.9	2.5	3.3	2.1	2.8
May	17.8	17.6	20.2	19.5	21.1	20.7	2.4	3.3	1.9	3.1
June	22.3	21.9	24.7	24.2	25.6	25.4	2.4	3.3	2.4	3.6
July	24.5	24.3	26.6	26.7	27.7	27.8	2.2	3.2	2.4	3.5
August	23.1	23.4	25.2	25.8	26.3	26.8	2.1	3.2	2.4	3.5
September	18.9	19.7	20.9	21.9	22.1	23.0	2.0	3.2	2.2	3.3
October	12.6	13.4	14.7	15.7	15.8	16.6	2.1	3.2	2.3	3.2
November	6.9	7.5	8.8	9.4	9.7	10.2	1.9	2.8	1.9	2.7
December	2.1	2.0	4.1	4.4	4.8	5.1	2.0	2.7	2.4	3.1

Monthly Precipitation Analysis

	Hist	orical	SS	P45	SS	P85	Mean	Delta	Media	n Delta
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	82.2	82.5	92.8	94.6	96.9	95.9	1.13	1.15	1.15	1.16
February	72.1	71.5	83.5	82.9	85.2	84.7	1.16	1.16	1.16	1.19
March	98.1	98.4	108.8	108.5	113.6	113.8	1.11	1.10	1.10	1.16
April	91.4	89.5	100.6	98.8	103.5	102.3	1.10	1.10	1.10	1.14
May	97.0	95.8	101.8	102.0	101.5	101.2	1.05	1.06	1.06	1.06
June	96.9	97.3	101.4	99.9	101.8	101.2	1.05	1.03	1.03	1.04
July	113.6	113.9	120.7	120.6	121.3	120.8	1.06	1.06	1.06	1.06
August	106.1	107.0	113.0	115.3	113.7	116.7	1.07	1.08	1.08	1.09
September	89.2	90.0	95.4	95.0	92.3	91.7	1.07	1.06	1.06	1.02
October	86.3	86.3	88.7	87.2	90.6	89.5	1.03	1.01	1.01	1.04
November	89.8	89.1	95.3	93.9	97.9	97.8	1.06	1.05	1.05	1.10
December	96.2	96.7	106.5	104.6	111.5	110.9	1.11	1.08	1.08	1.15

Region 3 - Conclusion

TREND

- Increase in Ta and Td
- SSP45 Ppt most show No Trend/Change
- SSP85 Ppt most show increase trend

FREQUENCY

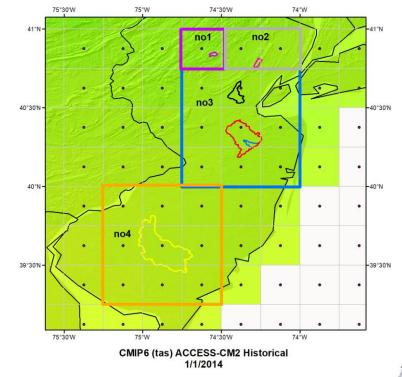
- <u>1-day</u> SSP45 and SSP85 confidence for **no change** in summer or winter season Ppt magnitude by 2100
 greatest change most likely in winter seasons
- <u>3-day</u> SSP45 and SSP85 confidence for no change in summer or winter season in Ppt magnitude by 2100

- greatest change most likely in winter season

<u>Annual</u> – SSP45 and SSP85 confidence for no change of Ppt magnitude by 2100 and increase Temp by 2100

CLIMATOLOGY

- <u>Monthly Climatology</u> slight **increase** (<20%) in Ppt and **increase** Temp by 2100
- <u>Annual Climatology</u> slight **increase** (<20%) in annual Ppt and **increase** in annual Temp by 2100



Region 4 - Climate Change Results

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

- Total of 35 climate models
- 9 models did not have all data
 - (6) Missing years and/or variables
 - (3) 30-days per month
- Used 26 models on daily time step
 - Temperature
 - Relative humidity
 - Precipitation

Region#	Basin	Domain
NJ_Region_1	Shongum	41.0, -74.75, 40.75, -74.5
NJ_Region_2	Orange	41.0, -74.5, 40.75, -74.0
NJ_Region_3	New Market, Durernal, Englishtown	40.75, -74.75, 40.0, -74.0
NJ_Region_4	Lenape	40.0, -75.25, 39.25, -74.5

Climate Change Analysis Methods (5)

- 1) Trend Analysis for 1-day, 3-day, and Annual
 - Model projections (Historic, SSP45, SSP85)
 - All Season, Summer, Winter
- 2) Monthly Analysis
 - Model projections (Historic, SSP45, SSP85)
 - Precipitation and temperature
- 3) Precipitation Frequency Analysis for 1-day, 3-day, and Annual
 - All Season, Summer, and Winter
 - Model projections (Historic, SSP45, SSP85)
 - Estimate PF for 1-year through 1000-year
 - Quantify changes

		Precipitation	-	Temperature
	1-day	3-day	Annual	1-day
Historic	24 – no trend	26 – no trend	26 – no trend	6 – no trend
	2 – increase	0 – increase	0 – increase	20 – <mark>increase</mark>
	0 – decrease	0 – decrease	0 – decrease	0 – decrease
SSP45	17 – no trend	21 – no trend	19 – no trend	2 – no trend
	9 – increase	5 – increase	7 – increase	24 – increase
	0 – decrease	0 – decrease	0 – decrease	0 – decrease
SSP85	10 – no trend	13 – no trend	9 – no trend	0 – no trend
	16 – increase	13 – increase	17 – increase	26 – increase
	0 – decrease	0 – decrease	0 – decrease	0 – decrease

Region 4 - Climate Change Results (2)

Annual Maximum/Frequency Analysis

		SSF	45			SSP	85	
	Mean	Median	Min	Max	Mean	Median	Min	Max
Temperature 1-Day; C	2.3	2.2	0.4	5.8	5.3	4.9	3.0	10.4
Temperature 1-Day Summer; C	2.3	2.2	0.4	5.8	5.3	4.9	3.0	10.4
Temperature 1-Day Winter PF; C	2.4	2.4	1.1	3.7	5.1	5.3	2.9	7.4
Precipitation 1-Day PF; %	-6	-8	-30	32	-4	-6	-25	30
Precipitation 1-Day Summer PF; %	0	-1	-37	72	-1	-5	-32	42
Precipitation 1-Day Winter PF; %	3	-3	-19	44	4	1	-15	38
Precipitation 3-Day PF; %	-1	-3	-32	53	7	6	-28	49
Precipitation 3-Day Summer PF; %	1	1	-40	58	8	9	-33	59
Precipitation 3-Day Winter PF; %	3	4	-16	28	9	9	-28	54
Precipitation Annual PF; %	9	9	-7	23	13	13	-6	32

Monthly Temperature Analysis

	Hist	orical	SS	SSP45		SSP85		Delta	Median Delta	
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	1.2	0.8	3.7	3.6	4.4	4.2	2.5	3.2	2.8	3.4
February	3.1	2.7	5.6	4.9	6.4	5.7	2.5	3.3	2.3	3.1
March	7.4	7.0	9.9	9.0	10.8	9.9	2.5	3.4	2.0	2.9
April	13.2	12.8	15.7	14.8	16.4	15.7	2.5	3.2	2.0	2.9
May	18.5	18.2	20.7	19.8	21.7	21.2	2.3	3.2	1.6	3.0
June	23.0	22.6	25.3	24.9	26.2	26.0	2.3	3.2	2.3	3.4
July	24.9	24.9	27.0	27.2	28.0	28.1	2.1	3.1	2.4	3.2
August	23.7	23.9	25.6	26.2	26.7	27.2	1.9	3.0	2.3	3.3
September	19.6	20.5	21.5	22.6	22.7	23.6	2.0	3.1	2.1	3.2
October	13.1	14.0	15.3	16.3	16.4	17.1	2.1	3.2	2.3	3.2
November	7.5	8.1	9.4	10.0	10.3	10.9	2.0	2.8	1.9	2.9
December	2.8	2.9	4.8	5.1	5.5	5.8	2.0	2.7	2.2	3.0

Region 4 - Application of Climate Change Results

Monthly Precipitation Analysis

	Hist	orical	SS	SSP45		SSP85		Delta	Median Delta	
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	82.1	82.6	92.0	92.9	96.0	95.5	1.12	1.13	1.13	1.16
February	71.4	71.8	82.9	81.8	84.9	84.1	1.16	1.14	1.14	1.17
March	94.1	94.1	103.7	104.1	109.9	110.5	1.10	1.11	1.11	1.17
April	85.5	85.9	93.4	93.6	94.5	92.7	1.09	1.09	1.09	1.08
May	87.7	85.9	92.2	92.8	91.5	90.7	1.05	1.08	1.08	1.06
June	93.3	94.3	98.8	97.5	98.2	97.8	1.06	1.03	1.03	1.04
July	116.1	118.0	124.0	123.0	125.0	124.8	1.07	1.04	1.04	1.06
August	108.2	108.7	115.3	116.7	117.0	117.2	1.07	1.07	1.07	1.08
September	86.3	88.3	91.4	90.8	90.7	91.0	1.06	1.03	1.03	1.03
October	82.6	82.7	84.4	84.6	86.4	85.3	1.02	1.02	1.02	1.03
November	87.6	87.2	92.0	91.7	94.9	94.7	1.05	1.05	1.05	1.09
December	95.6	96.0	107.2	104.2	111.8	111.8	1.12	1.09	1.09	1.17

Region 4 - Conclusion

TREND

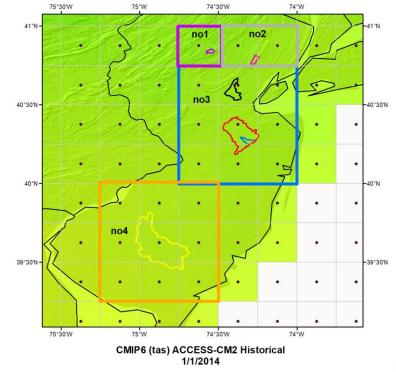
- Increase in Ta and Td
- SSP45 Ppt most show No Trend/Change
- SSP85 Ppt most show increase trend

FREQUENCY

- <u>1-day</u> SSP45 and SSP85 confidence for **no change** in summer or winter season Ppt magnitude by 2100
 greatest change most likely in winter seasons
- <u>3-day</u> SSP45 and SSP85 confidence for no change in summer or winter season in Ppt magnitude by 2100
 - greatest change most likely in winter season
- <u>Annual</u> SSP45 and SSP85 confidence for no change of Ppt magnitude by 2100 and increase Temp by 2100

CLIMATOLOGY

- <u>Monthly Climatology</u> slight **increase** (<20%) in Ppt and **increase** Temp by 2100
- <u>Annual Climatology</u> slight **increase** (<20%) in annual Ppt and **increase** in annual Temp by 2100



All Regions - Climate Change Results

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

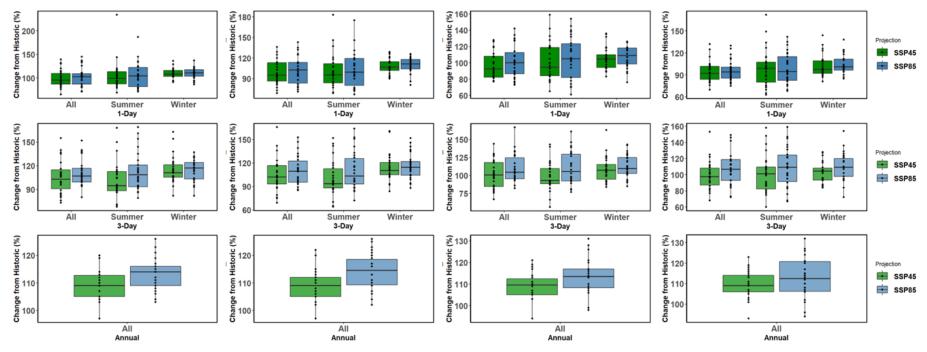
- Total of 35 climate models
- 9 models did not have all data
 - (6) Missing years and/or variables
 - (3) 30-days per month
- Used 26 models on daily time step
 - Temperature
 - Relative humidity
 - Precipitation

Region#	Basin	Domain
NJ_Region_1	Shongum	41.0, -74.75, 40.75, -74.5
NJ_Region_2	Orange	41.0, -74.5, 40.75, -74.0
NJ_Region_3	New Market, Durernal, Englishtown	40.75, -74.75, 40.0, -74.0
NJ_Region_4	Lenape	40.0, -75.25, 39.25, -74.5

Climate Change Analysis Methods (6)

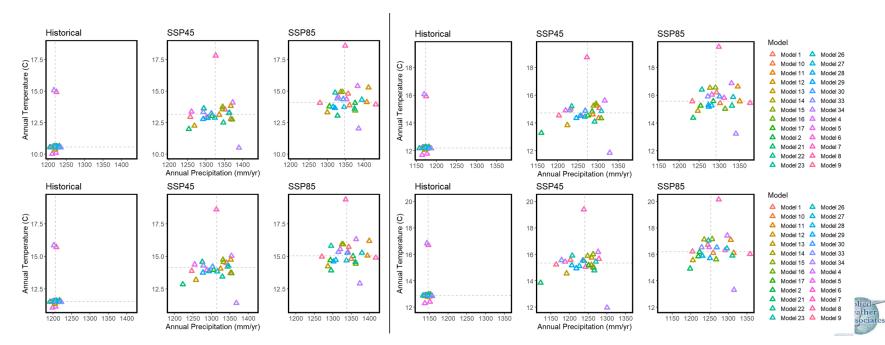
- 1) Trend Analysis for 1-day, 3-day, and Annual
 - Model projections (Historic, SSP45, SSP85)
 - All Season, Summer, Winter
- 2) Monthly Analysis
 - Model projections (Historic, SSP45, SSP85)
 - Precipitation and temperature
- 3) Precipitation Frequency Analysis for 1-day, 3-day, and Annual
 - All Season, Summer, and Winter
 - Model projections (Historic, SSP45, SSP85)
 - Estimate PF for 1-year through 1000-year
 - Quantify changes

		Precipitation	-	Temperature
	1-day	3-day	Annual	1-day
Historic	92% – no trend	98% – no trend	100% – no trend	25% – no trend
	5% – increase	1% – increase	0% – increase	75% – increase
	3% – decrease	1% – decrease	0% – decrease	0% – decrease
SSP45	71% – no trend	75% – no trend	67% – no trend	4% – no trend
	29% – increase	21% – increase	33% – increase	96% – <mark>increase</mark>
	0% – decrease	0% – decrease	0% – decrease	0% – decrease
SSP85	38% – no trend	51% – no trend	20% – no trend	0% – no trend
	63% – increase	59% – increase	80% – increase	100% – increase
	0% – decrease	0% – decrease	0% – decrease	0% – decrease



All Regions - Climate Change Results (2)

- 1-day (ssp45; ssp85)
 - All = -6%; 0%
 - Summer = -3%; 1%
 - Winter = 4%; 8%


- **3-day**
 - All = 1%; 7%
 - Summer = -4%; 7%
 - Winter = 8%; 13%

- Annual
 - All = 9%; 14%

All Regions - Summary Annual Ta and Ppt

- Annual Climatology (temp, ppt)
 - Historical = 11.8 C; 1186 mm
 - SSP45 = 14.3 C; 1289 mm (2.6 C; 109%)
 - SSP85 = 15.2 C; 1308 mm (3.4 C; 110%)

All Regions - Climate Change Results (3)

Annual Maximum/Frequency Analysis

		SSF	P 45			SSP	85	
	Mean	Median	Min	Max	Mean	Median	Min	Max
Temperature 1-Day; C	2.4	2.3	0.6	6.7	5.5	4.9	3.3	11.9
Temperature 1-Day Summer; C	2.4	2.3	0.6	6.7	5.5	4.9	3.3	11.9
Temperature 1-Day Winter PF; C	2.4	2.4	1.1	4.0	5.3	5.5	3.0	8.1
Precipitation 1-Day PF; %	-2	-6	-30	34	1	0	-27	40
Precipitation 1-Day Summer PF; %	1	-3	-34	87	4	1	-33	65
Precipitation 1-Day Winter PF; %	6	4	-14	36	8	8	-18	32
Precipitation 3-Day PF; %	3	1	-31	54	10	7	-20	55
Precipitation 3-Day Summer PF; %	1	-4	-38	55	10	7	-26	63
Precipitation 3-Day Winter PF; %	10	8	-17	54	13	13	-18	46
Precipitation Annual PF; %	9	9	-5	22	14	14	-1	29

All Regions – App. of Climate Change Results

- Results are presented as median values based on model ensemble
- Design Storm and Routing Applications
 - Recommend SSP45 climate scenario as "likely", SSP85 as "unlikely"
- Results are through 2100 and can be scaled to other periods
 - Example, for 2050 adjustment scale 2100 results by 0.59.

	2050	2100
1-Day Summer PF; %	-2	-3
1-Day Winter PF; %	2	4
3-Day Summer PF; %	-3	-4
3-Day Winter PF; %	5	8

All Regions – App. of Climate Change Results (2)

Monthly Temperature Analysis

	Hist	orical	SS	P45	SS	P85	Mean	Delta	Median Delta	
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	-0.2	-0.6	2.4	2.3	3.2	2.9	2.6	3.4	2.9	3.5
February	1.9	1.4	4.5	3.7	5.4	4.7	2.6	3.5	2.3	3.3
March	6.2	5.7	8.8	7.8	9.7	9.0	2.6	3.5	2.1	3.4
April	12.2	11.8	14.8	13.9	15.6	14.8	2.6	3.3	2.1	3.0
May	17.6	17.3	20.0	19.2	20.9	20.4	2.4	3.3	1.9	3.1
June	22.1	21.6	24.5	24.0	25.4	25.2	2.4	3.4	2.4	3.6
July	24.1	24.0	26.4	26.4	27.4	27.4	2.2	3.3	2.4	3.4
August	22.7	23.0	24.8	25.4	26.0	26.4	2.1	3.2	2.4	3.4
September	18.5	19.3	20.5	21.4	21.7	22.6	2.0	3.3	2.2	3.3
October	12.1	12.9	14.3	15.2	15.4	16.1	2.1	3.2	2.3	3.2
November	6.3	7.0	8.2	8.8	9.2	9.7	1.9	2.8	1.8	2.7
December	1.5	1.4	3.5	3.8	4.2	4.5	2.0	2.7	2.3	3.1

Climate Change Projections from 2015 through 2100

SSP45 Mean = 2.3 C SSP85 Mean = 3.2 C

All Regions – App. of Climate Change Results (2)

Monthly Precipitation Analysis

	Hist	orical	SS	P45	SS	P85	Median Delta		Median Pct.	
	Mean	Median	Mean	Median	Mean	Median	SSP45	SSP85	SSP45	SSP85
January	82.2	82.6	93.1	94.0	97.0	96.8	10.9	14.8	1.14	1.17
February	72.4	71.6	84.2	84.3	86.1	85.1	11.8	13.6	1.18	1.19
March	97.6	98.2	109.1	108.8	114.0	113.8	11.4	16.4	1.11	1.16
April	92.0	91.2	101.3	100.5	103.6	102.8	9.3	11.6	1.10	1.13
May	99.3	98.5	103.7	104.1	103.8	102.9	4.4	4.6	1.06	1.04
June	98.5	99.0	102.9	102.4	103.3	102.4	4.4	<i>4.8</i>	1.03	1.03
July	114.3	114.7	121.7	121.3	122.8	121.6	7.4	8.5	1.06	1.06
August	106.7	106.8	113.3	115.0	114.7	116.0	6.6	<i>8.1</i>	1.08	1.09
September	91.7	92.2	97.3	95.9	94.8	94.1	5.6	3.2	1.04	1.02
October	89.0	88.7	91.6	90.6	93.1	91.6	2.6	4.1	1.02	1.03
November	91.5	91.1	97.3	97.1	100.7	100.7	5.8	<i>9.1</i>	1.07	1.11
December	97.0	97.8	107.7	105.1	112.7	112.2	10.7	15.7	1.07	1.15

Climate Change Projections from 2015 through 2100

SSP45 Mean = 7.6 mm; 8% SSP85 Mean = 9.5 mm; 10%

All Regions - Conclusion

TREND

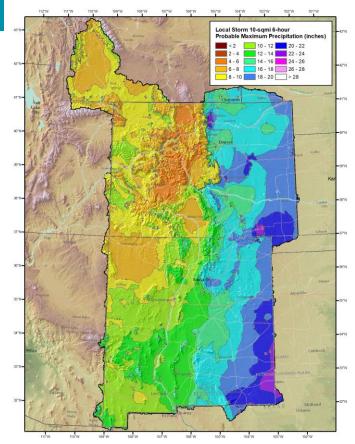
- Increase in Ta and Td
- SSP45 Ppt most show No Trend/Change
- SSP85 Ppt most show increase trend

FREQUENCY

- <u>1-day</u> SSP45 and SSP85 confidence for **no change** in summer or winter season Ppt magnitude by 2100
 greatest change most likely in winter seasons
- <u>3-day</u> SSP45 and SSP85 confidence for no change in summer or winter season in Ppt magnitude by 2100

- greatest change most likely in winter season

<u>Annual</u> – SSP45 and SSP85 confidence for no change of Ppt magnitude by 2100 and increase Temp by 2100


CLIMATOLOGY

- <u>Monthly Climatology</u> slight **increase** (<20%) in Ppt and **increase** Temp by 2100
- <u>Annual Climatology</u> slight **increase** (<20%) in annual Ppt and **increase** in annual Temp by 2100

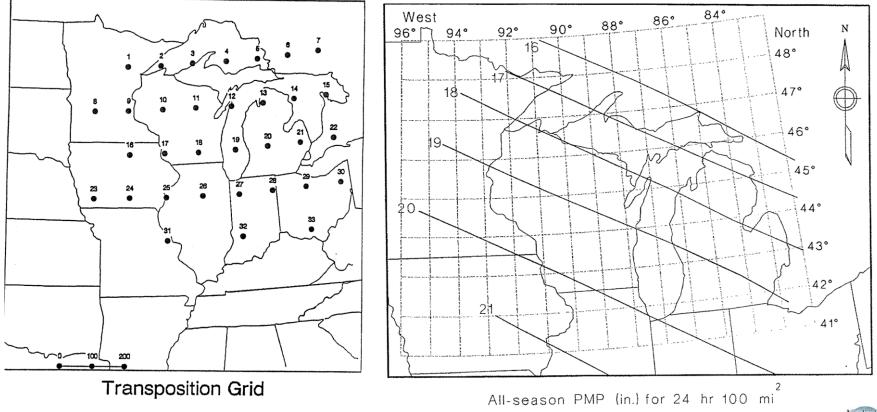
What's Next

- Federal involvement?
 - What about the studies that have already been completed
 - Nationwide coverage
- Storage of database/updates
 - How to handoff to the next generation
- Numerical Modeling

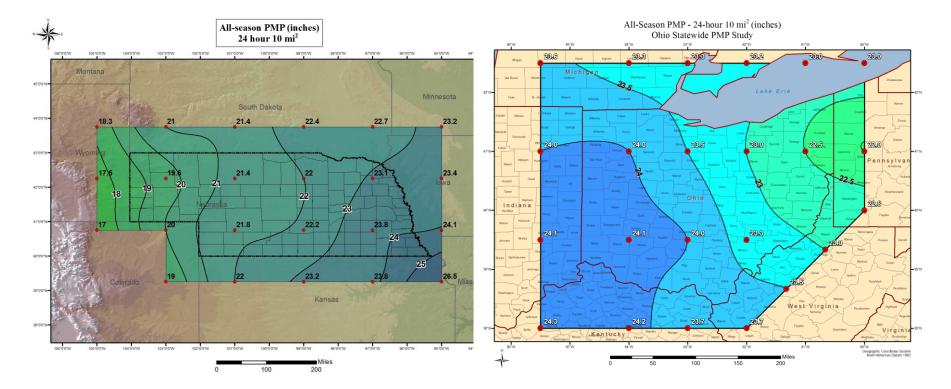
Questions (2)

Doug Hultstrand, PhD

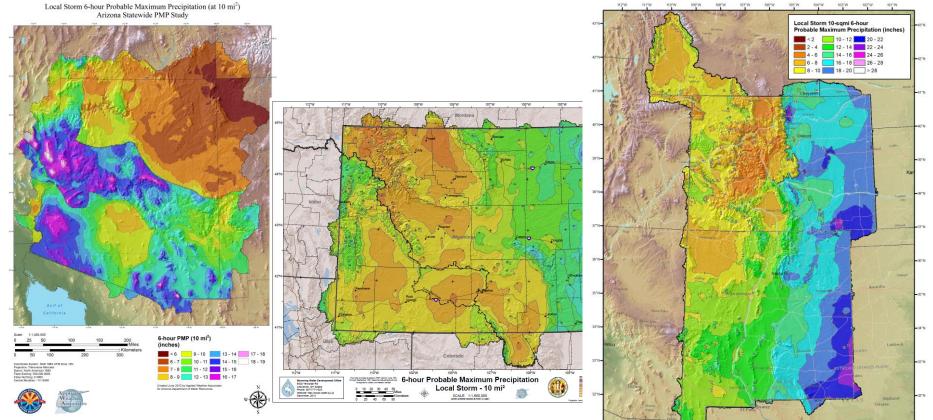
Senior HydroMeteorologist Applied Weather Associates dhultstrand@appliedweatherassociates.com 720.771.5840


Bill Kappel

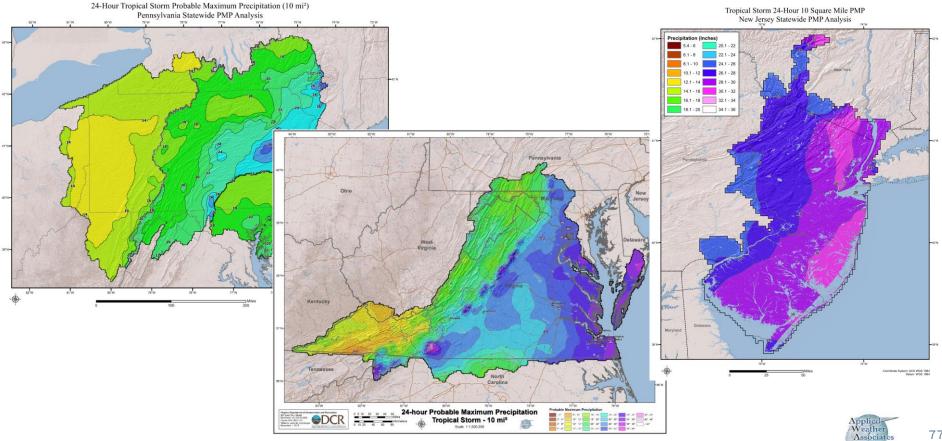
Chief Meteorologist Applied Weather Associates billkappel@appliedweatherassociates.com 719-488-4311



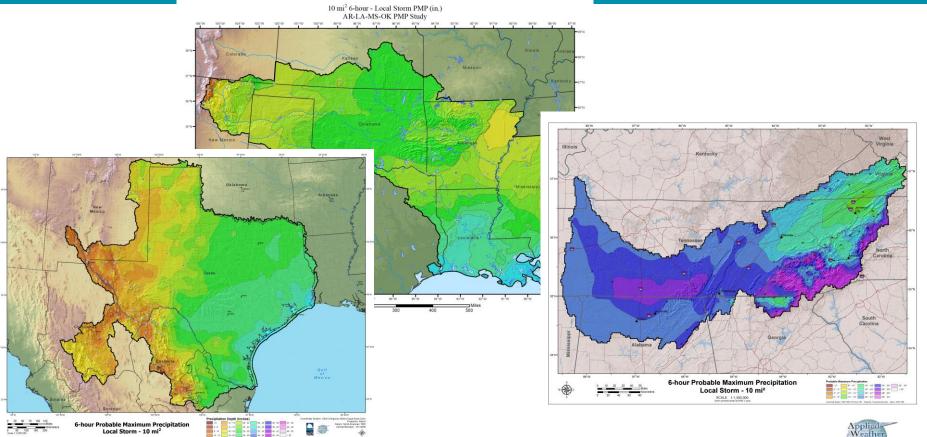
EPRI Michigan-Wisconsin-the First Step



AWA Statewide Output Examples-old school

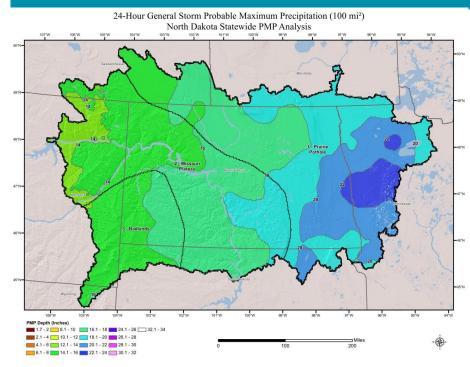


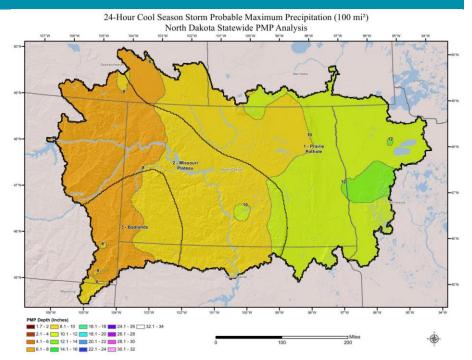
AWA Statewide Output Examples-Southwest-Rockies



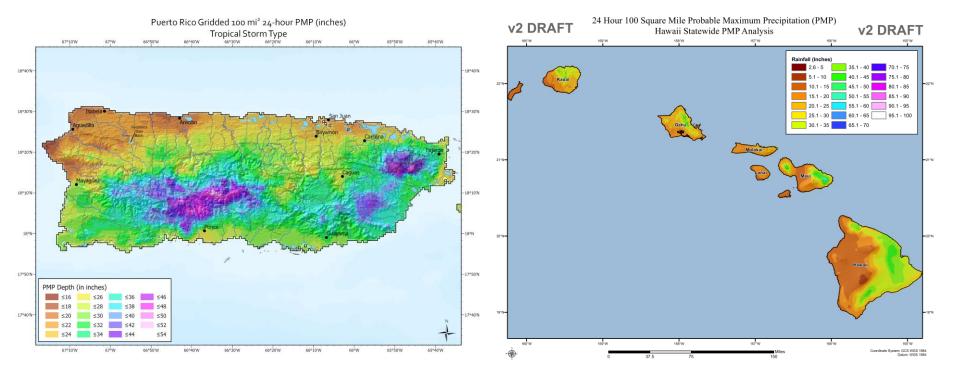
- 76

AWA Statewide Output Examples-East (3)




AWA Statewide Output Examples-South

Associates


AWA Statewide Output Examples-North

AWA Statewide Output Examples-Tropics

