2021 Building Code Adoption Tracking: FEMA Region 4

This fact sheet provides a high-level overview of the status of hazard-resistant building code adoption in each state and territory within a FEMA region. The regional fact sheets show an annual metric of the percent of communities adopting hazard-resistant building codes.

Why Building Codes?
Disaster resilience starts with building codes because they enhance public safety and property protection.

Why Track Codes?
- Represent the best evidence for disaster resistance
- Create best overall return on investment
- Comply with Technology Transfer Act
- Cornerstone of effective mitigation
- Codes = better built buildings, better performance
- Codes enable uniformity, efficiencies, and predictable performance
- Recognize the disaster preparedness of communities when determining level of federal funding

Purpose of the Building Code Adoption Tracking
- Track the adoption rate of the latest consensus-based codes across the nation
- Track the results of adoption in improving disaster-resistant buildings in natural hazard areas
- Use the emerging data to inform FEMA policies and laws in pre-disaster and post-disaster goals
- Federal funding assistance requirements may be correlated to adoption of the latest published building code editions as required by legislation and/or FEMA policies such as the Disaster Recovery Reform Act of 2018 and the associated Federal Cost Share Reform Incentive

1 Hazard-resistant codes mean the 2015 or later International Building Code and International Residential Code, without weakening of any resilience provisions related to any of the five tracked hazards for which the jurisdiction is at high risk.
FEMA’s Role Will Be Continuous

- Proposing building code changes to maintain consistency with the National Flood Insurance Program (NFIP) and to incorporate best practices identified in post-disaster investigations.
- Defending against changes that weaken flood, wind, and seismic provisions.
- Contributing to requests for interpretations by International Code Council.
- Supporting the training of state, local, tribal and territorial officials.

Collect building code data of communities
Identify areas with high hazard risk
Identify communities that adopt disaster-resilient building codes
Analyze code adoption
Improve data, collect additional data, monitor mandatory state building codes, etc.

Figure 2. Building Code Adoption Tracking Process

The following percentages indicate the tracked jurisdictions which have adopted hazard-resistant building codes within each state. The percentages are based upon jurisdictions within each state which are at high risk to one or more hazard types (Region 4’s hazards are flood, damaging wind, hurricane wind, tornado, and seismic):

FLORIDA

<table>
<thead>
<tr>
<th>HIGHER RESISTANCE</th>
<th>99.1%</th>
<th>IBC</th>
<th>State adopts the 2018 International Building Code (IBC).</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRC</td>
<td></td>
<td>IBC</td>
<td>State adopts the 2018 International Residential Code (IRC).</td>
</tr>
</tbody>
</table>

Note: State is not fully resistant because some jurisdictions with high flood risk do not participate in the NFIP.

SOUTH CAROLINA

<table>
<thead>
<tr>
<th>HIGHER RESISTANCE</th>
<th>91.5%</th>
<th>IBC</th>
<th>State adopts the 2018 IBC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRC</td>
<td></td>
<td>IRC</td>
<td>State adopts the 2018 IRC.</td>
</tr>
</tbody>
</table>

Note: State is not fully resistant because some jurisdictions with high flood risk do not participate in the NFIP.

2 Hazard-resistant codes mean the 2015 or later IBC and IRC, without weakening of any resilience provisions related to any of the five tracked hazards for which the jurisdiction is at high risk.

KENTUCKY

83.4%

HIGHER RESISTANCE

- **IBC**
 - Commonwealth has adopted the 2015 IBC, but weakens seismic resistance by: (1) amending Sec. 1613.3.3 to not require irregular structures to use S_s values exceeding 1.5, thus expanding the limitation of ASCE 7 12.8.1.3, and (2) amending Sec. 1613.3.5 to not require Risk Category I and II buildings with S_1 greater than or equal to 0.75 to be Seismic Design Category E.

- **IRC**
 - Commonwealth adopts the 2015 IRC, but weakens seismic resistance by (1) reducing the Seismic Design Categories of Figure R301.2(2) from the model code values for some counties, $RC\ I$, and (2) narrowing the scope of the “irregular structure” definition by expanding exceptions to it in R301.2.2.2.5. Note that Commonwealth also removes NFIP-specified criteria for granting a variance in a flood hazard area from R104.10.1.

ALABAMA

34.3%

MODERATE RESISTANCE

- **IBC**
 - State adopts the 2015 IBC.

- **IRC**
 - State allows jurisdictions which already had a building code in effect on March 9, 2010, to continue enforcing that code, rather than adopting the 2015 IRC adopted in the Alabama Energy and Residential Codes.

TENNESSEE

8.8%

LOWER RESISTANCE

- **IBC**

- **IRC**
 - State adopts the 2018 IRC. State allows jurisdictions to opt out of the state building code. Those that opt out, if they choose to enforce their own building code, must use a code that is no older than seven years from the most recently published edition (with the publication of the 2021 IRC, this means the 2015 IRC). If their code is older than the seven year cutoff, then the code adopted by the state (2018 IRC) applies instead.

MISSISSIPPI

8.7%

LOWER RESISTANCE

- **IBC**
 - State building and residential code requires jurisdictions to use one of the three most recently published editions (2021, 2018, or 2015 IBC). However, jurisdictions were permitted to opt out of the state code when it was passed.

- **IRC**
 - State building and residential code requires jurisdictions to use one of the three most recently published editions (2021, 2018, or 2015 IRC). However, jurisdictions were permitted to opt out of the state code when it was passed.
NORTH CAROLINA

LOWER RESISTANCE

State adopts the 2015 IBC. State weakens hurricane resistance by reducing area of Wind-Borne Debris Region in Chapter 2, and by allowing prescriptive opening protection to apply beyond the model code limitations in Sec. 1609.1.2. Note that state also removes many Chapter 1 administrative provisions, including NFIP-related Flood Hazard Area provisions such as: criteria for issuing a variance (Sec. 104.10.1) and inspection/documentation of lowest floor elevation (Secs. 107.2.5, 107.5, 110.3.3, 110.10.1).

State adopts the 2015 IRC. State weakens hurricane resistance by redefining in R202 Wind-Borne Debris Region so as to reduce its coverage area, and by allowing a prescriptive design to apply to taller buildings than allowed by the model code in Table R301.2.1.2, and by weakening the wind speed delineation lines for some counties compared with model code Figure R301.2(4)A. State weakens flood resistance by removing the 1-foot freeboard requirement for A Zones in R322.2.1 and for the lowest horizontal structural member in V Zones and Coastal A Zones in R322.3.2. Note that the state also removes many NFIP-related flood administrative provisions from Chapter 1.

GEORGIA

LOWER RESISTANCE

State adopts the 2018 IBC. Note that, state deletes Chapter 1 entirely, losing NFIP-related administrative provisions for Flood Hazard Areas, including criteria for issuing a variance (Sec. 104.10.1) and inspection/documentation of lowest floor elevation (Secs. 107.2.5, 107.5, 110.3.3, 110.10.1).

State adopts the 2018 IRC. State weakens flood resistance by deleting R322.1.9 (Manufactured Homes), allowing manufactured homes in Flood Hazard Areas not to conform fully with the IRC model flood provisions. Note that state also deletes Chapter 1 entirely, losing NFIP-related administrative provisions for Flood Hazard Areas, including criteria for issuing a variance (R104.10.1), inspection/documentation of lowest floor elevation (R106.1.4, R109.1.3), and determination of substantial improvement or repair (R105.3.1.1).