
Assessment of Aging Dams for Seismic Potential Failure Modes: A Delta Approach

National Dam Safety Program Technical Seminar | 2023

Assessment of Aging Dams for Seismic Potential Failure Modes: A Delta (Δ) Approach

Presentation Outline

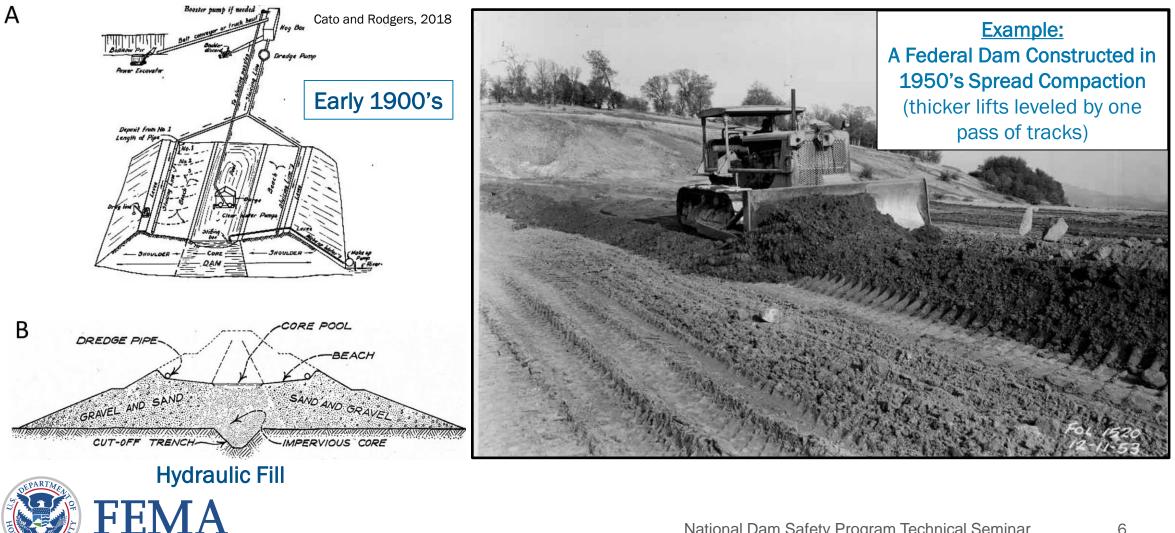
- Challenges of seismic evaluation of dams. [Embankment dams]
- A "Delta (Δ) Approach"

To transparently evaluate and communicate potential safety issues of an aging dam (example: an embankment dam).

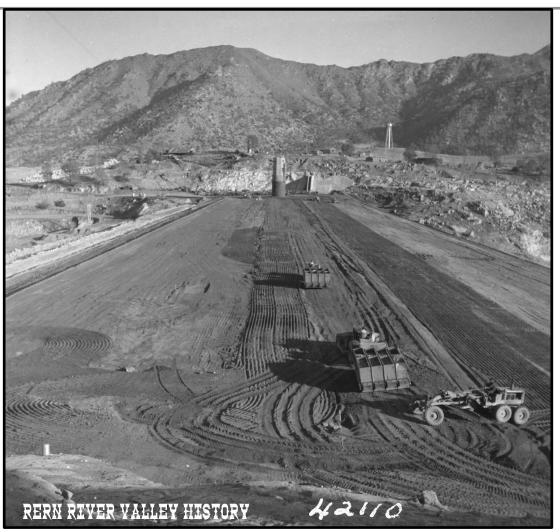
• Framework of a "Delta (Δ) Approach" with examples.

Challenges of Evaluating an Existing Dam for Seismic PFMs

- <u>The state of practice in design and construction of embankment dams has</u> been evolving for over a hundred years; with improvements of construction equipment and techniques, static and seismic design, and knowledge and understanding of resulting expected dam performance.
- However, many major US embankment dams that provide critical flood risk management, water supply, hydroelectric supply, and other services were constructed without modern dam design criteria and with poor construction methods. As a result, <u>many older dams have non-seismic issues</u>. Most of these dams also <u>did not consider any modern seismic design standards</u>.
- Seismic PFMs are important from a potential <u>life loss</u> standpoint, as well as from <u>loss of functionality</u> for extended periods and <u>downstream damages</u>.



Challenges of Evaluating Existing Dams for Seismic PFMs


- Seismic analysis protocols and seismic-related potential failure modes (PFMs) are sometimes poorly understood by decisionmakers and practitioners.
- Significant efforts have sometimes been spent to show satisfactory expected performance for an embankment that was not designed and constructed to perform satisfactorily for the appropriate and current evaluation-level earthquakes.
- Seismic analysis and evaluation processes could be considered complex, and they require reliable data and appropriate levels of technical capability and judgment. Due to lack of clarity regarding data requirements, situation-specific seismic analysis requirements, and the lack of historic documents to help to guide site investigation and dam characterization, analyses, and development of PFMs, it is common to sometimes miss PFMs and/or to make incomplete and/or optimistic projections of expected seismic performance.
- Seismic potential failure modes are not tested often (compared to flood-related PFMs), but consequences of failures can be large. This is a dichotomy affecting policy and practice.
- Earthquakes could be damaging for poorly constructed and/or aging dams, and many older dams face potentially significant levels of seismic loading. Given the potential consequences, and the potential costs of mitigation, overall risk exposure should be carefully assessed.

Historical Poor Construction Techniques for Embankment Dams – From Hydraulic Fill (Early 1900's) to Spread Compaction by Dozers (Up to 1960's/1970's)

Historical Poor Construction Techniques for Embankment Dams – Pneumatic Roller [Cart Full of Soil Pulled by Dozers] (Early 1900's - 1970's?)

Example: Lake Isabella Dam Original Construction

Modern Dam Construction to Address Static/Hydrologic and Seismic PFMs (Example: Lake Isabella Dam Safety Modification)

Vibratory Compactor for Coarse-Grained Granular Materials in Embankment Zones Such as Dam Shells, Filter, and Drainage Zones [Thinner Lifts]

FEMA

Sheepsfoot Roller for Fine-Grained (Plastic) Materials in Embankment Zones Such as the Dam Core [Thinner Lifts]

Typical Topics to Communicate Delta (Δ) Approach Example: An Aging Embankment Dam

- ✓ Topic 1: General Information
- ✓ Topic 2: Design and Construction Standards/Criteria
- ✓ Topic 3: Foundation Conditions [Geologic and Site Preparation]
- ✓ Topic 4: Embankment Core [Construction and Performance
- ✓ Topic 5: Filter and Drainage Zones
- ✓ Topic 6: Embankment Shell Zones
- ✓ Topic 7: Embankment-Abutment Contact Area and Soil-Structure Interactions
- ✓ Topic 8: Existing Distress Conditions (Static and Hydraulic)
- ✓ Topic 9: Seismic Freeboard
- ✓ Topic 10: Appurtenant Structures and Systems with Significance in Post-Earthquake Response and Performance
- ✓ Topic 11: Site-Specific [This is not a comprehensive list]

Topic 1: General Information

General Information		
Dam Type		
Design Period		
Construction Period		
Purpose of the Dam		
Number of Dams in the System and Downstream Levees		
Reservoir Capacity		
Crest Elevation and Maximum Dam Height (ft)		
Reservoir Pool Height and Available Freeboard (90		
Percentile and 50 Percentile)		
Downstream population: (1) during the design, and (2)		
the current population		
Critical Appurtenant Works [e.g. Spillway (Elevation and		
height above D/S toe), Low Level Outlet Works, and		
other Critical and Lifeline Features]		

Topic 1: General Information [Example]

General Information			
Dam Type	Zoned Embankment Dam		
Design Period	1953-1955		
Construction Period	1957-1959		
Purpose of the Dam	Flood control, water supply for drinkir	ng and irrigation, hydroelectric, recreation	
Number of Dams in the System and	Subject dam is the main embankmen	t dam. System includes concrete spillway structure, and	
Downstream Levees	10 saddle embankment dams with he	eights ranging from 30 to 150 feet.	
Reservoir Capacity	1.1 Million acre-ft		
Crest Elevation and Maximum Dam Height (ft)	Crest Elevation: 750 feet ; Height of t	he Dam = 300 feet (measured from D/S toe to Crest)	
Reservoir Pool Height and Available Freeboard	90 Percentile: Reservoir Pool Elevation	on = 740 feet and Freeboard: 10 feet	
(90 Percentile and 50 Percentile)	50 Percentile: Reservoir Pool Elevation	on = 690 feet and Freeboard: 60 feet	
Downstream population: (1) during the design,	During Design:	Current:	
and (2) the current population	Less than 10 thousand	About 1.7 million (2020 census)	
Critical Appurtenant Works [e.g. Spillway	During Design:	Current:	
(Elevation and height above D/S toe), Low	(1) Concrete Spillway: EL. 710	(1) Spillway: EL. 710	
Level Outlet Works, and other Critical and	(2) Unlined emergency spillway.	(2) Unlined emergency spillway (never used).	
Lifeline Features]	(3) No low level outlet, except	(3) No low level outlet, except hydroelectric tunnel with 5,000 cfs	
	hydroelectric tunnel with 5,000 cfs	capacity (6 months to lower pool from spillway elevation to low level	
	capacity (6 months to lower pool	elevation).	
	from spillway elevation to low level	(4) Critical and Lifeline Features Downstream:	
	elevation).	2 major highways (part of evacuation routes), 3 major hospitals, one	
	(4) Critical and lifeline features	major power plant, multiple data centers for major telecommunication	
EPARIMA	downstream: 1 major highway.	and high-tech industry.	

Topic 2: Design and Construction Standards/Criteria

Evaluation Topic	Current Criteria or State of Practice [with Potential Significance for Seismic Performance] (B). <u>Design and Constructior</u>	Existing Dam Design, Construction, and Performance	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam
	(D). Design and construction		
B1.			
Design criteria for seismic			
loading			
B2.			
Design investigations and			
parameter development for			
seismic analysis			

Topic 2: Design and Construction Standards/Criteria [Example and Commentary]

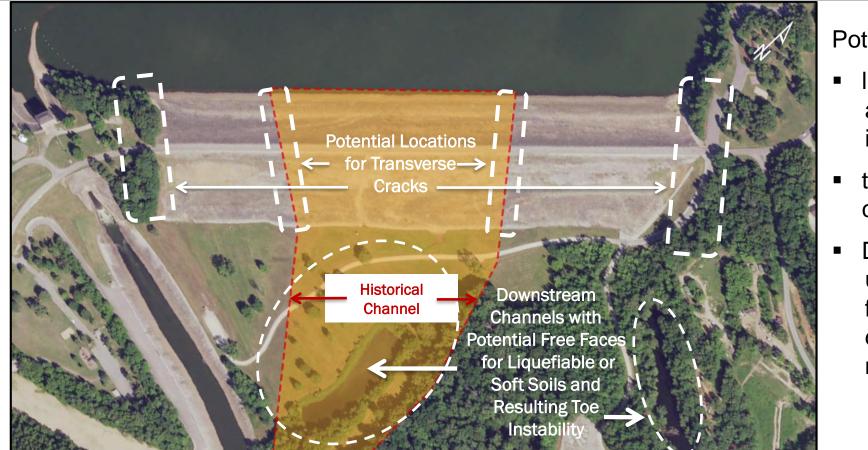
Evaluation Topic	Current Criteria or State of Practice [with Potential Significance for Seismic	Existing Dam Design, Construction, and	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the
	Performance]	Performance	Existing Dam
	(B). <u>Design and (</u>	Construction Standards and	<u>Considerations</u>
B1.	Operating Basis Earthquake (OBE) at 475	No design standards for seismic	(1) This embankment dam was designed and constructed
Design criteria	years return period with performance	loading was used in original design	without considering any seismic criteria.
for seismic	objective of little or no damage and without	and construction in 1950s. No	Potential impacts of a Cascadia subduction zone earthquake
loading	interruption of function, and Maximum Design	national or local standards were	were discovered by scientists in late 1990s to early 2000s.
	Earthquake (MDE) with performance objective	available.	(2) As the dam was designed and constructed without seismic
	of no uncontrolled release. Site MDE return		criteria and considerations using poor construction
	period 1250 years (Cascadia Subduction		techniques, potential for poor seismic performance should
	Zone).		not be a surprise.
B2. Design	Site characterization with focus on potential	Original site investigation	Without site-specific reliable data, any seismic assessment is
investigations	contributing factors for poor seismic	information is inadequate for	mostly engineering judgment based. Site-specific seismic
and parameter	performance. These include fault study,	modern seismic site	focused site investigation-based site characterization is
development for	liquefaction., soft soils, key embankment	characterization and any seismic	essential for fact-based seismic analyses and evaluations.
seismic analysis	design features and construction criteria,	analyses. Subsequent	
	abutment conditions, foundation cutoff,	investigations, unfortunately are	
	freeboard requirement, etc.	inadequate also.	

Topic 3: Foundation Conditions [Geologic and Site Preparation]

Evaluation Topic	Current Criteria or Stat of Practice [with Potential Significance for Seism Performance] Conditions [Geolog	Design, Construction, and ic Performance	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam
C1. Presence of mapped or potential faults in dam			
footprint or proximity			
C2. Presence of Historical or Recent Alluvium in			
foundation			
C3. Presence of stream deposits, irregular rock, or			
other source(s) of significant geologic contrasts			
within the dam footprint			
C4. Presence of active or old landslides adjacent to			
the dam			
C5. Foundation preparation and grouting			
C6. Abutment mapping, inspection and treatment.			
Monitoring of abutting fill placement. Etc.			
C7. Etc. [Site Specific]			

Topic 3: Foundation Conditions [Geologic and Site Preparation] [Example and Commentary]

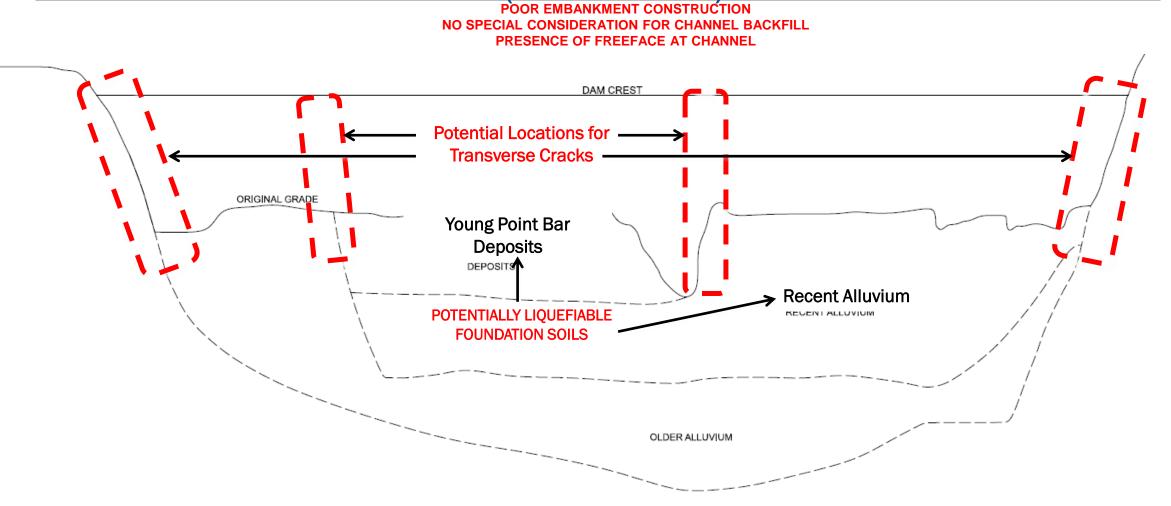
Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design, Construction,	Remarks on Potential Impacts of Differences
	[with Potential Significance for Seismic	and Performance	Between Current Criteria/State of Practice
	Performance]		and the Existing Dam
	(C). Foundation Conditions	Geologic and Site Preparati	<u>on]</u>
C1. Presence of	A fault in dam footprint or proximity indicates	A mapped splay fault is located	In the absence of design features to
mapped or potential	potential for near source effects such as (1)	under the main embankment and	minimize impacts of a fault offset or near-
faults in dam footprint	permanent foundation offset displacement and	near the right abutment of the	source ground motions, risk of potential
or proximity	(2) strong ground motions (fling and pulse).	dam. It has potential to rupture or	failure is increased. In addition to immediate
	Features such as wider drainage features, berm,	offset with the main fault rupture.	seismic deformations, delayed impacts such
	etc. to address permanent offset and strong	No design features currently exists	as development of backward erosion piping
	ground motions are utilized in modern design.	to address potential fault rupture	(BEP) due to lack of adequate filter
		hazard.	capability is also possible.
C2. Presence of	The State of Practice for the modern dam	Existing dam was constructed	Presence of potentially liquefiable and/or
Historical or Recent	construction is removal of potentially liquefiable	without removal of recent Alluvium	cyclic weakening soils is one of the most
Alluvium in foundation	or cyclically weakening soils from the foundation	from foundation. Upper foundation	common flaws in embankment dams, and
	and then emplacement of engineered fill to	layers in both upstream and	can contribute to upstream and/or
	establish a competent foundation beneath the	downstream consist of an about	downstream seismic deformations ranging
	embankment. Ground improvement techniques	10 to 25 feet thick potentially	from limited freeboard loss to flow slides
	(such as densification) can also be utilized.	liquefiable sandy and gravelly	with larger loss of freeboard (overtopping).
		soils.	



Topic 3: Foundation Conditions [Geologic and Site Preparation] [Example and Commentary] (2)

Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts of Differences
	[with Potential Significance for Seismic	Construction, and	Between Current Criteria/State of Practice
	Performance]	Performance	and the Existing Dam
	(C). <u>Foundation Co</u>	nditions [Geologic and Site Preparatio	<u>n]</u>
C3. Presence of	Many dams are constructed across rivers or	The dam was constructed across a	There are potential locations of transverse cracking
stream deposits,	streams, which likely consist of looser and/or	stream without removal of all	near the known locations of contrasting geologic
irregular rock, or	softer deposits along the rivers/streams and	loose/soft foundation materials.	units. The existing channel is very close to the
other source(s) of	denser or stiffer materials on the sides. The	The width of the stream is about	downstream toe, which provides an easier exit for
significant geologic	transition areas near the channels are	1/3 rd of the dam crest length. The	deformed foundation and embankment soil
contrasts within the	locations of potentially significant stiffness	stream is unaltered at the	movement.
dam footprint	contracts. These areas are potential locations	downstream toe.	
	for transverse crack development.		
C4. Presence of	There may be active or old landslides within	An old and active landslide with	The potential landslide mass volume is significant to
active or old	the reservoir rims (distant from the dam or in	slow movement (creep) is located	(1) deposit sediments at the upstream of the dam
landslides adjacent to	proximity of the dam). An earthquake could	near the right abutment of the	and block the low-level outlet and spillway gates, (2)
the dam	potentially trigger these landslides. A	dam.	create waves, which may result in overtopping if
	landslide could trigger overtopping by seiche		coincident pool is high, (3) create openings or cracks
	and/or direct impact on dams.		in the right abutment area, which may result in rapid
			erosion of materials.

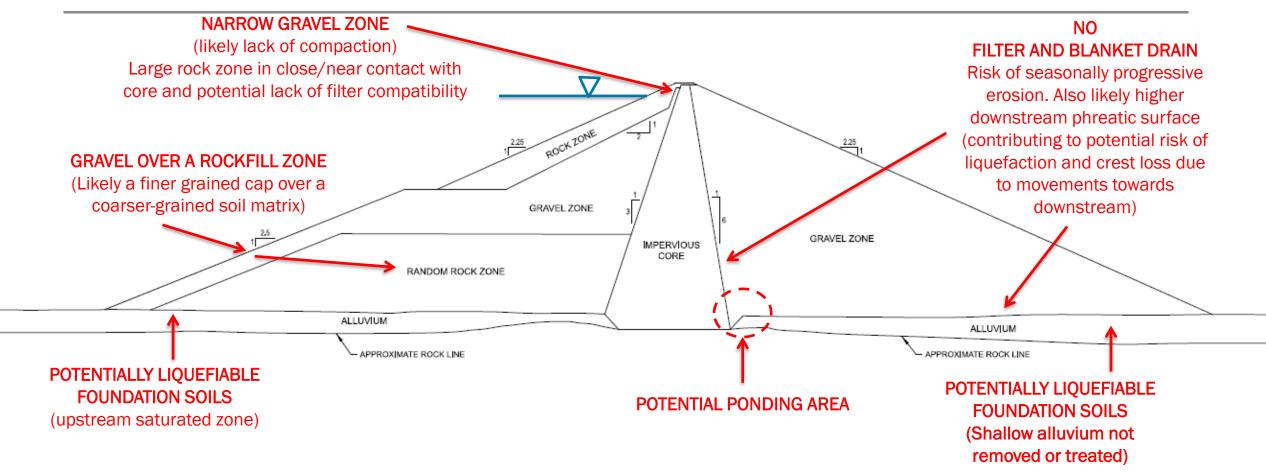
Example: Historical Channel Under Footprint of an Embankment Dam (Planview)


Potential for

- liquifiable and soft soils in foundation,
- transverse cracks, and
- Downstream/ upstream free face for deformed soil movement

Example: Historical Channel Under Footprint of an Embankment Dam

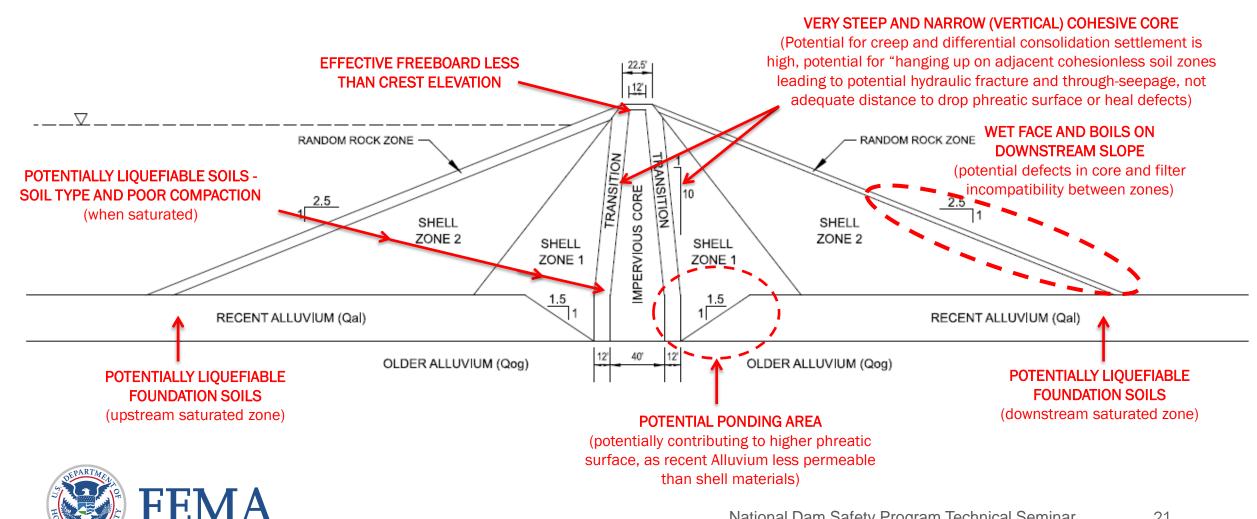
(Cross Section)


Topic 3: Foundation Conditions [Geologic and Site Preparation] [Example and Commentary] (3)

Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts of Differences
	[with Potential Significance for	Construction, and Performance	Between Current Criteria/State of Practice
	Seismic Performance]		and the Existing Dam
	(C). Foundation (Conditions [Geologic and Site Preparation	ป
C5. Foundation	Proper foundation preparation (compaction,	Only one line of grouting was	Inadequate grouting may indicate an existing
preparation and	removal of unsuitable materials, etc.) and	performed and the grouting operation	deficiency for BEP-type failure modes , : conditions
grouting	multi-line sequential grouting are	was not well documented.	that may be exacerbated due to an earthquake.
	performed in modern dams.	Downstream seepage is a regular	
		concern, and monitoring to detect	
		potential accelerating seepage is not	
		regularly performed and/or reported.	
C6. Abutment	Embankments are usually constructed with	The embankment was constructed on	Seismic displacements of the embankment at and
mapping, inspection	special considerations for compaction near	a steep rock slope without removal of	near a steep rock abutment could lead to potential
and treatment.	steep abutment slopes and/or localized	rock ledges or other abutment	for transverse through-cracking or contact gapping
Monitoring of abutting	overhangs. Rock slopes are sculpted and	treatments.	during an earthquake. This can lead to potential
fill placement. Etc.	prepared (e.g. trimming overhangs, slush		development of piping, and can be exacerbated by
	grouting, excavation of poor materials, etc.)		seismic deformations and displacements as well as
	to provide good abutment contact		post-earthquake settlements due to densification of
	conditions. with embankment materials.		loose/uncompacted embankment materials.

Example Embankment Dam

Some Defects Cannot Be Easily Captured by Seismic Analyses – Needs Engineering Assessment



Example Embankment Dam

Some Defects Cannot Be Easily Captured by Seismic Analyses – Needs Engineering Assessment

(2)

Topic 4: Embankment Core [Construction and Performance]

Evaluation Topic	Current Criteria or State of Practice with	Existing Dam Design,	Remarks on Potential Impacts of
	Significance on Seismic Performance	Construction,	Difference Between Current Criteria/State
		and Performance	of Practice and the Existing Dam on
			Evaluation Topics
	(D). <u>Embankment Core [Constr</u>	uction and Performance]	
D1. Embankment Core –			
material type, lift thickness,			
compaction equipment, moisture			
conditions			
D2. Embankment Core – width at			
top, upstream and downstream			
slopes			
D3. Embankment core - presence			
of potentially liquefiable materials			
D4. Etc (Site Specific)			

Topic 4: Embankment Core [Construction and Performance] [Example/Commentary]

Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts of Differences
	[with Potential Significance for	Construction, and	Between Current Criteria/State of Practice
	Seismic Performance]	Performance	and the Existing Dam
	(D). <u>Embankme</u>	nt Core [Construction and Performanc	<u>e]</u>
D1. Embankment Core:	Clayey materials (not too plastic or too low	Clayey core was constructed with	The embankment core very high water content
material type, lift	plasticity) placed in thinner lifts (\leq 12 -	moisture +10 percent of optimum	compacted poorlyPotential for deformations during
thickness, compaction	inches), compaction moisture conditions	with thick lifts (24-inches) and	an earthquake may be high due to low strength. It
equipment, moisture	with slightly higher than optimum moisture	spread-compacted with 1-pass of	may also be potentially prone to shrinkage and
conditions	content (OMC) (< +5 percent of OMC) and	tracks of D8 dozer.	cracking upon drying. Seismic loading might
	"kneading" compaction (compacted with		exacerbate cracking.
	sheeps foot roller.).		
D2. Embankment Core:	Core with wider crest width (such as 30	Core has a relatively narrow crest	Narrow vertical core may "hang up" on adjacent
width at top, upstream	feet or more) and flatter slope (such as	width (12 feet) with very steep	cohesionless soil zones, increasing risk of cracking
and downstream slopes	0.5H:1V or flatter).	slope (0.17H:1V or 1H:6V).	and/or hydraulic fracture. Core with wider crest and
			flatter slope would provide additional protection
			against potential cracking, creep and BEP (pre- and
			post-earthquake) after an earthquake. Also, wider
			core with flatter slope would provide additional
			protection against erosion if shell materials are
			removed during an earthquake (exposed core slope).

Topic 4: Embankment Conditions [Construction and Performance] [Example/Commentary]

Evaluation Topic	Current Criteria or State of Practice [with Potential Significance for Seismic Performance]	Existing Dam Design, Construction, and Performance	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam
	(D). Embankment Conditions [Cons	struction and Performance	
D3. Embankment core - presence of potentially liquefiable materials	Dam cores are constructed of potentially liquefiable soils such as sandy and gravelly soils due to lack of ideal plastic fine-grained soil in borrows.	Embankment core of a portion of the dam was constructed with low plasticity Silt to Silty Sand with poor compaction effort and thicker lifts	Potentially liquefiable core would have higher potential for deformations including freeboard loss, cracking, etc.
D4. Etc (Site Specific)			

Topic 5: Filter and Drainage Zones

Evaluation Topic	Current Criteria or State of Practice [with Potential Significance for Seismic Performance]	Design, Construction, and Performance	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam
	(E). Filter and Drain	age Zones	
E1. Presence of downstream filter, and filter geometry			
and location.			
E2. Downstream filter – material type, lift thickness,			
compaction equipment, moisture conditions			
E3. Filter compatibility between filter zone and adjacent			
transition and/or shell zone materials. Full continuity of			
filter compatibility from core to exit drain.			
E4. Presence of downstream blanket drain and collection			
system			
E5. Filter compatibility between foundation-drain and			
between drain and shell			
E6. Presence of upstream filter/transition zone			
E7. Upstream filter/transition zone – material type, lift			
thickness, compaction equipment, moisture conditions			
Etc. (Site Specific)			

Topic 5: Filter and Drainage Zones [Example]

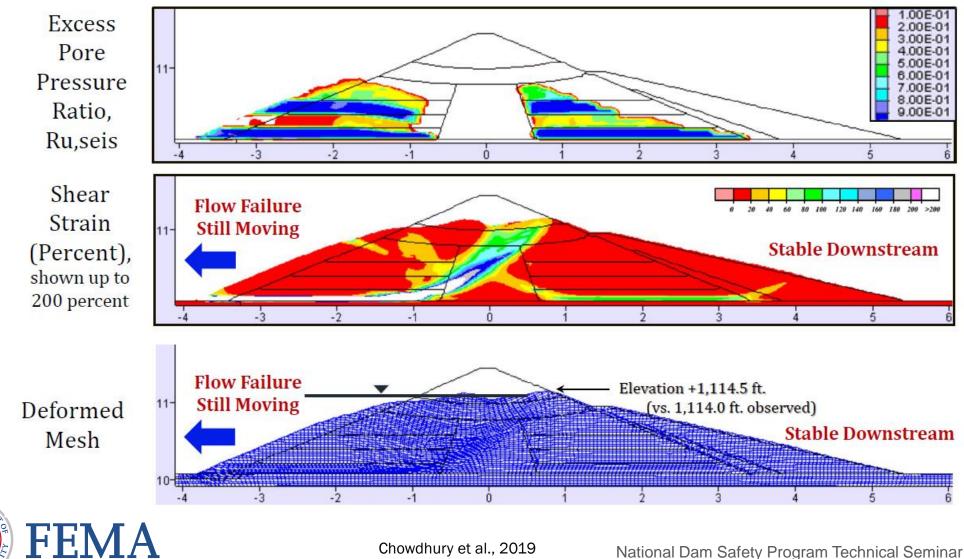
Evaluation Topic	Current Criteria or State of	Existing Dam Design,	Remarks on Potential Impacts of Differences
	Practice	Construction, and	Between Current Criteria/State of Practice and
	[with Potential Significance	Performance	the Existing Dam
	for Seismic Performance]		
	(Ē). <u>F</u>	lter and Drainage Zones	
E1. Presence of downstream filter,	Downstream filter and blanket	Downstream filter zone is	
and filter geometry and location.	drains are essential components	available.	
	of modern embankment dams.		
E2. Downstream filter – material	Coarse-grained soils compacted	Filter layer is narrow (7 feet),	Poorly compacted filter layer would have potential for
type, lift thickness, compaction	with vibratory roller with adequate	constructed with thicker lifts of	liquefaction and deformations.
equipment, moisture conditions	relative compaction such that	24-inches and spread	
	particle breakage (and increase of	compacted using one pass of a	
	finer particles) is prevented, and	D8 dozer.	
	liquefaction potential is low. A		
	wider filter zone indicates that		
	proper compaction equipment can		
	be used. A wider filter zone may		
	have materials to prevent cracks		
	to widen and deteriorate.		
E3. Filter compatibility between	Filter material gradations should	Even though the particles are	In the absence of filter compatibility, migration of
filter zone and adjacent transition	have compatibility with both core	progressively larger from core	particles from core to filter and filter to shell may occur.
and/or shell zone materials. Full	and shell materials.	to filter to shell, these layers do	Finer particle migration may result in downstream higher
continuity of filter compatibility		not meet modern filter	phreatic surface (e.g. higher potential for liquefaction) 26
from core to exit drain.		compatibility criteria.	and potential BEP conditions.

Topic 5: Filter and Drainage Zones [Example] (2)

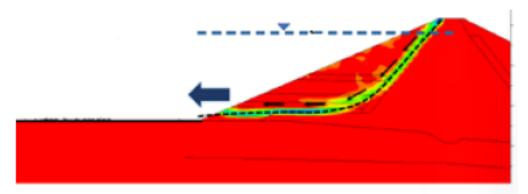
Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts of
	[with Potential Significance for	Construction, and Performance	Differences Between Current Criteria/State
	Seismic Performance]		of Practice and the Existing Dam
	(E). <u>Filt</u>	er and Drainage Zones	
E4. Presence of	Blanket drains safely convey water that	Downstream blanket drain is not	In the absence of a properly designed blanket
downstream blanket drain	seeps through core and filter to	available.	drain, potential of higher phreatic surface in
and collection system	downstream toe area.		downstream can lead to potential for
			liquefaction and other conditions that
			contribute to seismic deformations and
			freeboard loss.
E5. Filter compatibility	Filter compatibility between foundation	Filter compatibility between the	In the absence of filter compatibility between
between foundation-drain	and blanket drain materials is an	foundation and blanket drain	blanket drain and foundation layer and
and between drain and	important modern criteria	materials and between drain and shell	between blanket drain and shell, banket drain
shell		do not meet modern filter criteria.	may get clogged and the downstream phreatic
			surface may rise, leading to potential for
			liquefaction and other conditions that can
			contribute to seismic deformations and
			potential for freeboard loss.

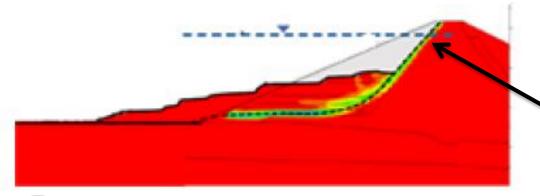
Topic 5: Filter and Drainage Zones [Example] (3)

Evaluation Topic	Current Criteria or State of Practice [with Potential Significance for Seismic Performance]	Existing Dam Design, Construction, and Performance	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam
	(E). <u>Filter and</u>	Drainage Zones	
E6. Presence of upstream filter/transition zone	Upstream filter/transition layer is not essential, if shell materials are filter compatible with core. A transition layer may allow use of coarser shell materials (such as rockfill), which might otherwise not be filter compatible with the core.	An upstream transition/filter layer is present.	The transition/filter layer that is present is susceptible for deformations, which could create longitudinal cracking along the core-transition interface and may potentially expose the core, if soil deforms.
E7. Upstream filter/transition zone – material type, lift thickness, compaction equipment, moisture conditions	Coarse-grained soils compacted with vibratory roller with adequate relative compaction such that particle breakage (and increase of finer particles) is prevented, and liquefaction potential is low. A wider filter zone indicates that proper compaction equipment can be used. A wider filter zone may have materials to prevent cracks to widen and deteriorate.	Filter layer is narrow (7 feet), constructed with thicker lifts of 24-inches and spread compacted using one pass of D8 dozer.	Poorly compacted filter layer would have potential for liquefaction. Subsequent static settlement may result differential deformations. Differential settlements between the <u>narrow</u> filter and the two adjacent zones can lead to cracking.
Etc. (Site Specific)			

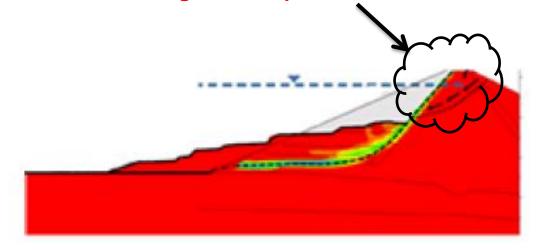


Topic 6: Embankment Shell Zones


Evaluation Topic	Current Criteria or State of	Existing Dam Design,	Remarks on Potential Impacts of
	Practice	Construction, and	Differences Between Current
	[with Potential Significance for	Performance	Criteria/State of Practice and the
	Seismic Performance]		Existing Dam
	(F). Embankment Shell	<u>Zones</u>	
F1. Upstream shell –			
material type, lift thickness, compaction			
equipment, moisture conditions, numbers of			
passes, etc.			
F2. Presence of different sub-layers within			
upstream shell			
F3. Downstream shell –			
material type, lift thickness, compaction			
equipment, moisture conditions, numbers of			
passes, etc.			
F4. Presence of different sub-layers within			
upstream shell			


LSFD Analysis 1: Roth Model - Cetin et al. (2018) Triggering and Weber et al. (2015) Undrained and Residual S_r - Conditions at End of Analysis

Upstream Flow Slide in Shell and Secondary Deformations in Core



1. Earthquake occurs 2. Initiation of liquefaction-induced upstream flow slide occurs

Secondary Crest Sliding, Cracking, and Remaining Crest Exposed to Reservoir

Upstream Flow Slide in Shell (Final residual flow slide geometry after runout)

31

Topic 6: Embankment Shell Zones [Example]

Evaluation Topic	Current Criteria or State of	Existing Dam Design,	Remarks on Potential Impacts of Differences Between Current
	Practice	Construction, and	Criteria/State of Practice and the Existing Dam
	[with Potential Significance for	Performance	
	Seismic Performance]		
		(F). Embankment She	ell Zones
F1. Upstream shell -	Coarse-grained soils compacted with	Shell was constructed with	Poorly compacted shell zone would have potential for liquefaction and
material type, lift	vibratory roller such that materials	thicker lifts of 36-inches to	resulting deformations. Large deformations (movements) may expose
thickness,	are suitably densified with relatively	48-inches and spread	and/or unbrace the core, which usually has steep slopes and may not be
compaction	thinner lifts (12-inches to 18-inches)	compacted using one	stable once exposed. Larger slide displacements can carry away the
equipment, moisture	and sufficient "passes". Adequate	"levelling" pass of D8	crest section of the dam. Lesser sliding displacements can cause crest
conditions, numbers	compaction provides dense packing,	dozer. Materials are Sandy	loss accompanied with cracks and blocky failures occur. Case history:
of	which helps reducing seepage	Gravel to Gravelly Sand.	Lower San Fernando Dam in 1971.
passes, etc.	concerns, erosion potential,		
	liquefaction potential, and seismic		
	deformation potential.		
F2. Presence of	Construction of shell zones with thinner	Construction techniques	In is common to find denser and looser soil sub-layers with varying thicknesses
different sub-layers	lifts with vibratory roller should reduce	of shell zone (thicker lifts	in upnstream shells due to poor compaction efforts in older dams compacted
within upstream shell	potential for looser sub-layers. Suitable	with inadequate	with tracked or rubber tired non-vibratory compaction equipment which
	compaction should be performed for <u>all</u>	compaction efforts)	produces poor compaction of potentially liquefiable soil types, especially in
	lifts during construction; one or more	indicates that potential for	lower portions of a compaction "lift". This often results in loose and potentially
	"looser" lifts could pose a potential	looser sub-layers is high.	liquefiable soils, and also to layered soils potentially vulnerable to void
	hazard.		redistribution and resulting low post-liquefaction residual strengths.

Topic 6: Embankment Shell Zones [Example] (2)

Evaluation Topic	Current Criteria or State of Practice [with Potential Significance for Seismic Performance]	Existing Dam Design, Construction, and Performance	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam
		(F). <u>Embankment Shell Zones</u>	
F3. Downstream shell – material type, lift thickness, compaction equipment, moisture conditions, numbers of passes, etc.	Coarse-grained soils compacted with vibratory roller such that materials are suitably densified with relatively thinner lifts (12-inches to 18-inches) and sufficient "passes". Adequate compaction provides dense packing, which helps reducing seepage concerns, erosion potential, liquefaction potential, and seismic deformation potential.	Shell was constructed with thicker lifts of 36-inches to 48-inches and spread compacted using one "levelling" pass of D8 dozer. Materials are Sandy Gravel to Gravelly Sand.	Poorly compacted shell zone would have potential for liquefaction and resulting deformations. Large deformations (movements) may expose and/or unbrace the core, which usually has steep slopes and may not be stable once exposed. Larger slide displacements can carry away the crest section of the dam. Lesser sliding displacements can cause crest loss accompanied with cracks and blocky failures occur. Downstream deformations may be less than upstream; however, would depend on site-specific conditions.
F4. Presence of different sub-layers within downstream shell	Construction of shell zones with thinner lifts with vibratory roller should reduce potential for looser sub-layers. Suitable compaction should be performed for <u>all</u> lifts during construction; one or more "looser" lifts could pose a potential hazard.	Construction techniques of shell zone (thicker lifts with inadequate compaction efforts) indicates that potential for looser sub-layers is high. Due to absence of filter and proper drainage, downstream phreatic surface is higher than expected.	In is common to find denser and looser soil sub-layers with varying thicknesses in downstream shells due to poor compaction efforts in older dams compacted with tracked or rubber tired non-vibratory compaction equipment which produces poor compaction of potentially liquefiable soil types, especially in lower portions of a compaction "lift". This often results in loose and potentially liquefiable soils, and also to layered soils potentially vulnerable to void redistribution and resulting low post-liquefaction residual strengths. 33

Topic 7: Embankment-Abutment Contact Area and Soil-Structure Interactions

Evaluation Topic (G). <u>Embankr</u>	Current Criteria or State of Practice [with Potential Significance for Seismic Performance] ment-Abutment Contact Areas and	Existing Dam Design, Construction, and Performance d Soil-Structure Interac	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam
G1. Embankment-abutment contact area design and construction measures			

Topic 7: Embankment-Abutment Contact Area and Soil-Structure Interactions [Example]

Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts
	[with Potential Significance for	Construction, and	of Differences Between Current
	Seismic Performance]	Performance	Criteria/State of Practice and
			the Existing Dam
(G). <u>Em</u>	bankment-Abutment Contact Area	s and Soil-Structure Interact	tions
G1. Embankment-abutment contact	Contact areas should (1) be free of	Rock ledges were not	Embankment-abutment contact
area design and construction	overhangs, (2) have voids filled	removed; surface preparation	areas could be potential
measures	(dental treatment), (3) be	at abutment was poor;	locations for transverse crack
	compacted well, (4) have weathered	downstream drainage feature	development.
	and/or fractured rock from	is absent.	
	abutment surfaces excavated or		
	grouted, and (5) have expected		
	overall well functioning filter-		
	drainage performance after seismic		
	shaking and resulting embankment		
	deformations.		

Topic 8: Existing Distress Conditions (Static and Hydraulic)

Evaluation Topic	Current Criteria or	Existing Dam	Remarks on Potential Impacts of
	State of Practice	Design,	Differences Between Current
	[with Potential	Construction,	Criteria/State of Practice and the
	Significance for	and Performance	Existing Dam
	Seismic Performance]		
	(H). <u>Existing Distress C</u>	onditions	
H1. Development of sand boils, seepage distress			
with increasing pool			
H2. Instrumentation data for phreatic surface			
H3. Instrumentation data for deformations			
H4. Instrumentation data for settlement			
H5. Observations from dam site			
Etc. (Site Specific)			

Topic 8: Existing Distress Conditions (Static and Hydraulic) [Example]

Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts of
	[with Potential Significance for Seismic	Construction, and	Differences Between Current
	Performance]	Performance	Criteria/State of Practice and the Existing
	-		Dam
	(H). <u>Existing Distress</u>	Conditions	
H1. Development of sand boils,	Existing sand boils and seepage distress	Sand boils and wet areas	An earthquake event would likely exacerbate
seepage distress with increasing pool	indicates presence of existing defects.	are present on	existing seepage conditions.
		downstream.	
H2. Instrumentation data for phreatic	Instrumentation on crest, downstream, and	Existing (limited)	Higher phreatic surface, even with filter and
surface	toe are important to evaluate phreatic	piezometers indicate	blanket drain, may indicate filter
	surface on downstream of a dam.	higher than expected	incompatibility and clogging of filters and
		phreatic surface on	blanket drains. Higher downstream phreatic
		downstream slope.	surface may increase liquefaction potential
			and increased crest loss due to contributions
			of embankment deformations towards
			downstream.
H3. Instrumentation data for	Instrumentation data for deformations may	Existing instruments	The existing instrument data may indicate
deformations	help monitor any slope stability issues prior to	indicate a deeper shear	slower movement of the sliding mass in static
	an earthquake and identify internal damage	plane with slow	conditions, however, any movement along
	due to an earthquake. Some damage may not	movements.	pre-existing sliding plane may be exacerbated
	manifest on surface.		due to an earthquake.

Topic 8: Existing Distress Conditions (Static and Hydraulic) [Example] (2)

Evaluation Topic	Current Criteria or State of	Existing Dam Design,	Remarks on Potential Impacts of
	Practice	Construction, and Performance	Differences Between Current
	[with Potential Significance for		Criteria/State of Practice and the Existing
	Seismic Performance]		Dam
	(H). <u>Exis</u>	ting Distress Conditions	
H4. Instrumentation data for	Settlement monitors near the	Existing settlement monitors	Differential settlement across the interface and
settlement	abutments, and along the crest	indicate settlement of upstream	cracks on surface indicate post-construction
	(along interfaces of different zones),	transition and shell zones. Cracks	settlements. These may indicate pre-earthquake
	and transverse to the dam axis are	are also visible on surface near	existing shear planes with potential weaker
	important to monitor and	these differential settlement	interfaces . Transverse cracks across different
	characterize settlements in different	locations.	zones and abutment may be exacerbated during
	zones.		an earthquake.
H5. Observations from dam site	Detailed observations and recording	A hummocky slope surface of a	This may be an indication of poor compaction of
	by experienced personnel may help	poorly constructed dam.	the dam, which with cycles of saturated
	to identify issues that may require		conditions and subsequent drying may create
	further inspection, data collection		uneven settlement of the surficial portions of the
	and instrumentation, and		shell. However, in some cases, these may indicate
	evaluation.		material loss (such as development of piping
			erosion, segregation of finer particles, etc.)
Etc. (Site Specific)			

Topic 9: Seismic Freeboard

Evaluation Topic	Current Criteria or State of	Existing Dam	Remarks on Potential Impacts of	
	Practice	Design,	Differences Between Current	
	[with Potential Significance for	Construction, and	Criteria/State of Practice and the	
	Seismic Performance]	Performance	Existing Dam	
(I). <u>Seismic Freeboard</u>				
11. Allowable lowest freeboard				
I2. Continuity of low permeability core up				
safely above the maximum reservoir				
elevation.				

Topic 9: Seismic Freeboard [Example]

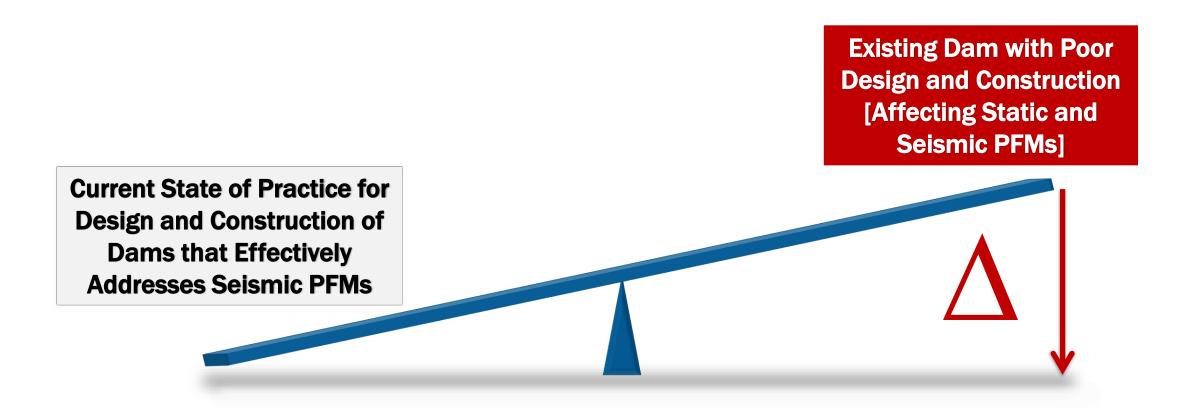
Evaluation Topic	Current Criteria or State of Practice [with Potential Significance for Seismic Performance]	Existing Dam Design, Construction, and Performance	Remarks on Potential Impacts of Differences Between Current Criteria/State of Practice and the Existing Dam		
(I). <u>Seismic Freeboard</u>					
I1. Allowable lowest freeboard	Available seismic freeboard should be demonstrated (by analyses) to be able to safely retain to the reservoir after potential seismic deformations (deviatoric and volumetric) and seismic cracking, etc. for design-level seismic events. [Note: CA DSOD recommends 0.05H+5 freeboard for new dams]	Only 10 feet (~3 percent of height) freeboard available for this 300 feet tall dam for 3 to 6 months of a year.	Freeboard is inadequate and potential for overtopping due to earthquake-induced crest loss and cracking is high.		
I2. Continuity of low permeability core up safely above the maximum reservoir elevation.	Low permeability core materials are usually extended up to the crest to slow down erosional damage due to overtopping.	Crest and top of core is 7 feet apart and erodible sand and gravel materials are in this area.	Available freeboard after an earthquake should be measured from top of impervious core, i.e., 7 feet less than crest level.		

Topic 10: Appurtenant Structures and Systems with Significance for Post-Earthquake Response and Performance

Evaluation Topic	Current Criteria or State of	Existing Dam	Remarks on Potential Impacts of		
	Practice	Design,	Differences Between Current		
	[with Potential Significance	Construction, and	Criteria/State of Practice and the		
	for Seismic Performance]	Performance	Existing Dam		
	(J). Appurtenant Structures and Equipment with Significance for				
<u>Po:</u>	st Earthquake Response and Perform	<u>nance</u>			
J1. Spillway with capability to lower reservoir elevation in an					
emergency scenario					
J2. Location of outlet towers/inlet tower compared to spillway					
J3. Presence of low elevation outlet tunnel/conduit					
[elevation, condition, and expected survivability/availability					
after EQ]					
J4. Special care around tunnel, pipe, outlet, etc. [such as					
backfill]					
J5. Expected post-EQ operational capability of control tower					
equipment, etc. at MDE-GM					
J6. Planning of post-earthquake response protocols and					
material supply					
J7. Etc. (Site Specific)					

Topic 10: Appurtenant Structures and Systems with Significance in Post-Earthquake Response and Performance [Example]

Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts of		
	[with Potential Significance for Seismic	Construction, and	Differences Between Current		
	Performance]	Performance	Criteria/State of Practice and the		
			Existing Dam		
(J). Appurtenant Structures and Equipment with Significance in Post Earthquake Response					
J1. Spillway with capability to	Regular side channel spillway is an important	Gated spillway system is	An earthquake may damage spillway		
lower reservoir elevation in an	feature of embankment dams to provide flood	available. Spillway	capability, if not properly designed and		
emergency scenario	control	capacities are suitably	constructed (such as crack in rock-concrete		
		adequate.	lining)		
J2. Location of outlet towers/inlet	Ideally intake tower or outlet tower with tunnels	Intake tower in the dam is	Earthquake damage to intake tower may		
tower compared to spillway	should not be in close proximity of spillway.	in close proximity to	impact the gates spillway.		
		spillway gates.			
J3. Presence of low elevation	A low level outlet is important for lowering reservoir	No existing low level outlet	The ability of lowering reservoir pool to		
outlet tunnel/conduit [elevation,	pool in case of emergency.	available.	prevent further damage of the dam using low		
condition, and expected			level outlet is not available.		
survivability/availability after EQ]					
J4. Special care around tunnel,	Any tunnel, utility crossing, etc. require special	Tunnel backfill is granular	Potential for liquefaction, differential		
pipe, outlet, etc. [such as backfill]	considerations such as backfill type, compaction,	even in core and poor	settlement, and backward erosion piping		
	grouting, etc.	compaction due to shape	(BEP).		
		of the tunnel, etc.			



Topic 10: Appurtenant Structures and Systems with Significance in Post-Earthquake Response and Performance [Example] (2)

Evaluation Topic	Current Criteria or State of Practice	Existing Dam Design,	Remarks on Potential Impacts of	
	[with Potential Significance for Seismic	Construction, and	Differences Between Current	
	Performance]	Performance	Criteria/State of Practice and the	
			Existing Dam	
(J). Appurtenant Structures and Equipment with Significance in Post Earthquake Response				
J5. Expected post-EQ operational	Equipment in an intake tower or outlet tower	No assessment of	Loss of ability to operate an outlet tower	
capability of control tower	needs to be operational after an earthquake and	equipment suitability was	could happen after an earthquake	
equipment, etc. at MDE-GM	the outlet facility should be reliably safe for use in	performed and these are		
	the immediate aftermath of a seismic event.	not anchored.		
	Equipment should be anchored to provide assured			
	operational capability after an earthquake.			
J6. Planning of post-earthquake	Post-earthquake response protocols are important	No emergency action plan		
response protocols and material	to identify resources and actions in case of	is available to address		
supply	emergency. It could be critical to minimize damage	earthquake damage.		
	(sometimes prevent uncontrolled release).			
J7. Etc. (Site Specific)				

Assessment of Aging Dams for Seismic Potential Failure Modes: A Delta (Δ) Approach

Summary

- <u>A qualitative tool to assess the contributing factors for potential performance of an existing dam</u> <u>during an earthquake</u>. It requires a comprehensive qualitative evaluation of the system including dam foundation, embankment, abutments, spillway capacity, consequences, etc.
- It requires the practitioners to understand the historical dam design and construction practices and techniques that are inadequate, and the current state of practice that appropriately account for potential seismic PFMs. It provides a transparent communication platform between practitioners and decision makers.
- Findings can be used to (a). <u>evaluate which contributing factors can be further investigated and</u> <u>analyzed</u> using current state of practice investigations and analytical tools (such as foundation and embankment conditions) and

(b). Evaluate which conditions require modification decisions based on engineering judgment (such as need to anchor the electrical and mechanical equipment in an inlet or outlet tower to provide post-earthquake functional capability).

Thank You

Contact Information

Khaled Chowdhury, PhD, PE, GE HQ National Earthquake Program Policy Advisor and Senior Geotechnical Engineer (SPD-Dam Safety Production Center) US Army Corps of Engineers (USACE) <u>Khaled.Chowdhury@usace.army.mil</u>

