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Guidance for Flood Risk Analysis and Mapping, Coastal Flood Frequency and Extreme Value Analysis 

Requirements for the FEMA Risk Mapping, Assessment, and Planning (Risk MAP) Program are 
specified separately by statute, regulation, or FEMA policy (primarily the Standards for Flood Risk 
Analysis and Mapping). This document provides guidance to support the requirements and 
recommends approaches for effective and efficient implementation. Alternate approaches that 
comply with all requirements are acceptable. 

For more information, please visit the FEMA Guidelines and Standards for Flood Risk Analysis and 
Mapping webpage (https://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-
mapping). Copies of the Standards for Flood Risk Analysis and Mapping policy, related guidance, 
technical references, and other information about the guidelines and standards development 
process are all available here. You can also search directly by document title at 
https://www.fema.gov/resource-document-library. 

https://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping
https://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping
https://www.fema.gov/resource-document-library
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1. General Statistical Methods 
This document summarizes the most common statistical methods used to establish the 1% annual-
chance flood elevation for FEMA coastal Flood Map Projects. The following approach is used when at 
least 30 years of observational record is available. In this extreme value analysis approach, the data 
are used to establish a probability distribution that is assumed to describe the flooding process and 
that can be evaluated by using the data to determine the flood elevation at any frequency. The 
observational record length influences the fit of the probability distribution such that longer records 
improve the fit. 

Coastal: Statistical Simulation Methods (FEMA 2016a) contains guidance on an alternate approach 
that is used when an adequate observational record of flood levels does not exist. In this case, it may 
be possible to simulate the flood process using hydrodynamic models driven by meteorological or 
other processes for which adequate data exist. That is, the hydrodynamic model (perhaps describing 
storm surge or waves) provides the link between the known statistics of the generating forces and 
the desired statistics of flood levels.  

The present discussion begins with the basic concepts of probability theory and introduces the 
concept of a continuous probability distribution. The distributions which are most commonly used, as 
well as methods to fit these to the observed record, are described along with recommendations for 
FEMA Flood Map Project applications. A list of suggested additional information resources is 
included at the end of the subsection. 

1.1. Elementary Probability Theory 
Probability theory deals with the characterization of random events and, in particular, with the 
likelihood of the occurrence of particular outcomes. The word “probability” has many meanings, and 
there are conceptual difficulties with all of them in practical applications such as flood studies. The 
common frequency notion is assumed here: the probability of an event is equal to the fraction of 
times it would occur during the repetition of a large number of identical trials. For example, if one 
considers an annual storm season to represent a trial, and if the event under consideration is 
occurrence of a flood exceeding a given elevation, then the annual probability of that event is the 
fraction of years in which it occurs in the limit of an infinite period of observation. Clearly, this notion 
is entirely conceptual and cannot truly be the source of a probability estimate. 

An alternate measure of the likelihood of an event is its expected rate of occurrence, which differs 
from its probability in an important way. Whereas probability is a pure number and must lie between 
zero and one, a rate of occurrence is a measure with physical dimensions (reciprocal of time) that 
can take on any value, including values greater than one. In many cases, when one speaks of the 
probability of a particular flood level, one actually means its rate of occurrence; thinking in terms of 
physical rate can help to clarify an analysis. 

To begin, a number of elementary probability rules are reviewed. If an event occurs with probability P 
in some trial, then it fails to occur with probability Q = 1 – P. This is a consequence of the fact that 
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the sum of the probabilities of all possible results must equal unity, by the definition of total 
probability: 

  (Eq. 1-1) 

 

in which the summation is over all possible outcomes of the trial. 

If A and B are two events, the probability that either A or B occurs is given by:  

   (Eq. 1-2) 

If A and B are mutually exclusive, then the third term on the right-hand side is zero, and the 
probability of obtaining either outcome is the sum of the two individual probabilities. 

If the probability of A is contingent on the prior occurrence of B, then the conditional probability of A 
given the occurrence of B is defined to be:  

  (Eq. 1-3) 

in which P(AB) denotes the probability of both A and B occurring. 

If A and B are stochastically independent, P(A|B) must equal P(A). Then the definition of conditional 
probability just stated gives the probability of occurrence of both A and B as: 

  (Eq. 1-4) 

This expression generalizes for the joint probability of any number of independent events, as: 

  (Eq. 1-5) 

As a simple application of this rule, consider the chance of experiencing at least one base flood (P = 
0.01) in 100 years. This is 1 minus the chance of experiencing no such flood in 100 years. The 
chance of experiencing no such flood in 1 year is 0.99, and if it is granted that floods in different 
years are independent, then the chance of not experiencing such a flood in 100 years is 0.99100 
according to Equation 1-5, or 0.366. Consequently, the chance of experiencing at least one base 
flood in 100 years is 1 – 0.366 = 0.634, or about 63%. 
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1.2. Distributions of Continuous Random Variables 
A continuous random variable can take on any value from a continuous range, not just a discrete set 
of values. The instantaneous ocean surface elevation at a point is an example of a continuous 
random variable. So, too, is the annual maximum water level at a point. If such a variable is observed 
a number of times, a set of differing values distributed in some manner over a range is found; this 
fact suggests the idea of a probability distribution. The observed values are a data sample.  

If the probability density function, PDF, of x is defined as f(x), such that the probability of observing 
the continuous random variable x to fall between x and x + dx is f(x) dx then, in accordance with the 
definition of total probability stated above: 

  (Eq. 1-6) 

If the upper limit of integration is taken to be the level L, rather than infinity, the cumulative 
distribution function, CDF, denoted by F(x), is derived which specifies the probability of obtaining a 
value of L or less: 

  (Eq. 1-7) 

It is assumed that the observed set of values, the sample, is derived by random sampling from a 
parent distribution. That is, there exists some unknown function, f(x), from which the observed 
sample is obtained by random selection. No two samples taken from the same distribution will be 
exactly the same. Furthermore, random variables of interest in engineering cannot assume values 
over an unbounded range, as suggested by the integration limits in the expressions shown above. In 
particular, the lower bound for flood elevation at a point can be no less than ground level, wind 
speed cannot be less than zero, among other physical constraints. Upper bounds also exist, but they 
cannot be precisely specified; whatever occurs can be exceeded, if only slightly. Consequently, the 
usual approximation is that the upper bound of a distribution is taken to be infinity, whereas a lower 
bound may need to be specified based on physical constraints. 

If the nature of the parent distribution can be inferred from the properties of a sample, then the 
distribution provides the complete statistics of the variable. If, for example, 30 years of annual peak 
flood data are available, and if these data can be used to specify the underlying distribution, then 
one can easily obtain the 10%, 2%, 1%, and 0.2% annual-chance flood levels by computing x such 
that F(x) is 0.90, 0.98, 0.99, and 0.998, respectively.  

The entirety of the information contained in the PDF can be represented by its moments. For the 
normal distribution, the mean, µ, specifies the location of the distribution and is the first moment 
about the origin: 

  (Eq. 1-8) 

1)( =∫
∞

∞−
dxxf

∫ ∞−
≡≤

L
dxxfLxF )()(

∫
∞

∞−
= dxxfx )(µ



Guidance for Flood Risk Analysis and Mapping, Coastal Flood Frequency and Extreme Value Analysis 
 
 

Flood Frequency and Extreme Value Analysis, Guidance Document 76 4 

Two other common measures of the location of the distribution are the mode, which is the value of x 
for which f is maximum, and the median, which is the value of x for which F is 0.5. 

The spread of the distribution is measured by its variance, σ2, which is the second moment about the 
mean: 

  (Eq. 1-9) 

The standard deviation, σ, is the square root of the variance. 

The third and fourth moments are called the skew and the kurtosis, respectively; still higher 
moments fill in more details of the distribution shape, but they are seldom encountered in practice. If 
the variable is measured about the mean and is normalized by the standard deviation, then the 
coefficient of skewness, measuring the asymmetry of the distribution about the mean, is:  

  (Eq. 1-10) 

and the coefficient of kurtosis, measuring the peakedness of the distribution, is:  

  (Eq. 1-11) 

These four parameters are properties of the continuous distribution, not of discrete samples. 
However, the sample has its own set of corresponding parameters. For example, the sample mean 
is: 

  (Eq. 1-12) 

which is the average of the sample values. The sample variance is: 

  (Eq. 1-13) 

while the sample skew and kurtosis are:  

  (Eq. 1-14) 
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  (Eq. 1-15) 

Note that in some literature, the kurtosis is reduced by 3, so the kurtosis of the normal distribution 
becomes zero; it is then called the excess kurtosis. 

1.3. Stationarity 
Roughly speaking, a random process is said to be stationary if it is not changing over time, or if its 
statistical measures remain constant. Many statistical tests can be performed to help determine 
whether a record displays a significant trend that might indicate nonstationarity. A simple test is the 
Spearman Rank Order Test. This is a nonparametric test operating on the ranks of the individual 
values sorted in both magnitude and time. The Spearman R statistic is defined as: 

  (Eq. 1-16) 

in which d is the difference between the magnitude rank and the sequence rank of a given value. 
The statistical significance of R computed from Equation 1-16 can be found in published tables of 
Spearman’s R for n – 2 degrees of freedom.  

1.4. Correlation between Series 
Two random variables may or may not be statistically dependent. Dependence means that knowing 
the value of one of the variables permits a degree of inference regarding the value of the other. 
Whether paired data (x,y), such as simultaneous measurements of wave height and period, are 
interdependent or correlated is usually measured by their linear correlation coefficient: 

  (Eq. 1-17) 

This correlation coefficient indicates the strength of the correlation. An r value of +1 or  1 indicates 
perfect correlation, so a cross-plot of y versus x would lie on a straight line with positive or negative 
slope, respectively. If the correlation coefficient is near zero, then such a plot would show random 
scatter with no apparent trend. 
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  (Eq. 1-18) 

in which subscripts specify the appropriate distribution function. This equation can be used, for 
example, to determine the distribution of the sum of storm surge and tide under the assumptions 
that surge and tide are independent and can be linearly superimposed. 

1.6. Important Distributions 
Many statistical distributions are used in engineering practice. Perhaps the most familiar is the 
normal or Gaussian distribution. The following distributions are likely to be used in a FEMA Flood 
Map Project. Although the normal distribution is the most familiar, the most fundamental is the 
uniform distribution. 

1.6.1. UNIFORM DISTRIBUTIONS 
The uniform distribution is defined as constant over a range and zero outside that range. If the range 
is from a to b, then the PDF is: 

 (Eq. 1-19) 

which, within its range, is a constant independent of x; this is also called a top-hat distribution. 

The uniform distribution is especially important because it is used in drawing random samples from 
all other distributions. A random sample drawn from a given distribution can be obtained by first 
drawing a random sample from the uniform distribution defined over the range from 0 to 1. Then set 
F(x) equal to this value, where F is the cumulative distribution to be sampled. The desired value of x 
is obtained by inverting the expression for F.  

Sampling from the uniform distribution is generally done with a random number generator, returning 
values on the interval from 0 to 1. Most programming languages and spreadsheets have such a 
function built in, as do many calculators. However, not all such standard routines are satisfactory. 
While adequate for drawing a small number of samples, many widely used standard routines fail 
statistical tests of uniformity. If a critical application requires a large number of samples, these 
simple standard routines may be inadequate. Further guidance on this topic is available in Coastal: 
Statistical Simulation Methods (FEMA 2016a). 

1.6.2.  NORMAL OR GAUSSIAN DISTRIBUTION 
The normal or Gaussian distribution, sometimes called the bell-curve, has a special place among 
probability distributions. Consider a large number of large samples drawn from some unknown 
distribution. For each large sample, compute the sample mean. The distribution of those means 
tends to follow the normal distribution, a consequence of the central limit theorem. Despite this, the 
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normal distribution does not play a central direct role in hydrologic frequency analysis. The standard 
form of the normal distribution is: 

  (Eq. 1-20) 

1.6.3. RAYLEIGH DISTRIBUTION 
The Rayleigh distribution is important in the theory of random wind waves. Unlike many distributions, 
it has some basis in theory; Longuet-Higgins (1952) showed that with reasonable assumptions for a 
narrow banded wave spectrum, the distribution of wave height will be Rayleigh. The standard form of 
the distribution is: 

  (Eq. 1-21) 

The range of x is positive, and the scale parameter b > 0. In water wave applications, 2b2 equals the 
mean square wave height. The mean and variance of the distribution are respectively given by: 

  (Eq. 1-22) 

The skew and kurtosis of the Rayleigh distribution are constants (approximately 0.63 and 3.25, 
respectively) but are of little interest in extreme value analysis for flooding. 

An application of the Rayleigh distribution in coastal flood studies is the estimation of the 2% annual-
chance runup level, given the mean level computed by the RUNUP 2.0 program. There is empirical 
evidence that the runup is Rayleigh distributed so that the ratio between the 2% and 50% runup 
levels can be computed from Equation 1-21. 
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1.6.4. EXTREME VALUE DISTRIBUTION 
Extreme value distributions are recognized as having some theoretical justification and are therefore 
most appropriate for extreme value analyses. Among the well-known extreme value distributions are 
the Gumbel distribution and the Weibull distribution. Both of these are candidates for FEMA Flood 
Map Project applications and have been widely used with success in similar applications. 
Significantly, these distributions (and others, including the Rayleigh) are subsumed under a more 
general distribution, the generalized extreme value (GEV) distribution, given by: 

  (Eq. 1-23) 

The cumulative distribution is given by the expressions: 

  (Eq. 1-24) 

In these expressions, a, b, and c are the location, scale, and shape factors, respectively. This 
distribution includes the Frechet (Type 2) distribution for c > 0 and the Weibull (Type 3) distribution 
for c < 0. If the limit of the exponent of the exponential in the first forms of these distributions is 
taken as c goes to 0, then the simpler second forms are obtained, corresponding to the Gumbel 
(Type 1) distribution. Note that the Rayleigh distribution is a special case of the Weibull distribution 
and so is also encompassed by the GEV distribution. 

The special significance of the members of the extreme value family is that they describe the 
distributions of the extremes drawn from other distributions. That is, given a large number of 
samples drawn from an unknown distribution, the extremes of those samples tend to follow one of 
the three types of extreme value distributions, all incorporated in the GEV distribution. This is 
analogous to the important property of the normal distribution that the means of samples drawn 
from other distributions tend to follow the normal distribution. If a year of water levels is considered 
to be a sample, then the annual maximum, or the largest value in the sample, is an extreme and may 
tend to be distributed according to the statistics of extremes. 
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1.6.5.  PARETO DISTRIBUTION 
If for some unknown distribution the sample extremes are distributed according to the GEV 
distribution, then the set of sample values exceeding some high threshold tends to follow the Pareto 
distribution. Consequently, the GEV and Pareto distributions are closely related in a dual manner. 
The Pareto distribution is given by: 

  (Eq. 1-25) 

where u is the selected threshold. In the limit as c goes to zero, this reduces to the simple 
expression: 

  (Eq. 1-26) 

The Pareto distribution was developed to capture tails of observed data. For example, the surge 
elevations associated with a single Category 5 hurricane within a record where most observed 
surges are from tropical storms represents a tail that other distributions fail to model. 

1.6.6. POISSON DISTRIBUTION 
The Poisson distribution – a discrete distribution – is especially important in some applications, 
because it describes a process in which events occur at a known average rate but with no memory of 
the last occurrence. Examples include such processes as radioactive decay and, of interest here, 
might include the number of hurricanes occurring in a year at some site. If hurricanes occur at some 
long-term average rate (storms per year at the site), and if the occurrence of one storm is 
independent of any other occurrence, then the process may be well described by a Poisson 
distribution, which is given by: 

  (Eq. 1-27) 

where f is the probability of experiencing exactly k occurrences in an interval if λ is the number 
expected to occur in that interval, equal to the interval length multiplied by the average rate. The 
Poisson distribution is important in coastal applications of the Empirical Simulation Technique (EST) 
method for estimation of surge frequency. Guidance on the EST method is available in Guidance 
Document No. 77 Guidance for Flood Risk Analysis and Mapping: Coastal Statistical Simulation 
Methods. 
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2. Data Sample and Estimation of Parameters 
Several methods of estimating the best values of distribution parameters have been widely used. 
The most frequent are the methods of plotting positions, moments, and maximum likelihood. The 
methods discussed here are limited to point-site estimates. If statistically similar data are available 
from other sites, then it may be possible to improve the parameter estimate through the method of 
regional frequency analysis; see Hosking and Wallis (1997) for information on this method. Note that 
the word regional is used to describe the geophysical boundaries which do not necessarily following 
jurisdictional boundaries (e.g. FEMA Regions). 

2.1. Plotting Positions 
Widely used in older hydrologic applications, the method of plotting positions is based on first 
creating a visualization of the sample distribution and then performing a curve-fit between the 
chosen distribution and the sample. However, the sample consists only of the process variable; there 
are no associated quantiles, and so it is not clear how a plot of the sample distribution is to be 
constructed. The simplest approach is to rank-order the sample values from smallest to largest and 
to assume that the value of F appropriate to a value is equal to its fractional position in this ranked 
list, R/N, where R is the value’s rank from 1 to N. Then, the smallest observation is assigned plotting 
position 1/N, and the largest is assigned N/N=1. This is clearly unsatisfactory at the upper end 
because instances larger than the largest observed in the sample can occur. A more satisfactory and 
widely used plotting position expression is R/(N+1), which leaves some room above the largest 
observation for the occurrence of still larger elevations. A number of such plotting position formulas 
is encountered in practice, most involving the addition of constants to the numerator and 
denominator, (R+a)/(N+b), in an effort to produce improved estimates at the tails of specific 
distributions. 

Given a plot produced in this way, one might simply draw a smooth curve through the points and 
visually extend it to the recurrence intervals of interest. This constitutes an entirely empirical 
approach and is sometimes made easier by using a transformed scale for the cumulative frequency 
to construct the plot. The simplest such transformation is to plot the logarithm of the cumulative 
frequency, which flattens the curve and makes extrapolation easier. 

A second approach would be to choose a distribution type and adjust its free parameters so that a 
plot of the distribution matches the plot of the sample. This is commonly done by least-squares 
fitting. Fitting by eye is also possible if an appropriate probability paper is adopted, on which the 
transformed axis is not logarithmic but is transformed in such a way that the corresponding 
distribution plots as a straight line; however, this cannot be done for all distributions. 

These simple methods based on plotting positions, although widely used, are problematic. Two 
fundamental difficulties with the methods are seldom addressed. First, it is inherent in the methods 
that each of N quantile bins of the distribution is occupied by one and only one sample point, an 
extremely unlikely outcome. Second, when a least-squares fit is made for an analytical distribution 
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form, the error being minimized is taken as the difference between the sample value and the 
distribution value, whereas the true error is not in the value but in its frequency position. 

2.2. Methods of Moments: Conventional Moments 
An alternate method that does not rely upon visualization of the empirical distribution is the method 
of moments, of which there are several forms. The methodology is to equate the sample moments 
and the distribution moments and to solve the resulting set of equations for the distribution 
parameters. That is, the sample moments are simple functions of the sample points, as in Section 
1.2. Similarly, it may be possible to express the corresponding moments of an analytical distribution 
as functions of the several parameters of the distribution. If this can be done, then empirical 
estimates of those parameters can be obtained by equating the expressions to the sample values. 

2.3. Method of Moments: Probability-weighted Moments and Linear 
Moments 

Various versions of the method of moments overcome certain difficulties inherent in conventional 
methods of moments. For example, simple moments may not exist for a given distribution or may not 
exist for all values of the parameters. Higher sample moments may not be able to adopt the full 
range of possible values; for example, the sample kurtosis is constrained algebraically by the sample 
size.  

Alternate moment-based approaches have been developed, including probability-weighted moments 
and the newer method of linear moments, or L-moments. L-moments consist of simple linear 
combinations of the sample values that convey much the same information as true moments: 
location, scale, shape, and those of higher order. However, being linear combinations they have 
certain desirable properties that make them preferable to normal moments. The theory of L 
moments and their application to frequency analysis has been developed by Hosking; see, for 
example, Hosking and Wallis (1997). 

2.4. Maximum Likelihood Method 
A method based on an entirely different idea is the method of maximum likelihood. Maximum 
likelihood estimates are preferred because they commonly show less bias than other methods and 
are also conceptually appealing. However, they usually require iterative calculations to locate the 
optimum parameters, and a maximum likelihood estimate may not exist for all distributions or for all 
values of the parameters for a particular distribution. If the Mapping Partner considers alternate 
distributions or fitting methods, the likelihood of each fit can still be computed using the equations 
given above even if the fit was not determined using the maximum likelihood method. The 
distribution with the greatest likelihood of having described the sample could then be chosen. 

Consider an observation, x, obtained from the density distribution f(x). The probability of obtaining a 
value close to x, say within the small range dx around x, is f(x) dx, which is proportional to f(x). Then, 
the posterior probability of having obtained the entire sample of N points is assumed to be 
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proportional to the product of the individual probabilities estimated in this way, in consequence of 
Equation 1-5. This product is called the likelihood of the sample, given the assumed distribution: 

  (Eq. 2-1) 

It is more common to work with the logarithm of this equation, which is the log likelihood, LL, given 
by: 

  (Eq. 2-2) 

The primary use of the maximum likelihood method is to determine the distribution parameters that 
maximize the likelihood of the given sample. Because the logarithm is a monotonic function, 
maximizing the likelihood is equivalent to maximizing the log likelihood. Note that because f(x) is 
always less than one, all terms of the sum for LL are negative; consequently, larger log-likelihoods 
are associated with smaller numerical values. 

3. Extreme Value Analysis in a Flood Insurance Study 
(FIS) FEMA Flood Map Project 

For FEMA Flood Map Project extreme value analysis, the Mapping Partner may adopt the annual 
maxima of the data series (runup, stillwater elevation [SWEL], and other factors pertinent to coastal 
flooding) as the appropriate data sample. Also acceptable is the peak-over-threshold (POT) approach, 
fitting all observations that exceed an appropriately high threshold to the generalized Pareto 
distribution. Further discussion of the POT approach can be found in references such as Coles 
(2001). 

3.1. Atlantic, Gulf and Pacific Regions 
The normal approach for the Atlantic, Gulf, and Pacific regions has been to fit the GEV distribution to 
the data sample using the method of maximum likelihood. The Mapping Partner can also consider 
distributions other than the GEV for use with the annual series. However, the final distribution 
selected to estimate the base flood level should be based on the total estimated likelihood of the 
sample. In the event that methods involve different numbers of points (e.g., POT vs. annual maxima), 
the comparison might be made on the basis of average likelihood per sample point. 

3.2. Great Lakes Region 
The Great Lakes region has applied a method of deriving probability distributions for storm 
responses such as stillwater level or total water level (which includes wave runup) by sampling 
across the record of lake level observations. Melby et al. (2012) and Nadal-Caraballo et al. (2012) 
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describe application of the POT/Generalized Pareto Distribution (GPD) method to Great Lakes storm 
responses in detail. Extreme value theory suggests that the Partial Duration Series determined from 
the POT method should conform to the GPD not the GEV distribution. The goodness of fit is evaluated 
using both the CDF and a quantile-quantile (Q-Q) analysis of storm responses.  

A critical issue on the Great Lakes in developing a storm sampling approach is whether the events 
that end up being sampled as part of the composite storm set are representative of the entire record 
length, in terms of the distribution of mean lake levels. Thus selection of a storm set that accurately 
describes extremal water-level statistics everywhere within the lake must be done judiciously in order 
to minimize the storm sample size but accurately reflect the extremal water-level distributions 
everywhere along the lake shoreline.  Selection of an appropriate but smaller composite storm 
sample can be achieved through analysis and comparison of water-level probability distributions 
derived from various composite storm sets and a much larger full storm set.  The Mapping Partner 
should conduct a lake-specific analysis to determine the appropriate ratio of water level to wave 
events within the composite storm set to adequately represent the storm conditions that cause 
extreme flood hazard responses.  The following steps for storm selection are recommended: 

1. Determine the number of storms necessary for the composite storm set to adequately represent 
storm conditions and responses throughout the lake (See Nadal-Caraballo, 2012).   

2. Identify storms having the highest peak storm surge.  This would typically be done using NOAA 
water-level measurements from all available sites and over the full record length.  Rank storms 
based on magnitude of peak surge at each site. 

3. Identify storms having highest peak wave height.  This would typically be done using measured 
data, hindcasts, or surrogate wave calculations at spatially distributed sites. Rank storms based 
on magnitude of peak significant wave height. 

4. Select a sufficient number of the highest ranked surge and wave events at each location such 
that the total number of storms is greater than the previously determined composite storm set 
size. This sample will be further reduced through screening to achieve the target composite 
storm set size.  

5. Screen the storm set to eliminate duplicate storms.   If storms are duplicates, reject duplicate 
event (or events) with the lowest site-specific rank and include the next largest event at that site.  

6. Balance the number of storms selected for each site to maximize consistency in geographical 
and temporal coverage of selected storms; define an initial set with a sufficient number of 
storms as previously determined with an appropriate ratio of wave height dominated events and 
storm surge events.  For Lake Michigan, the appropriate ratio was determined to be roughly 50% 
based on maximum wave height, and 50% based on peak storm surge (See Nadal-Caraballo, 
2012).  

7. Ice screening may then be required if ice processes prevented flooding for the selected events.  
Data and basic process knowledge of ice cover influences on flooding are limited. Therefore, the 
ice screening must be done with caution.  Using regional ice maps nearest the time of each 
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storm, determine if shore fast ice has the potential to block waves.  If a storm in the initial set is 
a low-ranked surge event and waves are blocked due to ice coverage, consider it as a candidate 
to remove. 

4. 1% Annual-Chance Stillwater Levels 
Stillwater is the coastal water level in response to tidal and meteorological forcing in the absence of 
wave energy. Generally speaking, there are two distinct stillwater components: astronomic tide and 
storm surge (wind and pressure setup). Runoff from rainfall represents an additional meteorological 
contribution to stillwater in some sheltered water bodies.  More specifically, increased water levels 
near the mouth of tidal rivers may occur where fluvial flood waters interact with coastal tides and 
surge. Consequently, the rainfall runoff excess elevation may need to be considered as a third 
contributor to coastal stillwater elevation. 

4.1. Tide Statistics 
The astronomic tide is a deterministic process. Consequently, tide statistics can be generated 
directly from the local tidal constituents. One simple way to do this is to sample the predicted tide at 
random times throughout the tidal epoch. Alternatively, predictions can be used to obtain highs and 
lows from which corresponding statistics can be derived. It is noted that the maximum possible tide 
is given simply by the sum of the amplitudes of the tidal constituents. 

4.2. Surge Statistics 
The development of surge statistics can be approached in two general ways. First, if sufficient data 
are available from tide gage records, the non-tidal residual can be computed by subtracting the 
predicted astronomical tide from the observed water levels. Annual peak residuals or peaks over 
threshold values for the period of record can be fit to a GEV or other appropriate distribution using 
the method of maximum likelihood (or an alternate acceptable method). The Mapping Partner should 
keep in mind that the 1% level determined in this way will include the contributions of all mean water 
components affecting the gage, which may include both static wave setup (to the degree it exists at 
the gage site) and riverine rainfall runoff. 

The second way in which 1% surge levels are determined is through numerical modeling of surge 
elevation using 1-D or 2-D models combined with a statistical model relating the surge simulations to 
storm frequency and storm parameter distributions. Coastal Statistical Simulation Methods 
Guidance contains detailed guidance on the statistical models for use in determining surge statistics 
from model simulations. 

4.3. Combined Effects: Surge Plus Tide 
There are several ways to consider the effects of storm surge and tides to arrive at the 1% annual-
chance flood. First, if the surge and tide can be assumed to combine linearly (that is, neither is 
physically altered to an important degree by the presence of the other), then the simplest method is 
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to simply add them together. If a surge episode – such as a northeaster – is of relatively long 
duration compared with a tidal cycle, then high tide will be certain to occur at some time for which 
the surge is near its peak, and a simple sum of amplitudes may be sufficiently accurate. 

However, if the surge duration is short – such as may be typical for hurricanes in northern latitudes – 
this approximation is inadequate. The next simplest assumption, still assuming linear superposition, 
is based on the fact that the PDF for a sinusoid is largest at its extrema – tide is generally near a 
local high water, or near a local low water, and spends more time near those values than in between. 
It may be reasonable, then, to assume that the peak surge occurs with equal probability near a high 
tide or near a low tide, taking mean high and mean low as representative values. Each of the 
corresponding elevation sums would be assigned 50% of the rate associated with the particular 
storm (as if each storm were to occur twice, once at high tide and once at low tide), and the 
frequency analysis would proceed with these divided rates. 

A slightly more complex approach but still assuming physical independence, is based on the 
convolution method mentioned in Section 1.6. In this method, the PDFs for both tide and surge 
without tide are used. If the probability density of the tide level Z is denoted by pT(Z) and the 
probability density of the surge level is pS(Z), then the probability density of the sum of the two is 
given by: 

  (Eq. 4-1) 

where the indicated integrations are over all tide and surge levels.  

In some cases, however, the essential assumption that the tide and surge can be linearly added is 
not satisfied. In shallow water areas extending a large distance inland, the enhanced depth 
associated with tide (or surge) affects the propagation and transformation of the surge (or tide). That 
is, there is a nonlinear hydrodynamic interaction between the two. In such a case, more complex 
methods are required because the nonlinear interaction can only be accounted for by hydrodynamic 
considerations, not by any amount of purely statistical effort.  For more information related to 
applying tides in storm surge modeling, please see Guidance Document No. 67, Guidance for Flood 
Risk Analysis and Mapping: Coastal Water Levels and the statistical approaches are in the Coastal 
Statistical Simulation Methods Guidance. 

4.4. Analysis of Upland Area Data and ‘Borrowing’ 
The application of the extreme value analysis for ‘upland areas’ requires additional considerations. 
In upland areas, not all storms inundate the area, and therefore the number of surge datapoints 
used in the extreme value analysis can be fewer than in areas that are always inundated. The 
difference in the number of data points can significantly influence the distribution fitting results, 
leading to flood frequency CDFs that may be unreliable in the upland areas.  
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A borrowing method was developed and implemented in FEMA studies for New York / New Jersey 
and West Florida to alleviate the difficulty in processing data for upland areas. The concept is to 
identify a location near the upland areas that is inundated by all storms and ‘borrow’ the missing 
storm surge data from the nearby location. When the statistical analysis is applied to the augmented 
data set, the CDF resembles that of the nearby borrowing node but retains any differences between 
the borrow node and upland node due to surge attenuation or amplification. 

Figure 1 shows a theoretical application of the borrowing method. The upper panel shows a 
histogram of the borrow node and the upland node data, with the lower surge values missing from 
the upland node distribution due to the node’s elevation being higher than the borrow node 
elevation.  A CDF was developed by fitting a distribution to the borrow node data, the upland node 
data and the upland node data with borrowing.  The lower panel shows each CDF.  The upland node 
terminates at the land elevation which is approximately 0.8 ft in this example.  Without borrowing, 
the upland node CDF yields significantly higher elevations for a specified AEP than the borrow node 
and is unrealistic.  With the borrowing included, the upland node elevations are closer to the borrow 
node elevations and reflect a small attenuation of the surge as it propagates to the upland node. 

Locating an area from which to borrow surge elevations requires careful consideration. There is no 
specialized software for identifying a suitable location to borrow from, but methods based on the 
mesh connectivity and/or ESRI GIS procedures have been applied. It is important to review the data 
from both the upland location and borrow location to be sure that they are similar. When borrowing is 
implemented over long distances or across hydraulic barriers, the borrowed data may not be 
consistent with upland area data and yield unreliable results. Various metrics can be used to 
compare the data for the storms wetting both areas, including correlation coefficients, the slope of a 
regression, and ratios of the data.   
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Figure 1: Impact of Borrowing on the CDF.  The upper histogram illustrates the number of upland 
and borrowed storm surge data points, and the lower plot illustrates the CDF for the borrowed 

data point, the upland data point, and the upland data with borrowing applied. 

4.5. Merging Statistical Results for Tropical Cyclones and Extratropical 
Cyclones 

When flood frequency analyses has been completed for both tropical cyclones and extratropical 
cyclones, it is necessary to combine the results from both analyses and develop a single flood 
frequency curve. Statistical independence of the separate results is assumed, and the equation for 
combining the curves for a specified flood elevation is: 

Pc =1-(1- Pj )(1- Pe ) 
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where Pj is the probability of exceeding the specified elevation from the tropical cyclone analysis, Pe 
is the probability of exceeding the specified elevation from the extratropical cyclone analysis, and Pc 
is the probability of exceeding the specified elevation in the combined analysis. Since the tropical 
cyclone and extratropical cyclone are annual exceedance values, the resulting combined probability 
is also annual.  

The results from both tropical and extratropical cyclone analyses typically yield a CDF in digital or 
analytical form or both. To implement the above equation, it is convenient to represent both CDFs 
using a common set of discrete flood elevations that span the full range of elevations.  When this is 
completed, the above equation can be implemented directly for each discrete flood elevation to yield 
the combined CDF in digital form. An example of the result of this procedure for a single location is 
shown in Figure 2.    
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Figure 2: Example of Combining Tropical and Extratropical CDFs 

4.6. Combined Effects: Surge Plus Riverine Runoff 
The simplest assumption is to assume that the extreme levels from coastal and riverine processes 
are physically independent and are not concurrent. This assumption is acceptable if storms that 
produce extreme rainfall and runoff are not the same as the storms that produce the greatest storm 
surge. Furthermore, if a single storm produces both large surge and large runoff, the runoff may be 
significantly delayed by the time required for overland flow, causing the runoff elevation to peak after 
the storm surge. When there are particular storms and locations for which these assumptions are 
not true, care should be taken to evaluate if they strongly influence the final statistics.  
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The simplified procedure, assuming independence and non-concurrence, is straightforward, 
beginning with development of curves or tables for rate of occurrence vs. flood level for each flood 
source (riverine and coastal). Rate of occurrence can be assumed equal to the reciprocal of the 
recurrence interval, so the 100-year flood has a rate of occurrence of 0.01 times per year. This is 
numerically equal to what is more loosely called the flood elevation probability. Then one proceeds 
as follows at each point of interest, P, within the mixed surge/runoff tidal reach. 

1. Select a flood level Z within the elevation range of interest at point P. 

2. Determine the rates of occurrence RP,R (Z) and RP,S (Z) of rainfall runoff and storm surge 
elevations exceeding Z at site P (number of events per year). 

3. Find the total rate RP,T (Z) = RP,R (Z) + RP,S (Z) at which Z is exceeded at point P, irrespective of 
flood source. 

4. Repeat steps (1) through (3) for the necessary range of flood elevations. 

5. Plot the combined rates RP,T (Z) vs Z and find ZP,100 by interpolation at RP,T   0.01. 

6. Repeat steps (1) through (5) for a range of sites covering the length of the mixed tidal reach. 

7. Construct the 1% annual-chance composite profile passing through the several combined 1% 
annual-chance elevation points and blending smoothly into the pure-riverine and pure-surge 1% 
annual-chance profiles at the ends of the mixed reach. 

The procedure is shown schematically in Figure 3 in which the combined curve has been constructed 
by addition of the rates at elevations of 6, 8, 10, and 12 feet. The entire procedure can be 
implemented in a simple hand calculator program, with the input at point P being the 10% , 2%, 1%, 
and 0.2% annual-chance levels for both runoff and surge, as obtained from standard FIS report 
tables. 

 

Figure 3: Schematic Illustration of Riverine and Surge Rate Combination 
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5. Additional Resources 
The Mapping Partner may consult a large amount of literature on probability, statistics, and 
statistical hydrology. The following is a partial list of resources that might also be consulted for 
additional guidance: 

Probability Theory:   

An Introduction to Probability Theory and Its Applications, Third Edition, William Feller, 1968 (two 
volumes). This is a classic reference for probability theory, with a large number of examples drawn 
from science and engineering. 

The Art of Probability for Scientists and Engineers, Richard Hamming, 1991. Less comprehensive 
than Feller but provides clear insight into the conceptual basis of probability theory. 

Statistical Distributions: 

Statistics of Extremes, E.J. Gumbel, 1958. A cornerstone reference for the theory of extreme value 
distributions. 

Extreme Value Distributions, Theory and Applications, Samuel Kotz and Saralees Nadarajah, 2000. A 
more modern and exhaustive exposition. 

Statistical Distributions, Second Edition, Merran Evans, Nicholas Hastings, and Brian Peacock, 
1993. A useful compendium of distributions but lacking discussion of applications; a formulary. 

An Introduction to Statistical Modeling of Extreme Values, Stuart Coles, 2001. A practical exposition 
of the art of modeling extremes, including numerous examples. Provides a good discussion of POT 
methods that can be consulted to supplement the annual maxima method. 

Statistical Hydrology: 

Applied Hydrology, Ven Te Chow, David Maidment, and Larry Hays, 1988. One of several standard 
texts with excellent chapters on hydrologic statistics and frequency analysis. 

Probability and Statistics in Hydrology, Vujica Yevjevich, 1972. A specialized text with a lot of 
pertinent information for hydrologic applications. 

General: 

Numerical Recipes, Second Edition, William Press, Saul Teukolsky, William Vetterling, and Brian 
Flannery, 1992. A valuable and wide ranging survey of numerical methods and the ideas behind 
them. Excellent discussions of random numbers, the statistical description of data, and modeling of 
data, among much else. Includes well-crafted program subroutines; the book is available in separate 
editions, presenting routines in FORTRAN and C/C++. 
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Software:  

Several open-source and commercial software packages provide tools to assist in the sorts of 
analyses discussed in this section. In particular, the S, S-PLUS, and R programming languages 
(commercial and open-source versions of a high-level statistical programming language) include 
comprehensive statistical tools. The R language package is available for free from the web site 
http://www.r-project.org/; several books discussing the use of R and S are available. Other well-
known software packages include Mathematica, Matlab, SPSS, and SYSTAT. 
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