Flood Protection for Backup and Emergency Power Fuel Systems

Purpose and Intended Audience

The Federal Emergency Management Agency (FEMA) deployed a Mitigation Assessment Team (MAT) to examine damage in Linn County and Black Hawk County, Iowa after the Midwest floods of 2016. The area experienced a precedent setting flood of record in 2008 and used the following years to implement flood mitigation measures to protect against a similar event. The 2016 floods were once again very substantial and well above 100-year flood level in many locations across Iowa, but the depth and extents of flooding were not of the same magnitude as the 2008 floods. Fortunately, the mitigation measures implemented after the 2008 floods performed successfully in the impacted areas to protect buildings and infrastructure providing for rapid recovery and allowing residents to return to their normal routines much more quickly than in 2008.

This Recovery Advisory provides building owners, operators, facility managers, and designers with information on mitigation actions that can help protect power systems, and fuel supplies from flood damage. Protecting these systems from the impact of flooding enabling basic functionality to be restored at facilities shortly after floodwaters recede.

Mitigation actions can be taken to reduce the potential for flood damage to fuel systems. These actions are recommended for facilities damaged during floods as well as facilities that were not damaged but have fuel tanks and fuel supply equipment that is vulnerable to future flood damage. Figure 1 shows fuel systems that have been mitigated to protect against flood damage in communities along the Cedar River.

Key Issues:

1. All components of a fuel system (the main fuel tank, all pumps, power supplies, and all controls) should be protected from floodwater. Protecting system components is especially important to ensure that basic functionality can be restored shortly after floodwaters recede.
important for fuel tanks that supply emergency power systems.

2. FEMA’s Assessment Team observed many back-up power systems and fuels tanks that had been mitigated after the 2008 floods by raising them to higher elevations. These measures generally performed very well providing the protection for the back-up power sources and fuel storage systems. Because these measures were in place, these emergency systems were available to support the facility’s needs immediately after the flood.

3. Current codes that reference American Society of Civil Engineers (ASCE) standard ASCE 24, Flood Resistant Design and Construction, require equipment and utilities to either be elevated to a specified height, the Design Flood Elevation (DFE), or protected by dry floodproofing when placed in buildings located in areas with identified flood risk. However, fuel systems in older buildings constructed before ASCE 24 provisions were adopted or buildings whose flood risk has increased since construction may be vulnerable, particularly when they have floors that extend below grade.

This Recovery Advisory Addresses:
- Codes and standards governing fuel systems
- Retrofit of fuel systems in existing buildings
- Preparing for a flood event in unmitigated buildings
- Links and useful resources

Codes and Standards Governing Fuel Systems

Several different codes and standards regulate the installation of new fuel tanks and fuel systems. The following section discusses some of the more pertinent regulations that apply to new construction and may apply to the repair or replacement of fuel systems in existing buildings. Local building departments should be contacted to identify all applicable requirements. In existing buildings, codes and standards that contain flood provisions should be met when fuel systems are repaired or replaced, even when not required, in order to protect these fuel systems from future flood events. Figure 2 shows a relocated and elevated generator and fuel tank that mitigates the system from flood damage above the flood of record.

Terminology

Base Flood Elevation (BFE): Elevation of flooding, including wave height, having a 1 percent chance of being equaled or exceeded in any given year (also known as “base flood” and “100-year flood”). The BFE is the basis of insurance and floodplain management requirements and is shown on FIRMs.

Design Flood Elevation (DFE): Regulatory flood elevation adopted by a local community. If a community regulates to minimum NFIP requirements, the DFE is identical to the BFE. Typically, the DFE is the BFE plus any freeboard adopted by the community.

Design Flood: ASCE 24 defines the design flood as the “greater of the following two flood events: (1) the base flood, affecting those areas identified as special flood hazard areas on the community’s FIRM; or (2) the flood corresponding to the area designated as a flood hazard area on a community’s flood hazard map or otherwise legally designated.”

![Figure 2: This generator and fuel tank, serving the Linn County Sheriff’s office in Cedar Rapids, Iowa, was raised approximately 10 feet above the 500-year flood elevation and above the flood of record in response to the 2008 floods.](image-url)
International Building Code

Section 1612.4 of the International Building Code (IBC) requires that buildings located in flood hazard areas be designed in accordance with ASCE 24. Section 7.0 of ASCE 24 contains general requirements for utilities and Section 7.4 contains specific requirements for mechanical and HVAC systems.

ASCE 24 requires that utilities and attendant equipment be elevated or protected from flooding. The amount of elevation or protection required depends on the type of facility (e.g., critical facilities, such as fire or police stations, and hospitals) and its flood risk identified on FIRMs (i.e., Coastal A Zone, Zone V, etc.). Utilities and attendant equipment (fuel pumps, control systems, motors, etc.) are required to be elevated 1 to 2 feet above the Base Flood Elevation (BFE), above the DFE, or above the 500-year flood elevation, whichever is higher. The elevation requirements are listed in Table 7-1 of ASCE 24. The current edition of ASCE 24 (ASCE 24-14), requires that buildings identified as Category IV facilities (i.e., critical and essential facilities) will be required to be elevated to the BFE + 2 ft., to the DFE, or to the 500-year flood elevation, whichever is greater.

Additional requirements for tanks are also provided in Appendix G of the IBC, *Flood Resistant Construction*, in section G701. This section of the code presents the following requirements:

Section G701.1: Specifies that underground tanks must be designed and constructed to prevent flotation, collapse, or lateral movement from hydrostatic loads (including the effects of buoyancy) during design flood conditions.

Section G701.2: Specifies that above ground tanks must be located above the DFE specified in ASCE 24, or designed, constructed, and anchored to prevent flotation, collapse, or lateral movement from hydrostatic and hydrodynamic loads.

Section G701.3: Specifies that all tank inlets and vents extend above the DFE specified in ASCE 24 or be fitted with covers designed to prevent the inflow of flood water and the outflow of tank contents. The inlets and vents must also be properly anchored to prevent lateral movement from hydrostatic and hydrodynamic loads, including the effects of buoyancy.

International Mechanical Code

The International Mechanical Code, in Section 1305.2.1, specifies that all fuel oil pipe, equipment, and appliances located in flood hazard areas must be either located above the flood elevation required by ASCE 24 or be capable of resisting all flood forces associated with the design flood.

International Fire Code

The International Fire Code (IFC) specifies that the design, fabrication, and construction of fuel tanks must comply with National Fire Protection Association (NFPA) 30, Flammable and Combustible Liquids Code. The IFC also includes requirements limiting the size and location of tanks to protect against the risk of fire. If the local building codes have requirements that conflict with the IFC, the building official is responsible for making the determination on which code governs.

Section 603.3.2.5. Requires that tanks in basements be located not more than two stories below grade.

Section 5704.2.7.8. Specifies that uplift protection be provided in accordance with NFPA 30 Sections 22.14 or 23.14 in locations subject to flooding. Section 22.14 applies to above ground tanks; Section 23.14 applies to underground tanks.

Requirements for Buildings with Substantial Damage or Undergoing Substantial Improvement

If a building is determined by the local building official or floodplain administrator to have been substantially damaged or will be substantially improved, it must be brought into compliance with the flood resistant construction requirements for new construction, including requirements for fuel tanks.

Substantial Damage: Defined by the NFIP as “damage of any origin sustained by a structure whereby the cost of restoring the structure to its before-damaged condition would equal or exceed 50 percent of the market value of the structure before the damage occurred.”

Substantial Improvement: Defined by the NFIP as “any reconstruction, rehabilitation, addition, or other improvement of a structure, the cost of which equals or exceeds 50 percent of the market value of the structure (or smaller percentage if established by the community) before the ‘start of construction’ of the improvement. This term includes structures that have incurred ‘Substantial Damage,’ regardless of the actual repair work performed.”

Refer to FEMA P-758, *Substantial Improvement/ Substantial Damage Desk Reference* (2010) for more information. Homeowners should consult a local building official to determine whether their local codes and regulations have more restrictive definitions.
Code of Federal Regulation (CFR)

The CFR has several sections that speak to fuel storage tanks in either above ground (AST) or underground (UST) storage tank systems. 18 CFR Part 1304.405 regulates fuel storage tanks and handling facilities. 40 CFR Part 112 is directed at petroleum oil spill prevention, control and countermeasure and covers ASTs, while 40 CFR Part 280 addresses USTs.

Retrofit of Fuel Systems in Existing Buildings

Existing buildings may lack the hazard-resistant design features required by current codes. In addition, the flood hazard at the building location may have changed since construction – the building location may be more vulnerable to flooding or may be subject to a higher base flood elevation. As a result, existing buildings may be more vulnerable to floods. Common flood-related failures of fuel systems in existing buildings include:

- Inadequately anchored fuel tanks can become displaced from their foundations when inundated by floodwater. Once displaced, the tanks or the fill, vent, and fuel lines that connect to them, are often damaged, allowing the discharge of fuel that can contaminate the building and surrounding area.

- Partially filled fuel tanks can implode when submerged by floodwaters and cause fuel to be released. Figure 3 shows a fuel tank that replaced the UST that was damaged in the 2008 flood. This AST is located above the 500 year flood elevation.

- Fuel tanks with vents that do not extend above the design flood depth or fuel tanks with non-watertight fill lines can either become contaminated with floodwater when submerged, or allow fuel to be released when displaced by floodwaters.

- Fuel pumps – used to move fuel oil from main storage tanks to tanks or equipment on elevated floors – that are not designed for submersible operation can fail when inundated by floodwaters. When fuel pumps fail, the equipment they serve can only operate for a limited time before the equipment exhausts the fuel stored on the upper floors.

To ensure fuel systems remain operational during and after a flood event, all components and equipment should either be elevated above the BFE or DFE as defined by ASCE 24, whichever is higher, or protected from inundation to that height. Because codes may require placing portions of the fuel system at risk of flooding, elevating all components of a fuel system may not be possible, so protecting system components from inundation may be necessary. The following mitigation measures describe floodproofing techniques for the major elements of a fuel oil system.

Fuel Tanks

For situations where fuel oil tanks cannot be elevated, it may be feasible to provide flood protection by replacing the tank with one that can resist floods and flood forces or by placing the tank in a dry floodproofed area. Figure 4 shows the AST tank placards that assure the tank was designed and tested to the applicable standards.

NFPA 30 Tank Requirements

For aboveground tanks, NFPA 30 requires that at least 30 percent of a vertical tank’s volume extend above the “maximum flood stage” (the phrase “maximum flood stage” is not defined in that code). It requires that anchorage be provided to resist buoyancy when more than 70 percent of a horizontal tank’s capacity will be submerged at the “established flood stage” (the phrase “established flood stage” is also not defined). The amount of anchorage only needs to resist uplift for a full tank.

For underground tanks, NFPA 30 requires that tanks be anchored to resist buoyancy when empty and fully submerged.

Figure 3: Above ground fuel tank located outside adjacent to a facility in Linn County, Iowa.
Tank replacement. Replacing the tank with one that can resist flood forces provides flood protection by ensuring that the fuel tank can resist the hydrostatic pressures and buoyancy (uplift) forces for the design flood event. This may include ensuring that the tank’s application is within the boundary conditions stated in testing performed on it, standards it complies with, or manufacturer’s guidance provided.

- **Hydrostatic pressures** can cause tanks to implode. For example, a tank that extends 10 feet below the flood level needs to resist pressures as high as 640 pounds per square foot. Even tanks listed for underground applications may not be designed to resist hydrostatic pressures if they are placed at greater depths than those specified by the manufacturer.

- **Buoyant forces** on a tank may cause it to separate from its foundation or, in the case of a buried tank, may force it out of the ground. For example, an empty 25,000-gallon fuel oil tank will be subject to over 200,000 pounds of buoyant force when submerged. Using this example, if concrete ballast were used to anchor the tank and the ballast was inundated with floodwaters, nearly 2,400 cubic feet of concrete (approximately 14 feet square by 14 feet high) would be needed to counteract the buoyant force. The weight of material stored in a tank offsets the buoyant force and reduces uplift. Because the level of fuel in a tank can vary, however, the weight of the material within the tank should not be relied upon to resist buoyant forces. When possible, tanks should be anchored sufficiently to prevent flotation when the tank is completely empty. If the required amount of anchorage is not possible, anchorage should be sufficient to prevent flotation of the tank when it contains the least amount of fuel oil that it would normally store. Anchorage points should be distributed across the tank to prevent unequal uplift forces on the tank.

Dry floodproof. Providing protection by dry floodproofing involves placing the tank in a water-tight space. Tanks that cannot resist hydrostatic pressures or cannot be anchored to resist buoyancy may be placed in reinforced rooms designed to resist hydrostatic pressures and anchored to prevent flotation. The rooms, often called vaults, are typically constructed of reinforced concrete because its mass helps counteract buoyancy, and with proper reinforcement, concrete can resist hydrostatic pressures. Steel vaults, which are typically lighter than concrete, can also be used but generally require additional mass or anchorage to resist buoyant forces. Because rooms containing tanks require access and ventilation to prevent explosive concentration of fumes from collecting, they should be equipped with specially designed, watertight submarine doors and ventilation equipment that vents above the design flood level. Also, although dry floodproofing entails making a building or an area within a building “substantially impermeable,” meaning that no more than 4 inches of water depth will accumulate during a 24-hour period, some water may accumulate so an internal drainage collection system is required. Sump pumps supported by emergency power sources are recommended. Due to space limitations in many buildings, dry floodproofing may require constructing vaults around existing tanks. Refer to FEMA P-543, Design Guide for Improving Critical Facility Safety from Flooding and High Winds (2007) and NFIP Technical Bulletin 3, Non-Residential Floodproofing – Requirements and Certification (1993).

Fuel Pumps

Fuel pumps and their controls should also be protected from floodwaters. There are two general types of pumps: submersible pumps and external pumps. Submersible pumps, which are installed within the fuel tank, are typically used in underground tanks and sometimes in aboveground tanks within buildings. External fuel pumps are generally not resistant to floodwaters and should only be used when located in dry floodproofed areas. The pump controls and power for both types of pumps should be elevated, dry floodproofed, or designed for submerged operation.
Fill Lines and Tank Vents

All fill lines, pipes, and connections should include appropriate components (i.e., valves) to prevent floodwaters from contaminating fuel tanks and to prevent fuels from escaping during a flood. Also, tank vents should either extend above flood levels or be provided with check valves that prevent floodwaters from entering the vents when submerged. Because failure of a check valve can result in contaminated fuel, extending vent lines above the DFE is preferred. These recommendations are consistent with NFPA 30 requirements.

Preparing for a Flood Event in Unmitigated Buildings

In the days and hours before a large storm, facility owners can make temporary adjustments to limit damage to fuel tanks in their buildings. These actions are especially critical for instances where no long-term solutions have been implemented to protect tanks and associated equipment. Although these temporary adjustments may reduce the potential for damage to the fuel system and reduce clean-up costs, planning and executing more robust measures as described in this advisory are recommended as they will provide more complete flood protection.

Before the Flood

- **Shut off all fuel-burning equipment.** An example of such equipment is a boiler. If emergency generators are supplied from the main fuel tank or if the amount of fuel stored in day tanks is not sufficient to provide power long enough for code-required life safety protection, the building will need to be evacuated.

- **Fill the fuel tank to minimize buoyant forces and mitigate against structural failure.** If possible, the tank should be completely filled with fuel oil. While completely filling a tank increases the amount of fuel that could be discharged if the tank fails, the potential for tank failure is greatly reduced by doing so.

 As a stop-gap measure, water can be used to fill a tank. NFPA 30 describes this approach as water loading. Since freshwater is approximately 12 percent denser than fuel oil, filling a fuel tank with water will increase stresses in the tank and, in extreme cases, could lead to tank failure. The risk of tank failure from water loading is greatest if the tank is empty before it is filled with water; topping off a nearly full fuel tank with water only slightly increases stresses. Water loading should only be done after it can be confirmed that the tank can withstand water loading.

- **Provide shut-off valves at the tank for all lines the tank supplies.** Install the valves as close to the tank as possible. Close the valves if flooding is anticipated.

After the Flood

- **Inspect equipment.** Inspect all portions of the fuel system for damages. Repair or replace all flood damaged equipment.

- **Clean tank.** If water was used to fill the tank, remove water from the tank and properly dispose of the water or fuel oil/water mix. Flush lines and restart the equipment.

Resources and Useful Links

Referenced Codes and Standards

ASCE and ICC

FEMA prepared “Highlights of ASCE 24” online at: https://www.fema.gov/media-library/assets/documents/14983.

The FEMA Region VII Web page provides useful information and links for disaster survivors and recovering communities including available FEMA assistance and recovery initiatives. Please refer to https://www.fema.gov/region-vii-ia-ks-mo-ne.

The ICC offers a free viewer that shows the codes at: https://codes.iccsafe.org/public/.

NFPA

Other Resources for Protecting Fuel Supplies

For more information, see the FEMA Building Science Frequently Asked Questions Web site at http://www.fema.gov/frequently-asked-questions.

If you have any additional questions on FEMA Building Science Publications, contact the helpline at FEMA-Buildingsciencehelp@fema.dhs.gov or 866-927-2104.

To order publications, contact the FEMA Distribution Center:

Call: 1-800-480-2520
(Monday–Friday, 8 a.m.–5 p.m., EST)

Fax: 240-699-0525

E-mail: FEMA-Publications-Warehouse@fema.dhs.gov

Additional FEMA documents can be found in the FEMA Library at https://www.fema.gov/resource-document-library.

Please scan this QR code to visit the FEMA Building Science Web page.