Risk Management Series

Design Guide

for Improving School Safety in Earthquakes, Floods, and High Winds

January 2004
BACKGROUND

Our society places great importance on the education system and its schools, and has a tremendous investment in current and future schools. Currently, approximately 53 million kindergarten to grade 12 (K-12) students attend over 92,000 public schools and it is estimated that the public student population will have reached 54.3 million by 2004; to this figure must be added the substantial population of private school students. The sizes of these school facilities range from one-room rural schoolhouses to citywide and mega schools that house 5,000 or more students. The school is both a place of learning and an important community resource and center.

This publication is concerned with the protection of schools and their occupants against natural hazards. These hazards must be recognized as part of the natural environment and as extensions of phenomena that designers have always considered. Natural hazards can be reduced to extreme phenomena related to the four elements (i.e., earth, water, wind, and fire). Earthquakes are highly accelerated and exaggerated forms of motion that are always occurring in the earth and floods occur when rivers overflow or the wind stirs up the ocean along coastal waters. High winds and tornadoes are an extreme form of the beneficial breezes that freshen the air. Fire has been a threat to buildings for centuries and was one of the first threats to be the subject of regulation. Because of its familiarity and the extensive provisions for fire protection in building codes, it is not a subject for detailed consideration in this publication. However, some considerations relating to the fire protection of schools are presented in Chapter 3, Section 3.4.

Architects and engineers deal with these natural elements all the time; building codes always have provisions for protection against fire and wind and the local building code (if adopted by the com-

munity) will also dictate whether earthquakes or floods must be considered as design parameters. However, the major decisions in reducing flood damage may be in site selection and layout, not in building design.

This manual introduces two core concepts: multihazard design and performance-based design. Neither is revolutionary, but represents an evolution in design thinking that is in tune with the increasing complexity of today’s buildings and also takes advantage of developments and innovations in building technology:

- The concept of multihazard design is that designers need to understand the fundamental characteristics of hazards and how they interact, so that design for protection becomes integrated with all the other design demands.

- Performance-based design suggests that, rather than relying on the building code for protection against hazards, a more systematic investigation is conducted to ensure that the specific concerns of building owners and occupants are addressed. Building codes focus on providing life safety and property protection is secondary; performance-based design provides additional levels of protection that cover property damage and functional interruption within a financially feasible context.

This publication stresses that identification of hazards and their frequency and careful consideration of design against hazards must be integrated with all other design issues, and be present from the inception of the site selection and building design process. Although the basic issues to be considered in planning a school construction program are more or less common to all school districts, the processes used differ greatly, because each school district has its own approach. Districts vary in size, from a rural district responsible for only a few elementary schools, to a city district or statewide system overseeing a complex program of all school types and sizes, including new design and construction, renovations, and additions. A district may have had a
long-term program of school construction and be familiar with programming, financing, hiring designers, bidding procedures, contract administration, and commissioning a new building, but another district may not have constructed a new school for decades, and have no staff members familiar with the process.

SCOPE

This publication is intended to provide design guidance for the protection of school buildings and their occupants against natural hazards, and concentrates on grade schools (K-12); the focus is on the design of new schools, but the repair, renovation, and extension of existing schools is also addressed. It is intended as the first of a series of publications in which hospitals, higher education buildings, multifamily dwellings, commercial buildings, and light industrial facilities will be addressed.

The focus of this publication is on the safety of school buildings and their occupants, and the economic losses and social disruption caused by building damage and destruction. The volume covers three main natural hazards that have the potential to result in unacceptable risk and loss: earthquakes, floods, and high winds. A companion volume, *Primer to Design Safe School Projects in Case of Terrorist Attacks* (FEMA 428), covers the manmade hazards of physical, chemical, biological, and radiological attacks.

The intended audience for this manual includes design professionals and school officials involved in the technical and financial decisions of school construction, repair, and renovations. A short brochure based on this manual will also be available for school district and school board decision-makers.

ORGANIZATION AND CONTENT OF THE MANUAL

Chapters 1-3 present issues and background information that are common to all hazards. Chapters 4-6 cover the development of specific risk management measures for each of the three main natural hazards.
Chapter 1 opens with a brief outline of the past, present, and future of school design. Past school design is important because many of these older, and even historic, schools are still in use and their occupants must be protected.

Chapter 2 introduces the concepts of performance-based design in order to obtain required performance from a new or retrofitted facility. Chapter 3 introduces the concept of multihazard design and presents a general description and comparison of the hazards, including charts that show where design against each hazard interacts with design for other hazards. This latter section includes fire and building security in its considerations.

Chapters 4, 5, and 6 outline the steps necessary in the creation of design to address risk management concerns for protection against earthquakes, floods, and high winds, respectively. Information is presented on the nature of each hazard and its effect on vulnerability and consequences of building exposure. Procedures for risk assessment are outlined, followed by descriptions of current methods of reducing the effects of each hazard. These vary, depending on the hazard under consideration. A guide to the determination of acceptable risk and realistic performance objectives is followed by a discussion to establish the effectiveness of current codes to achieve acceptable performance.

Appendix A contains a list of acronyms that appear in this manual.

The information presented in this publication provides a comprehensive survey of the methods and processes necessary to create a safe school, but is necessarily limited. It is not expected that the reader will be able to use the information directly to develop plans and specifications. The information is intended to help designers and facility decision-makers, who may be unfamiliar with the concepts involved, to understand fundamental approaches to risk mitigation planning and design. By so doing, they can move on to the implementation phase of detailed planning, involving consultants, procurement personnel, and project administration, from a firm basis of understanding.
ACKNOWLEDGMENTS

Principal Authors:

Christopher Arnold, Building Systems Development, Inc.
Jack Lyons, School Facilities Consultant
James Munger, James G. Munger and Associates
Rebecca C. Quinn, Consultant
Thomas L. Smith, TLSmith Consulting

Contributors:

Milagros Kennett, FEMA, Project Officer, Risk Management Series Publications
Eric Letvin, Greenhorne & O’Mara, Inc., Consultant
Project Manager

John Plisich, FEMA
Mike Robinson, FEMA
Joe Agron, American School and University
Connie Deshpande, Department of Education
Randy Haslam, Jordan, Utah, School District
Danny Kilcollins, Florida Department of Community Affairs
Fred Krimgold, World Institute for Disaster Risk Management
Tom Kube, Council of Educational Facility Planners International
Bill Modzeleski, Department of Education
Jack Paddon, Williams and Paddon Architects and Planners
Bebe Pinter, Harris County Department of Education
John Sullivan, Portland Cement Association
Jon Traw, Traw Associates
French Wetmore, French and Associates
Deb Daly, Greenhorne & O’Mara, Inc.
Wanda Rizer, Greenhorne & O’Mara, Inc.
Julie Liptak, Greenhorne & O’Mara, Inc.
Bob Pendley, Greenhorne & O’Mara, Inc.

This primer will be revised periodically and EP&R welcomes comments and feedback to improve future editions. Please send comments and feedback via e-mail to riskmanagementseriespubs@dhs.gov
TABLE OF CONTENTS

FOREWORD AND ACKNOWLEDGMENTS ... i
Background .. i
Scope .. iii
Organization and Content of the Manual .. iii
Acknowledgments ... iv

CHAPTER 1 – AN OVERVIEW OF THE SCHOOL DESIGN AND CONSTRUCTION PROCESS
1.1 Introduction .. 1-1
1.2 School Construction: The National Picture ... 1-1
1.3 Past School Design .. 1-2
1.4 Present School Design ... 1-9
1.5 Future School Design .. 1-10
1.6 The Design and Construction Process .. 1-12
1.7 School Design and Construction .. 1-16
 1.7.1 Structure ... 1-16
 1.7.2 Nonstructural Systems and Components 1-17

CHAPTER 2 – DESIGNING FOR PERFORMANCE ... 2-1
2.1 Introduction .. 2-1
2.2 Definitions of Performance-based Design ... 2-1
2.3 The Prescriptive Approach to Codes ... 2-2
2.4 The Performance-based Approach... 2-3
2.5 Hazard, Risk, and Probability ... 2-6
2.6 Acceptable Risk and Performance Levels .. 2-9
2.7 Correlation Between Performance Groups and Tolerated Levels of Damage ... 2-10
2.8 Roles of Designers, Code Officials, and the School District ... 2-13
2.9 Changes to a Building Designed for Performance .. 2-14
2.10 Current Performance-based Codes .. 2-15
2.11 The O&M Manual and the Occupants’ Handbook ... 2-17
2.12 Performance-based Design for Natural Hazards .. 2-19
 2.12.1 Performance-based Seismic Design .. 2-23
 2.12.2 Performance-based Flood Design ... 2-30
 2.12.3 Performance-based High Wind and Tornado Design ... 2-32

CHAPTER 3 – MULTIHAZARD DESIGN ... 3-1
3.1 Introduction ... 3-1
3.2 The Hazards Compared .. 3-1
 3.2.1 Location: Where are They? ... 3-2
 3.2.2 Warning: How Much Time is There? .. 3-6
 3.2.3 Frequency: How Likely are They to Occur? .. 3-6
 3.2.4 Risk: How Dangerous are They? ... 3-8
 3.2.5 Cost: How Much Damage Will They Cause? ... 3-10
3.3 Comparative Losses .. 3-11
3.4 Fire and Life Safety ... 3-16
3.5 Hazard Protection Methods Comparisons: Reinforcements and Conflicts 3-19
CHAPTER 4 – MAKING SCHOOLS SAFE AGAINST EARTHQUAKES 4-1
4.1 Introduction ... 4-1
4.2 The Nature and Probability of Earthquakes 4-1
 4.2.1 Earthquakes and Other Geologic Hazards 4-1
 4.2.2 Earthquakes: A National Problem 4-3
 4.2.3 Determination of Local Earthquake Hazards 4-11
4.3 Vulnerability: What Earthquakes Can Do to Schools 4-15
 4.3.1 Vulnerability of Schools .. 4-15
 4.3.2 Earthquake Damage to Schools .. 4-20
 4.3.3 Significant School Damage in Recent U.S. Earthquakes 4-27
 4.3.4 Consequences: Casualties, Financial Loss, and Operational Disruption 4-32
4.4 Scope, Effectiveness, and Limitations of Codes 4-33
 4.4.1 The Background of Seismic Codes 4-34
 4.4.2 Seismic Codes and Schools .. 4-36
 4.4.3 The Effectiveness of Seismic Codes 4-37
4.5 Evaluating Existing Schools for Seismic Risk and Specific Risk Reduction Methods 4-38
 4.5.1 Rapid Visual Screening .. 4-38
 4.5.2 Systems Checklist for School Seismic Safety Evaluation 4-41
 4.5.3 The NEHRP Handbook for the Seismic Evaluation of Existing Buildings (FEMA 178/310) 4-47
4.6 Earthquake Risk Reduction Methods .. 4-48
4.6.1 Risk Reduction for New Schools 4-49
4.6.2 Risk Reduction for Existing Schools 4-61
4.7 The School as a Post-earthquake Shelter 4-69
4.8 References and Sources of Additional Information 4-71
4.9 Glossary of Earthquake Terms 4-72

CHAPTER 5 – MAKING SCHOOLS SAFE AGAINST FLOODS 5-1
5.1 Introduction ... 5-1
5.2 Nature and Probability of Floods 5-1
 5.2.1 Characteristics of Flooding 5-3
 5.2.2 Probability of Occurrence 5-7
 5.2.3 Hazard Identification and Flood Data 5-8
 5.2.4 Design Flood Elevation 5-13
5.3 Scope, Effectiveness, and Limitations
 of Building Codes and Floodplain Management Requirements .. 5-14
 5.3.1 Overview of the NFIP 5-14
 5.3.2 Summary of the NFIP Minimum Requirements 5-16
 5.3.3 Model Building Codes and Standards 5-18
5.4 Risk Reduction: Avoiding Flood Hazards 5-19
 5.4.1 Benefits/Costs: Determining Acceptable Risk 5-20
 5.4.2 Identifying Flood Hazards at School Sites 5-22
5.5 Risk Reduction: Flood-resistant New Schools 5-26
 5.5.1 Site Modifications .. 5-26
 5.5.2 Elevation Considerations 5-28
5.5.3 Floodproofing Considerations 5-31
5.5.4 Accessory Structures .. 5-33
5.5.5 Utility Installations .. 5-33
5.5.6 Potable Water and Wastewater Systems 5-34
5.5.7 Storage Tank Installations 5-34
5.5.8 Access Roads .. 5-35
5.6 Vulnerability: What Floods Can Do to
Existing Schools .. 5-36
 5.6.1 Site Damage ... 5-36
 5.6.2 Structural Damage .. 5-37
 5.6.3 Saturation Damage .. 5-40
 5.6.4 Utility System Damage ... 5-42
 5.6.5 Contents Damage ... 5-45
5.7 Risk Reduction: Protecting Existing Schools 5-46
 5.7.1 Site Modifications .. 5-48
 5.7.2 Additions ... 5-51
 5.7.3 Repairs, Renovations, and Upgrades 5-52
 5.7.4 Retrofit Dry Floodproofing 5-53
 5.7.5 Utility Installations .. 5-53
 5.7.6 Potable Water and Wastewater Systems 5-56
 5.7.7 Other Damage Reduction Measures 5-57
 5.7.8 Emergency Measures ... 5-57
5.8 The School as an Emergency Shelter 5-59
5.9 References and Sources of
Additional Information .. 5-60
5.10 Glossary of Flood Protection Terms 5-63
CHAPTER 6 – MAKING SCHOOLS SAFE AGAINST WINDS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>6-1</td>
</tr>
<tr>
<td>6.2</td>
<td>The Nature and Probability of High Winds</td>
<td>6-2</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Wind/Building Interactions</td>
<td>6-6</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Probability of Occurrence</td>
<td>6-15</td>
</tr>
<tr>
<td>6.3</td>
<td>Vulnerability: What Wind Can Do to Schools</td>
<td>6-17</td>
</tr>
<tr>
<td>6.4</td>
<td>Scope, Effectiveness, and Limitations of Building Codes</td>
<td>6-23</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Scope</td>
<td>6-24</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Effectiveness</td>
<td>6-25</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Limitations</td>
<td>6-25</td>
</tr>
<tr>
<td>6.5</td>
<td>Priorities, Costs, and Benefits: New Schools</td>
<td>6-27</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Priorities</td>
<td>6-27</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Cost, Budgeting, and Benefits</td>
<td>6-28</td>
</tr>
<tr>
<td>6.6</td>
<td>Priorities, Costs, and Benefits: Existing Schools</td>
<td>6-30</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Priorities</td>
<td>6-31</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Cost, Budgeting, and Benefits</td>
<td>6-32</td>
</tr>
<tr>
<td>6.7</td>
<td>Evaluating Schools for Risk from High Winds</td>
<td>6-33</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Tornadoes</td>
<td>6-35</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Portable Classrooms</td>
<td>6-36</td>
</tr>
<tr>
<td>6.8</td>
<td>Risk Reduction Design Methods</td>
<td>6-36</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Siting</td>
<td>6-36</td>
</tr>
<tr>
<td>6.8.2</td>
<td>School Design</td>
<td>6-37</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Peer Review</td>
<td>6-42</td>
</tr>
</tbody>
</table>
6.8.4 Construction Contract Administration 6-42
6.8.5 Post-occupancy Inspections, Periodic
 Maintenance, Repair, and Replacement 6-43
6.9 Structural Systems .. 6-44
6.10 Exterior Doors ... 6-48
 6.10.1 Loads and Resistance 6-48
 6.10.2 Durability .. 6-48
 6.10.3 Exit Door Hardware 6-49
 6.10.4 Water Infiltration 6-49
 6.10.5 Weatherstripping 6-50
6.11 Non-load Bearing Walls, Wall Coverings, Soffits,
 and Underside of Elevated Floors 6-53
 6.11.1 Loads and Resistance 6-53
 6.11.2 Durability .. 6-55
 6.11.3 Wall Coverings 6-55
 6.11.4 Underside of Elevated Floors 6-59
6.12 Roof Systems .. 6-59
6.13 Windows and Skylights 6-68
 6.13.1 Loads and Resistance 6-68
 6.13.2 Durability .. 6-69
 6.13.3 Water Infiltration 6-69
6.14 Exterior-mounted Mechanical, Electrical,
 and Communications Equipment 6-71
 6.14.1 Loads and Attachment 6-72
 6.14.2 Equipment Strength 6-74
 6.14.3 Durability .. 6-76
6.15 Schools Located in Hurricane-prone Regions 6-79
 6.15.1 Design Loads ... 6-80
 6.15.2 Structural Systems 6-80
 6.15.3 Exterior Doors .. 6-80
 6.15.4 Non-load Bearing Walls, Wall Coverings,
 and Soffits .. 6-81
 6.15.5 Roof Systems ... 6-81
 6.15.6 Windows and Skylights 6-84
 6.15.7 Emergency Power .. 6-86
 6.15.8 Construction Contract Administration 6-86
 6.15.9 Periodic Inspections, Maintenance,
 and Repair .. 6-86

6.16 Design for Tornado Shelters 6-88

6.17 Remedial Work on Existing Schools 6-91

6.18 References and Sources of Additional
 Information ... 6-94

6.19 Glossary of Wind Terms 6-96

APPENDIX A – ACRONYMS

TABLES

CHAPTER 2
Table 2-1: ICC Performance Code Criteria for
 Seismic, Flood, and Wind Events 2-8
Table 2-2: Performance Groups and Tolerated
 Levels of Damage 2-11
Table 2-3: Seismic Expectations Checklist 2-26
Table 2-4: Damage Control and Building
 Performance Levels 2-28
CHAPTER 3
Table 3-1 HAZUS-MH Earthquake, Hurricane, and Flood Losses .. 3-13
Table 3-2 HAZUS-MH Estimated Losses by Percentage of School Building and Contents Inventory .. 3-15
Table 3-3 Multihazard Design System Interactions 3-20

CHAPTER 4
Table 4-1: Known Historic (1568-1989) Earthquakes in 47 U.S. States .. 4-5
Table 4-2: School Seismic Safety Evaluation Checklist 4-42
Table 4-3: Roofing Maintenance and Repair/ Re-roofing ... 4-67

CHAPTER 5
Table 5-1: Flood Hazards at School Sites 5-22
Table 5-2: Characteristics of Existing School Buildings ... 5-47

CHAPTER 6
Table 6-1: Summation of Risk Reduction Design Methods ... 6-76
Table 6-2: Summation of Design of Schools Used for Hurricane Shelters and/or for Emergency Response After a Storm 6-87
Table 6-3: Summation of Design for Tornado Shelters ... 6-90
Table 6-4: Summation of Remedial Work on Existing Schools ... 6-93
FIGURES

CHAPTER 1

Figure 1-1 One-room schoolhouse, Christiana, DE, 1923 1-3

Figure 1-2 High school, New York City, 1929 1-3

Figure 1-3 Elementary school, Washington, DC, 1930 1-4

Figure 1-4 Typical finger plan school, 1940s.
In California, the access hallways would
be open to the air. The cross-section diagram shows the simple and effective
daylighting and ventilation.. 1-5

Figure 1-5 Compact courtyard plan, 1960s...................................... 1-5

Figure 1-6 Fountain Valley High School, Huntington
Beach, CA, 1964 (330 students) 1-6

Figure 1-7 Open enclosure plan teaching area,
with movable screens and storage,
Rhode Island, 1970 ... 1-7

Figure 1-8 Typical modular classrooms, 1980s,
still in use ... 1-7

Figure 1-9 Elementary school, Fairfield, PA, 1980s 1-8

Figure 1-10 Private high school, Palo Alto, CA,
located in a remodeled industrial building.
Note the exterior cross bracing; the
building required extensive retrofitting
to meet school seismic requirements.............. 1-8

Figure 1-11 West High School, Aurora, IL, 2000 1-10

Figure 1-12 Elementary school, Oxnard, CA, 2000 1-11

Figure 1-13 The design and construction process
flow chart .. 1-15
CHAPTER 2
Figure 2-1 Performance-based design approach
flow chart ... 2-12

CHAPTER 3
Figure 3-1 Peak accelerations (%g) with 10 percent
probability of exceedance in 50 years.
Color code shows %g for areas between
contour lines. These values are used for
seismic design. ... 3-4
Figure 3-2 Presidential Disaster Declarations for
floods, January 1965 to November 2000.
The incidence of declarations is shown
by counties. ... 3-4
Figure 3-3 Presidential Disaster Declarations for
hurricanes, January 1965 to November
2000. The incidence of declarations is
shown by counties. .. 3-5
Figure 3-4 Presidential Disaster Declarations for
tornadoes, January 1965 to November
2000. The incidence of declarations is
shown by counties. .. 3-5

CHAPTER 4
Figure 4-1 School, Anchorage, AK, 1964, severely
damaged by earthquake-induced landslide........ 4-3
Figure 4-2 Map of the continental United States
that shows counties and probabilities
of earthquakes of varying magnitude 4-4
Figure 4-3 Map showing older seismic zones in
part of the United States, from the 1997
Uniform Building Code. The area in the
box corresponds to the area in Figure 4-4.......... 4-12
Figure 4-4 Portion of an earthquake ground motion map used in the International Building Code 2003 that shows contours that identify regions of similar spectral response accelerations to be used for seismic design. Spectral response acceleration includes both ground acceleration and effect of building period................................. 4-13

Figure 4-5 These maps compare the seismicity of the Southeast U.S. and California. The larger acceleration values for the latter are symbolized by the darker colors. 4-14

Figure 4-6 These maps show a comparison for the Southeast U.S. between the acceleration values for a 1-second (long) and a 0.2-second (short) building period............................ 4-14

Figure 4-7 Ductility ... 4-15

Figure 4-8 Collapse of portion of nonductile concrete frame school structure, Helena, MT, 1935 .. 4-16

Figure 4-9 Modular classrooms pushed off their foundations; note stairs at left, Northridge, CA, 1994................................. 4-17

Figure 4-10 Fallen filing cabinets and shelves, Northridge, CA, 1994.. 4-17

Figure 4-11 Fallen shop equipment, Coalinga, CA, 1983.. 4-18

Figure 4-12 Fallen light fixtures, library, Coalinga, CA, 1983.. 4-19

Figure 4-13 Fallen heavy lath and plaster ceiling across auditorium seating, Northridge, CA, 1994... 4-19
Figure 4-14 Damage to the John Muir School, Long Beach, CA, 1933 ... 4-20

Figure 4-15 Damage to shop building, Compton Junior High School, Long Beach, CA, 1933 .. 4-21

Figure 4-16 A dangerous passage way between two buildings, Polytechnic High School, Long Beach, CA, 1933 4-23

Figure 4-17 A heavy corridor lintel ready to fall, Emerson School, Bakersfield, Kern County, CA, 1952 4-23

Figure 4-18 Overturned shop equipment and failed light fixtures, Kern County, CA, 1952 4-23

Figure 4-19 Destroyed exit corridor, Bakersfield, Kern County, CA, 1952 ... 4-24

Figure 4-20 Typical school damage, Helena, MT, 1935 4-25

Figure 4-21 The student body president was killed here by falling brickwork, Seattle, WA, 1949 .. 4-25

Figure 4-22 Another dangerous entry collapse, Seattle, WA, 1949 .. 4-26

Figure 4-23 Collapse of roof over stage, Seattle, WA, 1949 .. 4-26

Figure 4-24 Damage to library shelving, Seattle, WA, 1949 .. 4-27

Figure 4-25 Severe structural damage to the West Anchorage High School, Anchorage, AK, 1964 .. 4-28

Figure 4-26 Brittle failure at nonductile concrete column, West Anchorage High School, 1964 4-28
Figure 4-27 Ceiling damage, Northridge, CA, 1994 4-30
Figure 4-28 Damage to ceramic kiln, including fractured gas line, Northridge, CA, 1994 4-31
Figure 4-29 Line of suspended light fixtures fallen on teacher's station, Northridge, CA, 1994......................... 4-31
Figure 4-30 Example of rapid visual screening information form .. 4-40
Figure 4-31 The structural and nonstructural components ... 4-59
Figure 4-32 Suspended ceiling and light fixture bracing and support .. 4-60
Figure 4-33 Bracing tall shelving to the structure 4-60
Figure 4-34 Connection of nonstructural masonry wall to structure to permit independent movement .. 4-60
Figure 4-35 Bracing for existing unreinforced masonry parapet wall .. 4-61
Figure 4-36 Design strategies for seismic retrofit of existing buildings ... 4-63
Figure 4-37 Retrofit of B.F. Day Elementary School, Seattle, WA... 4-65
Figure 4-38 Sections and plans of the B.F. Day School: existing at bottom, retrofitted at top 4-65

CHAPTER 5
Figure 5-1 The riverine floodplain... 5-3
Figure 5-2 The coastal floodplain ... 5-4
Figure 5-3 Riverine flood hazard zones................................. 5-12
Figure 5-4 Definition sketch – flood elevations 5-13
Figure 5-5	A high school in Bloomsburg, PA, elevated on fill	5-29
Figure 5-6	Elementary school in Jefferson County, OH, elevated on columns	5-30
Figure 5-7	Hydrostatic force diagram	5-39
Figure 5-8	Fractured concrete basement floor, Gurnee, IL, 1986	5-39
Figure 5-9	Damaged walls and cabinets, Peoria County, IL	5-42
Figure 5-10	Basement damage at a grade school in Gurnee, IL, 1986	5-42
Figure 5-11	Schematic of typical earthen levee and permanent floodwall	5-49
Figure 5-12	Masonry floodwall with multiple engineered closures at Oak Grove Lutheran School, Fargo, ND	5-50
Figure 5-13	Elevated electric transformer at an elementary school in Verret, LA	5-54
Figure 5-14	Elevated utilities behind an elementary school in Wrightsville Beach, NC	5-55

CHAPTER 6

Figure 6-1	Hurricane-prone regions and special wind regions	6-2
Figure 6-2	Tornado occurrence in the United States based on historical data	6-5
Figure 6-3	Design wind speeds for community tornado shelters	6-6
Figure 6-4	Schematic of wind-induced pressures on a building	6-7
Figure 6-5 Schematic of internal pressure condition when the dominant opening is in the windward wall .. 6-10

Figure 6-6 Schematic of internal pressure condition when the dominant opening is in the leeward wall.. 6-11

Figure 6-7 Relative roof uplift pressures as a function of roof geometry, roof slope, and location on roof, and relative positive and negative wall pressures as a function of location along the wall.. 6-13

Figure 6-8 The aggregate ballast on this single-ply membrane roof was blown away in the vicinity of the corners of the wall projections at the window bays. The irregular wall surface created turbulence, which led to wind speed-up and loss of aggregate in the turbulent flow areas. 6-14

Figure 6-9 The metal roof is over a stair tower. The irregularity created by the stair tower caused turbulence that resulted in wind speed-up.. 6-14

Figure 6-10 This high school in northern Illinois was heavily damaged by a strong tornado 6-17

Figure 6-11 A portion of the built-up membrane at this school lifted and peeled after the metal edge flashing lifted. The cast-in-place concrete deck kept a lot of water from entering the school. Virtually all of the loose aggregate blew off the roof and broke many windows in nearby houses. This school was being used as a hurricane shelter at the time of the blow-off. 6-18
Figure 6-12 The outer panes of these windows were broken by aggregate from a built-up roof. The inner panes had several impact craters. In several of the adjacent windows, both the outer and inner panes were broken. The aggregate had a flight path in excess of 245 feet. The wind speed was less than the design wind speed... 6-18

Figure 6-13 The metal wall covering on this school was applied to plywood over metal studs. The metal stud wall collapsed in this area, but, in other areas, it was blown completely away. The CMU wall behind the studs did not appear to be damaged. This school was on the periphery of a violent tornado. 6-19

Figure 6-14 The unreinforced CMU wall at this school collapsed during a storm that had wind speeds that were less than the design wind speed ... 6-19

Figure 6-15 The roof and all the walls of a wing of this elementary school were blown away by a violent tornado.. 6-20

Figure 6-16 This portable classroom was blown up against the main school building during a storm that had wind speeds that were less than the design wind speed. Depending upon the type of exterior wall, an impacting portable classroom may or may not cause wall collapse. .. 6-20

Figure 6-17 This newly-constructed gymnasium had a structural metal roof panel (3-inch trapezoidal ribs at 24 inches on center) applied over metal purlins. The panels detached from their concealed clips. A massive quantity of water entered the school and buckled the wood gym floor................................. 6-21
Figure 6-18 A portion of the roof structure blew off of this school, and a portion of it collapsed into classrooms. Because of extensive water damage, a school such as this can be out of operation for a considerable period of time........ 6-23

Figure 6-19 The HVAC unit in the parking lot in the photo’s lower right corner blew off the curb during a storm that had wind speeds that were less than the design wind speed. A substantial amount of water entered the building before a temporary covering could be placed over the opening. .. 6-30

Figure 6-20 This figure illustrates load path continuity of the structural system. Members are sized to accommodate the design loads and connections are designed to transfer uplift loads applied to the roof, and the positive and negative loads applied to the exterior bearing walls down to the foundation and into the ground. ... 6-40

Figure 6-21 View of a steel joist after the metal decking blew away .. 6-46

Figure 6-22 View of another weld near the weld shown in Figure 6-21 .. 6-46

Figure 6-23 Portions of this waffled precast concrete roof deck were blown off. Bolts had been installed to provide uplift resistance; however, anchor plates and nuts had not been installed. .. 6-47

Figure 6-24 Several of the precast twin-Tee roof and wall panels collapsed. The connection between the roof and wall panels provided very little uplift load resistance. .. 6-47
Figure 6-25 Door sill pan flashing with end dams, rear leg, and turned-down front leg 6-50
Figure 6-26 Drip at door head and drip with hook at head..... 6-50
Figure 6-27 Door shoe with drip and vinyl seal 6-51
Figure 6-28 Neoprene door bottom sweep 6-51
Figure 6-29 Automatic door bottom 6-51
Figure 6-30 Interlocking threshold with drain pan 6-52
Figure 6-31 Threshold with stop and seal 6-52
Figure 6-32 Adjustable jamb/head weatherstripping............. 6-53
Figure 6-33 This suspended metal soffit was not designed for upward-acting wind pressure............... 6-54
Figure 6-34 The interior walls of this classroom wing were constructed of unreinforced CMU 6-55
Figure 6-35 Failure of brick veneer 6-56
Figure 6-36 EIFS blow-off near a wall corner 6-57
Figure 6-37 The metal edge flashing on this modified bitumen membrane roof was installed underneath the membrane, rather than on top of it and then stripped in. In this location, the edge flashing is unable to clamp the membrane down.................. 6-61
Figure 6-38 This metal edge flashing had a continuous cleat, but the flashing disengaged from the cleat and the vertical flange lifted up. However, the horizontal flange of the flashing did not lift. .. 6-62
Figure 6-39 This coping was attached with $\frac{1}{4}$-inch diameter stainless steel concrete spikes at 12 inches on center. When the fastener is placed in wood, #14 stainless steel screws with stainless steel washers are recommended. 6-63
Figure 6-40 Continuous bar near the edge of edge flashing or coping. If the edge flashing or coping is blown off, the bar may prevent a catastrophic progressive failure.......................... 6-63

Figure 6-41 On this school, the fastener rows of the mechanically attached single-ply membrane ran parallel to the top flange of the steel deck. Hence, essentially all of the row’s uplift load was transmitted to only two deck fasteners at each joist .. 6-66

Figure 6-42 View of the underside of a steel deck. The mechanically attached single-ply membrane fastener rows ran parallel to the top flange of the steel deck. .. 6-66

Figure 6-43 The parapet on this school was sheathed with metal wall panels. The panels were fastened at 2 feet on center along their bottom edge, which was inadequate to resist the wind load.. 6-67

Figure 6-44 This air terminal (“lightning rod”) was dislodged and whipped around during a windstorm. The single-ply membrane was punctured by the sharp tip in several locations.. 6-68

Figure 6-45 Two complete windows, including their frames, blew out. The frames were attached with an inadequate number of fasteners, which were somewhat corroded............................. 6-69

Figure 6-46 View of a typical window sill pan flashing with end dams and rear legs. Windows that do not have nailing flanges should typically be installed over a pan flashing................................. 6-70

Figure 6-47 Protection of sealant with a stop. The stop retards weathering of the sealant and reduces the wind-driven rain demand on the sealant. 6-71
Figure 6-48 The rooftop mechanical equipment on this school was blown over. The displaced equipment can puncture the roof membrane and, as in this case, rain can enter the school through the large opening that is no longer protected by the equipment. 6-72

Figure 6-49 This HVAC equipment had two supplemental securement straps. Both straps are still on this unit, but some of the other units on the roof had broken straps... 6-73

Figure 6-50 The communications mast on this school was pulled out of the deck, resulting in a progressive peeling failure of the fully adhered single-ply membrane. There are several exhaust fans in the background that were blown off their curbs, but were retained on the roof by the parapet................................. 6-74

Figure 6-51 To overcome blow-off of the fan cowling, which is a common problem, this cowling was attached to the curb with cables. The curb needs to be adequately attached to carry the wind load exerted on the fan. 6-75

Figure 6-52 These wire-tied tiles were installed over a concrete deck. They were attached with stainless steel clips at the perimeter rows and all of the tiles had tail hooks. Adhesive was also used between the tail and head of the tiles. ... 6-83

Figure 6-53 At this school, a missile struck the fully adhered low-sloped roof and slid into the steep-sloped reinforced mechanically attached single-ply membrane. A large area of the mechanically attached membrane was blown away due to progressive membrane tearing... 6-84
Figure 6-54 This fully adhered single-ply membrane was struck by a large number of missiles during a hurricane .. 6-84

Figure 6-55 View of a metal shutter designed to provide missile protection for windows 6-85

Figure 6-56 A violent tornado passed by this high school and showered the roof with missiles ... 6-88

Figure 6-57 View of an elementary school corridor after passage of a violent tornado. Although corridors sometimes offer protection, they can be death traps as illustrated in this figure (fortunately the school was not occupied when it was struck). ... 6-90

Figure 6-58 This school had a cementitious wood-fiber deck (commonly referred to by the proprietary name “Tectum”) .. 6-92