NEHRP Recommended Seismic Provisions Cover
NEHRP (National Earthquake Hazards Reduction Program)
Recommended
Seismic Provisions
for New Buildings and Other Structures (FEMA P750)
2009 Edition
Prepared for the Federal Emergency Management Agency of the
U.S. Department of Homeland Security
By the Building Seismic Safety Council of the
National Institute of Building Sciences
BUILDING SEISMIC SAFETY COUNCIL
A council of the National Institute of Building Sciences
Washington, D.C.
2009
NOTICE: Any opinions, findings, conclusions, or recommendations expressed in this publication do not
necessarily reflect the views of the Federal Emergency Management Agency. Additionally, neither FEMA nor
any of its employees make any warranty, expressed or implied, nor assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, product, or process included in this publication.
The Building Seismic Safety Council (BSSC) was established in 1979
under the auspices of the National Institute of Building Sciences as a forumbased
mechanism for dealing with the complex regulatory, technical, social,
and economic issues involved in developing and promulgating building
earthquake hazard mitigation regulatory provisions that are national in
scope. By bringing together in the BSSC all of the needed expertise and all
relevant public and private interests, it was believed that issues related to the
seismic safety of the built environment could be resolved and jurisdictional
problems overcome through authoritative guidance and assistance backed by
a broad consensus.
The BSSC is an independent, voluntary membership body representing a
wide variety of building community interests. Its fundamental purpose is to
enhance public safety by providing a national forum that fosters improved
seismic safety provisions for use by the building community in the planning,
design, construction, regulation, and utilization of buildings.
This report was prepared under Contract HSFEHQ04C0465 between the
Federal Emergency Management Agency and the National Institute of
Building Sciences.
For further information on Building Seismic Safety Council activities and
products, see the Council’s website (www.bssconline.org) or contact the
Building Seismic Safety Council, National Institute of Building Sciences,
1090 Vermont, Avenue, N.W., Suite 700, Washington, D.C. 20005; phone
2022897800; fax 2022891092; email bssc@nibs.org.
Copies of this report on CD Rom may be obtained from the FEMA
Publication Distribution Facility at 18004802520. Limited paper copies
also will be available. The report can also be downloaded in pdf form from
the BSSC website at www.bssconline.org .
The National Institute of Building Sciences and its Building Seismic Safety
Council caution users of this Provisions document to be alert to patent and
copyright concerns especially when applying prescriptive requirements.
FOREWORD
One of the goals of the Federal Emergency Management Agency (FEMA) and the National Earthquake Hazards
Reduction Program (NEHRP) is to encourage design and building practices that address the earthquake hazard
and minimize the resulting risk of damage and injury. Publication of the 2009 edition of the NEHRP
Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P750) reaffirms FEMA’s
ongoing support of efforts to achieve this goal. First published in 1985, the 2009 edition of the Provisions marks
the seventh in a series of updates to the document and several complementary publications. FEMA is proud to
have sponsored this project conducted by the Building Seismic Safety Council (BSSC) of National Institute of
Building Sciences (NIBS) and continues to encourage the widespread dissemination and voluntary use of this
stateofart consensus resource document.
In contrast to the earlier editions of the Provisions which resulted from threeyear update projects, the 2009
edition is the first resulting from a fiveyear update effort that allowed the BSSC’s Provisions Update Committee
(PUC) to make some major changes in both the substance and the format of the Provisions document. The most
significant change involves the adoption by reference of the national consensus design loads standard, ASCE/SEI
705, Minimum Design Loads for Buildings and Other Structures, including the related consensus standards
referenced therein and Supplements 1 and 2. Part 1 of this document includes consensusapproved modifications
of the seismic requirements in the standard. Among these modifications is the adoption of new seismic design
maps based on seismic hazard maps issued in 2008 by the U.S. Geological Survey (USGS) along with some
designrelated adjustments. Another major change has been made to the accompanying Commentary, previously
issued as a separate volume but now included as Part 2 of the 2009 Provisions. The content of the Commentary
has been completely rewritten to provide users with an uptodate, user friendly explanation of how to design
using the Provisions and the reference standard. Part 3 of the 2009 Provisions consists of a series of resource
papers intended to clarify aspects of the Provisions, stimulate consideration of and feedback from the design
community on new seismic design concepts and procedures, and/or encourage the development and adoption of
new requirements in ASCE/SEI 7 and the standards referenced therein. Thus, the 2009 Provisions serves as a
national resource intended for use by both design professionals and the standards and codesdevelopment
community in fostering development of a built environment designed and constructed to protect building
occupants from loss of life and serious injury and to reduce the total losses from future earthquakes.
FEMA wishes to express its deepest gratitude for the significant efforts of the over 200 volunteer experts as well
as the BSSC Board of Direction, member organizations, consultants, and staff who made the 2009 NEHRP
Recommended Seismic Provisions possible. Americans unfortunate enough to experience the earthquakes that
will inevitably occur in the future will owe much, perhaps even their lives, to the contributions and dedication of
these individuals. Without the expertise and efforts of these men and women, this document and all it represents
with respect to earthquake risk mitigation would not have been possible.
Federal Emergency Management Agency
Page intentionally left blank.
PREFACE and
ACKNOWLEDGEMENTS
Since its creation in 1979, the National Earthquake Hazard Reduction Program (NEHRP) has provided a
framework for efforts to reduce the risk from earthquakes. The Building Seismic Safety Council (BSSC) is
extremely proud to have been selected by the Federal Emergency Management Agency (FEMA) to play a role
under NEHRP in improving the seismic resistance of the built environment. Further, the BSSC is pleased to mark
the occasion of its thirtieth anniversary with delivery to FEMA of the consensusapproved 2009 NEHRP
Recommended Seismic Provisions for New Buildings and Other Structures, the eighth edition of this landmark
publication. The Provisions has evolved over the past three decades into a widely available, trusted, stateoftheart
seismic design resource document with requirements that have been adapted for use in the nation’s model
building codes and standards.
Work on the 2009 Provisions began in September 2004 when the National Institute of Building Sciences, the
BSSC’s parent organization, entered into a contract with FEMA for initiation of the 2009 Provisions update
effort. Based on input from the BSSC member organization representatives and alternate representatives and the
BSSC Board of Direction, individuals to serve on the 2009 Provisions Update Committee (PUC) and its Technical
Subcommittees (TSs) and ad hoc Issue Teams were identified. The PUC and its TSs and ITs were fully
established in 2005 as was a Seismic Design Procedures Review Group (SDPRG) charged to assess ongoing work
by the U.S. Geological Survey (USGS) to update its seismic hazard maps. It is the collective efforts and expertise
of the national experts serving on these groups that is reflected in the 2009 Provisions.
In recognition of the fact that the codes and standards arena now operates differently than it did in the past, the
format of 2009 Provisions has been changed to focus more on exploration of new technologies and procedures
and less on format and editorial changes. To this end, the national consensus design loads standard, Minimum
Design Loads for Building and Other Structures, ASCE/SEI 705 (including Supplements 1 and 2), has been
adopted as the primary reference standard of the Provisions. Areas of the standard in need of modification also
were identified and proposals to do so were prepared and voted on by the membership. These modifications
appear in Part 1 of this document and, together with ASCE/SEI 705 and the references cited therein, constitute
the 2009 Provisions. (A summary of the results of the member organization ballots and comment resolution
process is available from the BSSC upon written request and will be posted on the BSSC website at
www.bssconline.org.)
A major effort also was made to rewrite the commentary to the Provisions. Until now, the commentary was
published as a separate volume accompanying the Provisions and tended to explain the development of the
existing requirements. For 2009, the commentary appears in Part 2 of this Provisions document and explains how
to apply the Provisions requirements as articulated in ASCE/SEI 705 and the references cited therein. (Note that
the Part 1 modifications to the standard are accompanied by their own commentary text.)
Part 3 of this volume is a collection of resource papers. Included are substantive proposals on topics that require
further consideration by and feedback from the seismic design community before they become Provisions
requirements as well as papers that clarify some aspects of the Provisions requirements. In addition, three of the
appendices from the 2003 Provisions are still considered to include information of interest and they also are
included in Part 3.
As in the past, the 2009 Provisions would not have been possible without the expertise, dedication, and countless
hours of effort of the more than 200 dedicated volunteers who participated in the update process. The American
people benefit immeasurably from their commitment to improving the seismicresistance of the nation’s
buildings. A list of all those who participated in the 2009 Provisions update project is included as the Appendix
of this volume, but a few individuals and groups deserve special recognition. As Chairman of the BSSC Board of
Direction, it is my pleasure to express heartfelt appreciation to:
• The members of the BSSC Provisions Update Committee, especially to PUC Chair Ronald Hamburger;
• The members of the Seismic Design Procedures Review Group, especially Chair Charles Kircher and Nicolas
Luco of the USGS;
• FEMA Project Officers Michael Mahoney and Mai Tong and FEMA Subject Matter Expert Robert Hanson;
• Michael Valley who worked with the update committees to draft the Part 2 commentary to the 2009
Provisions;
• The representatives of the BSSC member organizations who devoted considerable time and attention to the
four individual rounds of balloting that were required to produce the 2009 Provisions document; and
• The BSSC staff who work tirelessly behind the scenes to support all the update groups and who bring the
finished product forward for acceptance.
Finally, I wish to thank the members of the BSSC Board of Direction who recognize the importance of this effort
and provided sage advice throughout the update. We are all proud of the 2009 NEHRP Recommended Seismic
Provisions and it is my pleasure to introduce them.
David Bonneville
Chairman, BSSC Board of Direction
CONTENTS
Foreword ....................................................................................................................................................................iii
Preface and Acknowledgements ................................................................................................................................ v
2009 NEHRP RECOMMENDED SEISMIC PROVISIONS FOR NEW BUILDINGS AND OTHER
STRUCTURES: PART 1, PROVISIONS ................................................................................................................... 1
1.1 Intent ............................................................................................................................................................... .3
1.2 Reference Document ........................................................................................................................................ 3
Commentary to Sections 1.1 and 1.2 ........................................................................................................ 3
1.3 Modifications to ASCE/SEI 705 ..................................................................................................................... 5
Chapter 11, Seismic Design Criteria
Section 11.1.2, Scope ............................................................................................................................... 5
Section 11.2, Definitions .......................................................................................................................... 5
Section 11.3, Notation .............................................................................................................................. 5
Section 11.4, Seismic Ground Motion .................................................................................................... 6
Section 11.8, Geologic Hazards and Geotechnical Investigation ............................................................. 8
Commentary to Section 11.1.2 ............................................................................................................... 10
Commentary to Section 11.2 .................................................................................................................. 10
Commentary to Section 11.4.3 and 11.4.4 ............................................................................................. 10
Commentary to Section 11.8.3 ............................................................................................................... 19
Chapter 12, Seismic Design Requirements for Building Structures
Table 12.21, Design Coefficients and Factors for Basic SeismicForceResisting Systems ................. 21
Table 12.61, Permitted Analytical Procedures ...................................................................................... 25
Section 12.8.7, Pdelta Limit .................................................................................................................. 26
Section 12.11.2.2.1, Transfer of Anchorage Forces into Diaphragm ..................................................... 26
Section 12.11.2.2.3, Wood Diaphragms ................................................................................................. 27
Section 12.14.7.5.1, Transfer of Anchorage Forces into Diaphragm ..................................................... 27
Section 12.14.7.5.2, Wood Diaphragms ................................................................................................. 27
Section 12.14.8.1, Seismic Base Shear .................................................................................................. 27
Commentary to Section 12.6 .................................................................................................................. 28
Commentary to Section 12.8.7 ............................................................................................................... 28
Additional References for Chapter 12 Commentary .............................................................................. 28
Chapter 13, Seismic Design Requirements for Nonstructural Elements
Section 13.6.5.5, Additional Requirements [for Component Supports] ................................................. 29
Section 13.6.8.2, Fire Protection Sprinkler Systems in Seismic Design Category C ............................. 29
Section 13.6.8.3, Fire Protection Sprinkler Systems in Seismic Design Categories D
through F ........................................................................................................................................ 29
Commentary to Section 13.6.5.5 ............................................................................................................ 29
Commentary to Section 13.6.8.2 ............................................................................................................ 29
Chapter 14, Material Specific Seismic Design and Detailing Requirements
Section 14.1, Steel ................................................................................................................................. 31
Section 14.2.2, Modifications to ACI 318 .............................................................................................. 33
Section 14.2.3, Additional Detailing Requirements for Concrete Piles
and Section 14.2.3.1, Concrete Pile Requirements for Seismic Design Category C ....................... 34
Section 14.2.3.2, Concrete Pile Requirements for Seismic Design Categories D through F .................. 35
Section 14.2.4, Acceptance Criteria for Special Precast Structural Walls Based on
Validation Testing .......................................................................................................................... 36
Section 14.4.5, Modifications to Chapter 1 of ACE 530/ASCE 5/TMS 402.......................................... 40
Commentary to Section 14.1.1 ............................................................................................................... 40
Commentary to Section 14.1.4 ............................................................................................................... 40
Commentary to Section 14.2 .................................................................................................................. 41
Commentary to Section 14.2.3 ............................................................................................................... 42
Commentary to Section 14.2.4 ............................................................................................................... 43
Commentary to Section 14.4.5 .............................................................................................................. 53
Additional References for Chapter 14 Commentary .............................................................................. 54
Chapter 15, Seismic Design Requirements for Nonbuilding Structures
Table 15.42, Seismic Coefficients for Nonbuilding Structures Not Similar to Buildings ..................... 57
Section 15.5.3, Steel Storage Racks ....................................................................................................... 57
Section 15.6.2, Stacks and Chimneys ..................................................................................................... 57
Section 15.7.6, GroundSupported Storage Tanks for Liquids ............................................................... 58
Commentary to Section 15.5.3 ............................................................................................................... 58
Commentary to Section 15.6.2 ............................................................................................................... 58
Commentary to Section 15.7.6.1 ............................................................................................................ 59
Additional Reference for Chapter 15 Commentary ................................................................................ 59
Chapter 16, Seismic Response History Procedures
Section 16.1.3.2, Threedimensional Analysis ....................................................................................... 61
Commentary to Section 16.1.3.2 ............................................................................................................ 61
Additional References for Chapter 16 Commentary .............................................................................. 62
Chapter 18, Seismic Design Requirements for Structures with Damping Systems
Section 18.3.1, Nonlinear Response History Procedure ......................................................................... 63
Section 18.3.2, Nonlinear Static Procedure ............................................................................................ 63
Chapter 19, SoilStructure Interaction for Seismic Design
Table 19.21, Values of G/Go and Vs/Vso ............................................................................................... 65
Figure 19.21, Foundation Damping Factor ........................................................................................... 65
Chapter 21, SiteSpecific Ground Motion Procedures for Seismic Design
Section 21.2, Ground Motion Hazard Analysis ...................................................................................... 67
Commentary to Section 21.2 .................................................................................................................. 67
Additional References for Chapter 21 Commentary .............................................................................. 70
Chapter 22, Seismic Ground Motion and Longperiod Transition Maps
Chapter 22 ............................................................................................................................................. 73
Commentary for New Chapter 22 .......................................................................................................... 92
Chapter 23, Seismic Design Reference Documents
Section 23.1, Consensus Standards and Other Reference Documents ................................................... 95
New Chapter 23, Vertical Ground Motions for Seismic Design
Chapter 23 ............................................................................................................................................. 97
Commentary for New Chapter 23 .......................................................................................................... 98
2009 NEHRP RECOMMENDED SEISMIC PROVISIONS FOR NEW BUILDINGS AND OTHER
STRUCTURES: PART 2, COMMENTARY TO ASCE/SEI 705 ...................................................................... 101
Commentary to Chapter 11, Seismic Design Criteria
C11.1 General .................................................................................................................................................... 103
C11.1.1 Purpose ........................................................................................................................................ 103
C11.1.2 Scope ........................................................................................................................................... 103
C11.1.4 Alternate Materials and Alternate Means and Methods of Construction ...................................... 103
C11.4 Seismic Ground Motion Values .................................................................................................................. 104
C11.4.1 Mapped Acceleration Parameters ................................................................................................. 104
C11.4.3 and C11.4.4 Site Coefficient and Adjusted Acceleration Parameters ........................................... 104
C11.4.5 Design Response Spectrum .......................................................................................................... 105
C11.4.7 SiteSpecific Ground Motion Procedures ..................................................................................... 105
C11.5 Importance Factor and Occupancy Category .............................................................................................. 105
C11.5.1 Importance Factor ......................................................................................................................... 106
C11.5.2 Protected Access for Category IV Structures ............................................................................... 106
C11.6 Seismic Design Categories .......................................................................................................................... 107
C11.7 Design Requirements for Seismic Design Category A ................................................................................ 108
C11.8 Geologic Hazards and Geotechnical Investigation ...................................................................................... 109
C11.8.1 Site Limitation for Seismic Design Categories E And F ............................................................... 109
C11.8.3 Additional Geotechnical Investigation Report Requirements for123
Seismic Design Categories D through F ...................................................................................... 109
References .................................................................................................................................................... 109
Commentary to Chapter 12, Seismic Design Requirements for Building Structures
C12.1 Structural Design Basis ............................................................................................................................... 111
C12.1.1 Basic Requirements..................................................................................................................... 111
C12.1.2 Member Design, Connection Design, and Deformation Limit ..................................................... 113
C12.1.3 Continuous Load Path and Interconnection .................................................................................. 114
C12.1.4 Connection to Supports ................................................................................................................. 114
C12.1.5 Foundation Design ........................................................................................................................ 114
C12.1.6 Material Design and Detailing Requirements ............................................................................... 114
C12.2 Structural System Selection ......................................................................................................................... 114
C12.2.1 Selection and Limitations ............................................................................................................. 114
C12.2.2 Combinations of Framing Systems in Different Directions .......................................................... 116
C12.2.3 Combinations of Framing Systems in the Same Direction ........................................................... 116
C12.2.4 Combination of Framing Detailing Requirements ........................................................................ 116
C12.2.5 System Specific Requirements ..................................................................................................... 116
C12.3 Diaphragm Flexibility, Configuration Irregularities, and Redundancy ....................................................... 117
C12.3.1 Diaphragm Flexibility ................................................................................................................... 117
C12.3.2 Irregular and Regular Classification ............................................................................................. 118
C12.3.3 Limitations and Additional Requirements for Systems with Structural Irregularities .................. 119
C12.3.4 Redundancy ................................................................................................................................. 121
C12.4 Seismic Load Effects and Combinations ..................................................................................................... 123
C12.4.1 Applicability ................................................................................................................................ 123
C12.4.2 Seismic Load Effect ...................................................................................................................... 123
C12.4.3 Seismic Load Effect Including Overstrength Factor ..................................................................... 123
C12.4.4 Minimum Upward Force For Horizontal Cantilevers for
Seismic Design Categories D Through F .................................................................................... 123
C12.5 Direction of Loading .................................................................................................................................. 124
C12.6 Analysis Selection Procedure ...................................................................................................................... 124
C12.7 Modeling Criteria ....................................................................................................................................... 124
C12.7.1 Foundation Modeling .................................................................................................................... 124
C12.7.2 Effective Seismic Weight .............................................................................................................. 125
C12.7.3 Structural Modeling ...................................................................................................................... 125
C12.7.4 Interaction Effects ......................................................................................................................... 126
C12.8 Equivalent Lateral Force Procedure ............................................................................................................ 126
C12.8.1 Seismic Base Shear ....................................................................................................................... 126
C12.8.2 Period Determination .................................................................................................................... 127
C12.8.3 Vertical Distribution of Seismic Forces ........................................................................................ 128
C12.8.4 Horizontal Distribution of Forces ................................................................................................. 129
C12.8.6 Story Drift Determination ............................................................................................................. 130
C12.8.7 Pdelta Effects ............................................................................................................................... 132
C12.9 Modal Response Spectrum Analysis ........................................................................................................... 133
C12.9.1 Number of Modes ......................................................................................................................... 133
C12.9.2 Modal Response Parameters ......................................................................................................... 133
C12.9.3 Combined Response Parameters ................................................................................................... 133
C12.9.4 Scaling Design Values of Combined Response ............................................................................ 134
C12.9.5 Horizontal Shear Distribution ....................................................................................................... 134
C12.9.6 Pdelta Effects ............................................................................................................................... 134
C12.10 Diaphragms, Chords, and Collectors ........................................................................................................... 134
C12.10.1 Diaphragm Design ...................................................................................................................... 134
C12.11 Structural Walls and Their Anchorage ........................................................................................................ 135
C12.11.1 Design for Outof Plane Forces ................................................................................................. 135
C12.11.2 Anchorage of Concrete or Masonry Structural Walls ................................................................. 136
C12.12 Drift and Deformation ................................................................................................................................ 137
C12.12.3 Building Separation ..................................................................................................................... 138
C12.12.4 Deformation Compatibility for Seismic Design Categories D Through F .................................. 139
C12.13 Foundation Design ...................................................................................................................................... 139
C12.13.3 Foundation LoadDeformation Characteristics ........................................................................... 139
C12.13.4 Reduction of Foundation Overturning ........................................................................................ 140
C12.13.5 Requirements for Structures Assigned to Seismic Design Category C ....................................... 140
C12.13.6 Requirements for Structures Assigned to Seismic Design Categories D Through F .................. 141
C12.14 Simplified Alternative Structural Design Criteria for Simple Bearing Wall or
Building Frame Systems ............................................................................................................... 142
C12.14.1 General ....................................................................................................................................... 142
C12.14.3 Seismic Load Effects and Combinations..................................................................................... 142
C12.14.7 Design and Detailing Requirements ............................................................................................ 143
C12.14.8 Simplified Lateral Force Analysis Procedure ............................................................................. 143
References .................................................................................................................................................... 143
Commentary to Chapter 13, Seismic Design Requirements for Nonstructural Components
C13.1 General .................................................................................................................................................... 145
C13.1.1 Scope ............................................................................................................................................ 147
C13.1.2 Seismic Design Category .............................................................................................................. 148
C13.1.3 Component Importance Factor ...................................................................................................... 148
C13.1.4 Exemptions .................................................................................................................................. 149
C13.1.5 Applicability of Nonstructural Component and Requirements ..................................................... 150
C13.1.6 Reference Documents ................................................................................................................... 150
C13.1.7 Reference Documents Using Allowable Stress Design ................................................................. 150
C13.2 General Design Requirements ..................................................................................................................... 151
C13.2.1 Applicable Requirements for Architectural, Mechanical, and Electrical Components,
Supports, and Attachments ............................................................................................................ 151
C13.2.2 Special Certification Requirements For Designated Seismic Systems ......................................... 151
C13.2.3 Consequential Damage ................................................................................................................. 151
C13.2.4 Flexibility ..................................................................................................................................... 152
C13.2.5 Testing Alternative for Seismic Capacity Determination ............................................................. 152
C13.2.6 Experience Data Alternative for Seismic Capacity Determination ............................................... 153
C13.2.7 Construction Documents ............................................................................................................... 153
C13.3 Seismic Demands on Nonstructural Components ....................................................................................... 154
C13.3.1 Seismic Design Force ................................................................................................................... 154
C13.3.2 Seismic Relative Displacements ................................................................................................... 156
C13.4 Nonstructural Component Anchorage ......................................................................................................... 157
C13.4.2 Anchors in Concrete or Masonry .................................................................................................. 157
C13.4.3 Installation Conditions .................................................................................................................. 158
C13.4.4 Multiple Attachments ................................................................................................................... 158
C13.4.5 Power Actuated Fasteners ............................................................................................................. 158
C13.4.6 Friction Clips ............................................................................................................................... 158
C13.5 Architectural Components ........................................................................................................................... 159
C13.5.1 General ......................................................................................................................................... 159
C13.5.2 Forces and Displacements ............................................................................................................ 159
C13.5.3 Exterior Nonstructural Wall Elements and Connections .............................................................. 159
C13.5.5 OutofPlane Bending ................................................................................................................... 160
C13.5.6 Suspended Ceilings ....................................................................................................................... 160
C13.5.7 Access Floors ............................................................................................................................... 161
C13.5.8 Partitions ...................................................................................................................................... 161
C13.5.9 Glass in Glazed Curtain Walls, Glazed Storefronts, and Glazed Partitions .................................. 161
C13.6 Mechanical and Electrical Components ...................................................................................................... 162
C13.6.1 General ......................................................................................................................................... 163
C13.6.2 Component Period ........................................................................................................................ 163
C13.6.3 Mechanical Components and C13.6.4 Electrical Components ..................................................... 164
C13.6.5 Component Supports .................................................................................................................... 164
C13.6.6 Utility and Service Lines .............................................................................................................. 164
C13.6.7 HVAC Ductwork .......................................................................................................................... 165
C13.6.8 Piping Systems............................................................................................................................. 165
C13.6.9 Boilers and Pressure Vessels ........................................................................................................ 165
C13.6.10 Elevator and Escalator Design Requirements ............................................................................. 165
C13.6.11 Other Mechanical and Electrical Components ............................................................................ 166
References .................................................................................................................................................... 166
Commentary to Chapter 14, Material Specific Seismic Design and Detailing Requirements
C14.0 Scope .................................................................................................................................................... 169
C14.1 Steel .................................................................................................................................................... 169
C14.1.1 Reference Documents ................................................................................................................... 169
C14.1.2 Seismic Design Categories B and C ............................................................................................. 169
C14.1.3 Seismic Design Categories D Through F ...................................................................................... 169
C14.1.4 ColdFormed Steel ........................................................................................................................ 169
C14.1.5 Prescriptive Framing .................................................................................................................... 170
C14.1.6 Steel Deck Diaphragms ................................................................................................................ 170
C14.1.7 Steel Cables ................................................................................................................................. 170
C14.1.8 Additional Detailing Requirements for Steel Piles in Seismic Design
Categories D Through F ................................................................................................................ 170
C14.2 Concrete .................................................................................................................................................... 171
C14.3 Composite Steel and Concrete Structures ................................................................................................... 173
C14.3.1 Reference Documents ................................................................................................................... 173
C14.3.2 MetalCased Concrete Piles .......................................................................................................... 174
C14.4 Masonry 206 .............................................................................................................................................. 174
C14.4.2 R Factors ...................................................................................................................................... 174
C14.4.3 Classification of Shear Walls ........................................................................................................ 174
C14.4.6 Modifications to Chapter 2 of ACI 530/ASCE 5/TMS 402 .......................................................... 174
C14.4.7 Modifications to Chapter 3 of ACI 530/ASCE 5/TMS 402 .......................................................... 175
C14.4.8 Modifications to Chapter 6 of ACI 530/ASCE 5/TMS 402 .......................................................... 175
C14.4.9 Modifications to ACI 530.1/ASCE 6/TMS 602 ............................................................................ 175
C14.5 Wood .................................................................................................................................................... 175
C14.5.1 Reference Documents ................................................................................................................... 175
C14.5.2 Framing ........................................................................................................................................ 175
References .................................................................................................................................................... 176
Commentary to Chapter 15, Seismic Design Requirements for Nonbuilding Structures
C15.1.1 Nonbuilding Structures ................................................................................................................. 179
C15.1.2 Design .......................................................................................................................................... 179
C15.1.3 Structural Analysis Procedure Selection ....................................................................................... 180
C15.2 Reference Documents ................................................................................................................................ 185
C15.3 Nonbuilding Structures Supported by Other Structures .............................................................................. 186
C15.3.1 Less Than 25 Percent of Combined Weight Condition ................................................................. 186
C15.3.2 Greater Than or Equal to 25 Percent Combined Weight Condition .............................................. 186
C15.4 Structural Design Requirements .................................................................................................................. 187
C15.4.1 Design Basis ................................................................................................................................. 187
C15.4.2 Rigid Nonbuilding Structures ....................................................................................................... 188
C15.4.3 Loads ............................................................................................................................................ 188
C15.4.4 Fundamental Period ...................................................................................................................... 188
C15.4.8 SiteSpecific Response Spectra ..................................................................................................... 188
C15.5 Nonbuilding Structures Similar to Buildings ............................................................................................... 188
C15.5.1 General ......................................................................................................................................... 188
C15.5.2 Pipe Racks .................................................................................................................................... 188
C15.5.3 Steel Storage Racks ....................................................................................................................... 188
C15.5.4 Electrical Power Generating Facilities .......................................................................................... 189
C15.5.5 Structural Towers for Tanks And Vessels ..................................................................................... 189
C15.5.6 Piers and Wharves ......................................................................................................................... 189
C15.6 General Requirements for Nonbuilding Structures Not Similar To Buildings ............................................ 190
C15.6.1 EarthRetaining Structures ............................................................................................................ 190
C15.6.2 Stacks and Chimneys .................................................................................................................... 190
C15.6.4 Special Hydraulic Structures ......................................................................................................... 190
C15.6.5 Secondary Containment Systems .................................................................................................. 191
C15.6.6 Telecommunications Towers ........................................................................................................ 191
C15.7 Tanks and Vessels ...................................................................................................................................... 191
C15.7.1 General ......................................................................................................................................... 191
C15.7.2 Design Basis ................................................................................................................................. 192
C15.7.3 Strength and Ductility ................................................................................................................... 193
C15.7.4 Flexibility of Piping Attachments ................................................................................................. 193
C15.7.5 Anchorage .................................................................................................................................... 193
C15.7.6 GroundSupported Storage Tanks for Liquids .............................................................................. 193
C15.7.7 Water Storage and Water Treatment Tanks and Vessels .............................................................. 195
C15.7.8 Petrochemical and Industrial Tanks and Vessels Storing Liquids ................................................ 195
C15.7.9 GroundSupported Storage Tanks for Granular Materials ............................................................ 196
C15.7.10 Elevated Tanks and Vessels for Liquids and Granular Materials ............................................... 197
C15.7.11 Boilers and Pressure Vessels ....................................................................................................... 197
C15.7.12 Liquid and Gas Spheres .............................................................................................................. 197
C15.7.13 Refrigerated Gas Liquid Storage Tanks and Vessels .................................................................. 197
C15.7.14 Horizontal, Saddle Supported Vessels for Liquid or Vapor Storage ........................................... 198
References .................................................................................................................................................... 199
Commentary to Chapter 16, Seismic Response History Procedures
C16.1 Linear Response History Procedure ............................................................................................................ 201
C16.1.1 Analysis Requirements ................................................................................................................. 201
C16.1.2 Modeling ...................................................................................................................................... 201
C16.1.3 Ground Motion ............................................................................................................................. 202
C16.1.4 Response Parameters .................................................................................................................... 203
C16.2 Nonlinear Response History Procedure ....................................................................................................... 204
C16.2.1 Analysis Requirements ................................................................................................................. 204
C16.2.2 Modeling ...................................................................................................................................... 204
C16.2.3 Ground Motion and Other Loading .............................................................................................. 205
C16.2.4 Response Parameters..................................................................................................................... 205
C16.2.5 Design Review .............................................................................................................................. 206
References .................................................................................................................................................... 206
Commentary to Chapter 17, Seismic Design Requirements for Seismically Isolated Structures
C17.1 General .................................................................................................................................................... 207
C17.1.1 Variations in Material Properties .................................................................................................. 208
C17.2 General Design Requirements ..................................................................................................................... 208
C17.2.4 Isolation System........................................................................................................................... 209
C17.2.5 Structural System .......................................................................................................................... 209
C17.2.6 Elements of Structures and Nonstructural Components ............................................................... 209
C17.3 Ground Motion for Isolated Structures ........................................................................................................ 209
C17.3.1 Design Spectra .............................................................................................................................. 209
C17.3.2 Ground Motion Histories .............................................................................................................. 210
C17.4 Analysis Procedure Selection ...................................................................................................................... 210
C17.5 Equivalent Lateral Force Procedure ............................................................................................................ 211
C17.5.3 Minimum Lateral Displacements .................................................................................................. 211
C17.5.4 Minimum Lateral Forces .............................................................................................................. 212
C17.5.5 Vertical Distribution of Forces ..................................................................................................... 213
C17.5.6 Drift Limits .................................................................................................................................. 213
C17.6 Dynamic Analysis Procedures ..................................................................................................................... 214
C17.7 Design Review ........................................................................................................................................... 214
C17.8 Testing .................................................................................................................................................... 214
C17.8.5 Design Properties of the Isolation System .................................................................................... 215
References .................................................................................................................................................... 216
Commentary to Chapter 18, Seismic Design Requirements for Structures with Damping Systems
C18.1 General .................................................................................................................................................... 217
C18.2 General Design Requirements ..................................................................................................................... 217
C18.2.2 System Requirements ................................................................................................................... 217
C18.2.4 Procedure Selection ...................................................................................................................... 217
C18.3 Nonlinear Procedures ................................................................................................................................. 219
C18.4 Response Spectrum Procedures and C18.5 Equivalent Lateral Force Procedure ........................................ 219
C18.6 Damped Response Modification ................................................................................................................. 221
C18.6.1 Damping Coefficient.................................................................................................................... 221
C18.6.2 Effective Damping ........................................................................................................................ 222
C18.7 Seismic Load Conditions and Acceptance Criteria ..................................................................................... 222
References .................................................................................................................................................... 222
Commentary to Chapter 19, Soil Structure Interaction for Seismic Design
C19.1 General .................................................................................................................................................... 225
C19.2 Equivalent Lateral Load Procedure ............................................................................................................. 226
C19.2.1 Base Shear ................................................................................................................................... 226
C19.2.2 Vertical Distribution of Seismic Forces ...................................................................................................... 228
C19.2.3 Other Effects .............................................................................................................................................. 229
C19.3 Modal Analysis Procedure ........................................................................................................................... 229
References .................................................................................................................................................... 229
Commentary to Chapter 20, Site Classification Procedure for Seismic Design
C20.1 Site Classification ....................................................................................................................................... 231
C20.3 Site Class Definitions ................................................................................................................................. 231
C20.3.1 Site Class F ................................................................................................................................... 231
C20.3.2 through C20.3.5 ............................................................................................................................. 231
C20.4 Definitions of Site Class Parameters ........................................................................................................... 231
Commentary to Chapter 21, SiteSpecific Ground Motion Procedures for Seismic Design
General .................................................................................................................................................... 233
C21.1 Site Response Analysis ............................................................................................................................... 233
C21.1.1 Base Ground Motions ................................................................................................................... 233
C21.1.2 Site Condition Modeling ............................................................................................................... 234
C21.1.3 Site Response Analysis and Computed Results ............................................................................ 234
C21.2 Ground Motion Hazard Analysis ................................................................................................................. 234
C21.2.1 Probabilistic MCE ......................................................................................................................... 235
C21.2.2 Deterministic MCE ....................................................................................................................... 235
C21.3 Design Response Spectrum ......................................................................................................................... 235
C21.4 Design Acceleration Parameters .................................................................................................................. 235
References .................................................................................................................................................... 235
Commentary to Chapter 22, Seismic Ground Motion and LongPeriod Transition Maps
Seismic Ground Motion Maps .................................................................................................................................. 237
LongPeriod Transition Maps ................................................................................................................................... 237
References .................................................................................................................................................... 238
2009 NEHRP RECOMMENDED SEISMIC PROVISIONS FOR NEW BUILDINGS AND OTHER
STRUCTURES: PART 3, RESOURCE PAPERS (RP) ON SPECIAL TOPICS IN SEISMIC DESIGN ....... 239
RP 1 Alternate Materials, Design, and Methods of Construction ........................................................................ 241
RP 2 Nonlinear Static Procedure ......................................................................................................................... 243
RP 3 Seismic ResponseHistory Analysis ........................................................................................................... 247
RP 4 Foundation Geotechnical Ultimate Strength Design of Foundations and
Foundation LoadDeformation Modeling .................................................................................................... 251
RP 5 Alternative Provisions for the Design of Piping Systems ............................................................................ 259
RP 6 Other Nonbuilding Structures ..................................................................................................................... 263
RP 7 Special Requirements for Seismic Design of Structural Glued Laminated Timber (Gluam)
Arch Members and Their Connections in ThreeHinge Arch Systems ....................................................... 267
RP 8 Appropriate Seismic Load Combinations for Base Plates, Anchorage, and Foundations .......................... 275
RP 9 Seismic Design Using Target Drift, Ductility, and Plastic Mechanisms as
Performance Criteria .................................................................................................................... 289
RP 10 Seismic Design Methodology for Precast Concrete Floor Diaphragms ...................................................... 311
RP 11 Shear Wall LoadDeflection Parameters and Performance Expectations .................................................... 333
RP 12 Evaluation of Geologic Hazards and Determination of Seismic Lateral Earth Pressures ............................ 341
RP 13 LightFrame Wall Systems with Wood Structural Panel Sheathing ............................................................ 365
APPENDIX, Participants in the BSSC 2009 Provisions Update Project ............................................................. 373
2009 NEHRP RECOMMENDED SEISMIC
PROVISIONS FOR NEW BUILDINGS AND
OTHER STRUCTURES:
PART 1, PROVISIONS
Work on this 2009 edition of the NEHRP (National Earthquake Hazards Reduction Program) Recommended Seismic
Provisions for New Buildings and Other Structures began in September 2004 when the National Institute of Building
Sciences, the parent organization of the Building Seismic Safety Council (BSSC), entered into a contract with Federal
Emergency Management Agency (FEMA) for initiation of the 2009 Provisions update effort. During 2005, the BSSC member
organization representatives and alternate representatives and the BSSC Board of Direction were asked to identify
individuals to serve on the 2009 Provisions Update Committee (PUC) and its Technical Subcommittees (TSs) and to suggest
topics for concentrated study by ad hoc Issue Teams.
The 2009 PUC and its eight Technical Subcommittees (TS) then were established to address document composition and
management; design criteria and analysis and advanced technologies; mapping, foundations, and geotechnical
considerations; concrete structures; masonry structures; steel and composite steel and concrete structures; wood structures;
nonstructural components and nonbuilding structures. Three Issue Teams (ITs) also were established to focus on
performance criteria, design parameters, and foundation design requirements. Further, given ongoing work by the U.S.
Geological Survey (USGS) to update its seismic hazard maps, a Seismic Design Procedures Review Group (SDPRG) was
established to consider the emerging maps and to reexamine the existing design maps and procedures that were introduced
in the 1997 edition of the Provisions and that remained essentially unchanged for the 2000 and 2003 editions of the
Provisions.
Work already done and decisions made prior to initiation of the 2009 Provisions update project recognized that the codes
and standards arena has changed over the past decade and that those changes called for a refocusing of the Provisions on
exploration of new technologies and procedures and less consideration of format and editorial changes. To this end, the
initial efforts of the 2009 PUC and its TSs focused on adoption of the national load standard, Minimum Design Loads for
Building and Other Structures, ASCE/SEI 705 (including Supplements No. 1 and No. 2), as the primary reference standard
of the Provisions and the identification of parts of the 2003 Provisions that should be maintained as modifications to the
standard or otherwise revised to reflect new knowledge and experience data. The result of this effort was a vote by the BSSC
member organizations to adopt ASCE/SEI 705 by reference and for it to serve as the base document for the update cycle.
Three modifications to standard, originally appendices to various chapters of the 2003 Provisions, had been deemed needed
by the PUC and TSs and were approved as part of this vote by the membership for inclusion in the 2009 Provisions. As the
update cycle progressed, additional modifications to the standard were prepared and voted on by the membership in three
separate ballots. All these modifications appear in Part 1 of this document and, together with ASCE/SEI 705 and the
references cited therein, constitute the 2009 Provisions. (A summary of the results of the member organization ballots and
comment resolution process is available from the BSSC upon written request and will be posted on the BSSC website at
www.bssconline.org.)
A major effort also was made to rewrite the commentary to the Provisions. Until now, the commentary was published in a
separate volume and tended to explain the development of the requirements. For 2009, the commentary appears in Part 2 of
this Provisions volume and explains how to apply the Provisions requirements as articulated in ASCE/SEI 705 and the
references cited therein. (Note that the Part 1 modifications to the standard are accompanied by appropriate commentary
text included in Part 1.)
Part 3 of this Provisions volume introduces new procedures or provisions not currently contained in the referenced
standards for consideration and experimental use by the design community, researchers, and standards and codedevelopment
organizations and feedback from these users is encouraged. Part 3 also presents individual summaries of
ongoing committee work that awaits additional research before being submitted to the BSSC membership for consensus
approval and provides useful guidance on the application of Part 1 requirements, either as a discussion of an overall
approach or as a detailed procedure.
1.1 INTENT
The NEHRP Recommended Seismic Provisions for New Buildings and Other Structures presents the minimum recommended
requirements necessary for the design and construction of new buildings and other structures to resist earthquake ground
motions throughout the United States. The intent of these provisions is to provide reasonable assurance of seismic
performance that will:
1. Avoid serious injury and life loss,
2. Avoid loss of function in critical facilities, and
3. Minimize structural and nonstructural repair costs where practical to do so.
These objectives are addressed by seeking to avoid structural collapse in very rare, extreme ground shaking and by seeking to
provide reasonable control of damage to structural and nonstructural systems that could lead to injury and economic or
functionality losses for more moderate and frequent ground shaking. These design requirements include minimum lateral
strength and stiffness for structural systems and guidance for anchoring, bracing, and accommodation of structural drift for
nonstructural systems.
Occupancy Category III or IV structures intended to provide enhanced safety and functionality are required to have more
strength than Occupancy Category I or II structures in an effort to reduce damage to the structural system. Allowable drifts
are reduced to control damage to building components connected to multiple floor levels. Nonstructural system performance
is enhanced by strengthening the anchorage and bracing requirements, and important equipment must be shown to be
functional after being shaken.
The degree to which these goals can be achieved depends on a number of factors including structural framing type, building
configuration, materials, asbuilt details, and overall quality of design. In addition, large uncertainties as to the intensity and
duration of shaking and the possibility of unfavorable response of a small subset of buildings or other structures may prevent
full realization of the intent.
1.2 REFERENCE DOCUMENT
Design for seismic resistance of structural elements including foundation elements and nonstructural components shall
conform to the requirements of ASCE/SEI 705, Minimum Design Loads for Buildings and Other Structures, including
Supplements No. 1 and No. 2 (referred to hereinafter as ASCE/SEI 705), as modified herein.1
COMMENTARY TO SECTIONS 1.1 AND 1.2
1 Supplement No. 2 of the standard is available for download at http://content.seinstitute.org/files/pdf/SupplementNo2ofthe2005Editionof
ASCE7.pdf.
2 The derivation of MCE ground motion was described in detail in Commentary Appendix A of the 2003 NEHRP Recommended
Provisions (FEMA 4502), and this appendix, “Development of Maximum Considered Earthquake Ground Motion Maps Figures 3.31
through 3.314,” can be downloaded from http://www.nibs.org/index.php/bssc/publications/fema450nehrp2003/.
The primary intent of the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures is to prevent,
for typical buildings and structures, serious injury and life loss caused by damage from earthquake ground shaking. Most
earthquake injuries and deaths are caused by structural collapse; therefore, the major thrust of the Provisions is to prevent
collapse for very rare, intense ground motion, termed the maximum considered earthquake (MCE) ground motion.2 The
intent remains the same in the 2009 Provisions; however, the prevention of collapse is redefined in terms of risktargeted
maximum considered earthquake (MCER) ground motions. This change is explained fully in the commentary to the Part 1
modification to ASCE/SEI 705 Section 11.2.
Falling exterior walls and cladding and falling interior ceilings, light fixtures, pipes, equipment, and other nonstructural
components also cause deaths and injuries. The Provisions minimizes this risk using requirements for anchoring and bracing
nonstructural components, although this level of protection generally is aimed at ground motions less severe than the MCER
ground motion. This anchoring and bracing of nonstructural systems coupled with reasonable limitations on differential
movement between floors (i.e., story drift limits) also serve to control damage that may be costly to repair or that would
result in lengthy building closures, particularly for moderate shaking levels.
Stricter story drift limits can further limit damage to components connected to more than one floor (e.g., walls, cladding and
stairways) but, at the same time, can create higher acceleration levels in the building that could increase damage to
nonstructural components braced or anchored to a single floor (e.g., ceilings, light fixtures, and pipes). Achieving an
optimum balance between the cost and performance of the structural system and the effect of structural stiffness on
performance of the nonstructural systems is impossible using the prescriptive rules of a building code, particularly given the
variety of structural systems used in the United States.
Buildings deemed to have higher importance due to hazardous contents or critical occupancy are assigned to higher
Occupancy Categories (see ASCE/SEI 705 Table 11). The damage level in these buildings is intended to be reduced by
decreasing nonlinear demand using an importance factor, I, to reduce the response modification coefficient, R. The resulting
increased strength will reduce structural damage, or increase reliability of acceptable performance, for a given level of
shaking. Some authorities having jurisdiction subject the design and construction of such buildings to a higher level of
scrutiny.
The performance of critical occupancy structures in past earthquakes indicates that the increase in the importance factor
controls structural damage in moderate shaking. In strong shaking associated with the design level of twothirds the
maximum considered earthquake or higher, the values of I have not been well tested for their effect on either functionality for
critical buildings or increased reliability of life safety protection for high occupancy buildings.
The importance factor also increases the design anchorage and bracing load for nonstructural systems, which should increase
the reliability of their staying in place and, thus, remaining undamaged. In addition, certain critical equipment must remain
operable after strong shaking. Experience data show that some nonstructural components will remain functional if they stay
in position, but other components will require testing to show that they will function following strong shaking. The emphasis
to date has been on the seismic qualification of individual components. However, the nonstructural systems of many
buildings are, in reality, complex networks that can be shut down by a single failure. For example, a break in a pressurized
pipe can flood part or all of a building forcing it to close, and failure of the anchorage (or internal workings) of a battery, day
tank, fuel lines, muffler, or main engine can shut down an emergency generator. Therefore, the special regulations for
seismic protection of nonstructural systems represent a rational approach to achieving performance appropriate for the
various occupancies, but experience data to confirm their adequacy are lacking.
When the hazard definition for design was changed from motion with a 2 percent chance of exceedance in 50 years to the 1
percent chance of collapse in 50 years, the primary intended performance was retained. The design basis ground motion is
still twothirds of the risktargeted maximum considered earthquake (MCER) ground motion. The increase in the importance
factor is intended to ensure a lower probability of collapse for the performance of higher occupancy and critical buildings.
The Provisions requirements are not intended to prevent damage due to earth slides (such as those that occurred in
Anchorage, Alaska) or tsunami (such as occurred in Hilo, Hawaii, and the Indian Ocean). They provide only for required
resistance to earthquake ground shaking without significant settlement, slides, subsidence, or faulting in the immediate
vicinity of the structure. In most cases, practical engineering solutions are available to resist other potential earthquake
hazards, but they must be developed on a casebycase basis.
Although the Provisions sets the minimum performance goals described in Section 1.1, earthquake performance of buildings
and other structures is highly variable. The characteristics of the shaking itself are highly uncertain and even different sets of
motions defined to qualify as maximum considered earthquake ground motions can result in significantly different responses.
Additional uncertainty is created by the wide variety of systems and configurations allowed under the regulations as well as
by the various interpretations and implementation practices of individual designers. Thus, a small percentage of buildings
designed to the requirements of the Provisions may not meet the performance intent when exposed to earthquake ground
motions. The commentary the Tentative Provisions for the Development of Seismic Regulations for Buildings (Applied
Technology Council, 1978), upon which the first edition of the NEHRP Recommended Provisions (1985) was based,
suggested a less than 1 percent chance of collapse in a 50year period for a building designed using the tentative
requirements. More recent studies (e.g., Quantification of Building Seismic Performance Factors, FEMA P695, 2009)
suggest a 10 percent chance of collapse with shaking at the maximum considered earthquake level, which is roughly
equivalent to the 1978 estimations.
1.3 MODIFICATIONS TO ASCE/SEI 705
With only a few exceptions (such as the changes to Table 12.21 shown in underline and strikeout), modifications are
presented as replacements for existing sections of ASCE/SEI 705 or as new sections to be added to the standard.
Commentary, if any, to the modifications that appear in the remainder of this part of the 2009 Provisions is presented at
the end of each chapter of modifications. Commentary to the seismic chapters (Chapters 11 through 22) of the
unmodified reference document itself, ASCE/SEI 705, is presented in Part 2 of the 2009 Provisions.
Modifications to Chapter 11, Seismic Design Criteria
Replace with the following:
SECTION 11.1.2, SCOPE
11.1.2 Scope. Every structure, and portion thereof, including nonstructural components, shall be designed and
constructed to resist the effects of earthquake motions as prescribed by the seismic requirements of this standard.
Certain nonbuilding structures, as described in Chapter 15, are also within the scope and shall be designed and
constructed in accordance with the requirements for Chapter 15. Requirements concerning alterations, additions, and
change of use are set forth in Appendix 11B. Existing structures and alterations to existing structures need only comply
with the seismic requirements of this standard where required by Appendix 11B. The following structures are exempt
from the seismic requirements of this standard:
1. Detached one and twofamily dwellings that are located where the mapped, short period, spectral response
acceleration parameter, SS, is less than 0.4 or where the Seismic Design Category determined in accordance with
Section 11.6 is A, B or C.
2. Dwellings of woodframe construction satisfying the limitations of and constructed in accordance with the
International Residential Code.
3. Buildings of woodframe construction satisfying the limitations of and constructed in accordance with Section 2308
of the International Building Code.
4. Agricultural storage structures that are intended only for incidental human occupancy.
5. Structures that require special consideration of their response characteristics and environment that are not addressed
in Chapter 15 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical
transmission towers, hydraulic structures, buried utility lines and their appurtenances, and nuclear reactors.
SECTION 11.2, DEFINITIONS
Change the definition for “Maximum Considered Earthquake (MCE) Ground Motion” to:
RISKTARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCER) GROUND MOTION: The most
severe earthquake effects considered by this standard as defined in Section 11.4.
Add the following new definition:
MAXIMUM CONSIDERED EARTHQUAKE GEOMETRIC MEAN PEAK GROUND ACCELERATION
(PGAM): The most severe earthquake effects considered for liquefaction as defined in Section 11.8.
SECTION 11.3, NOTATION
Add the following:
CR = risk coefficient; see Section 21.2.1.1
CRS = mapped value of the risk coefficient at short periods as defined by Figure 223
CR1 = mapped value of the risk coefficient at a period of 1 second as defined by Figure 224
SSD = mapped deterministic, 5 percent damped, spectral response acceleration parameter at short periods as
defined in Section 11.4.1
SSUH = mapped uniformhazard, 5 percent damped, spectral response acceleration parameter at short periods as
defined in Section 11.4.1
S1D = mapped deterministic, 5 percent damped, spectral response acceleration parameter at a period of 1 second
as defined in Section 11.4.1
S1UH = mapped uniformhazard, 5 percent damped, spectral response acceleration parameter at a period of 1
second as defined in Section 11.4.1
Revise the following to read as indicated:
SS = 5 percent damped, spectral response acceleration parameter at short periods as defined in Section 11.4.3
S1 = spectral response acceleration parameter at a period of 1 second as defined in Section 11.4.3
SaM = the sitespecific MCER spectral response acceleration at any period
SMS = the MCER, 5 percent damped, spectral response acceleration parameter at short periods adjusted for target
risk and siteclass effects as defined in Section 11.4.3
SM1 = the MCER, 5 percent damped, spectral response acceleration parameter at a period of 1 second adjusted for
target risk and siteclass effects as defined in Section 11.4.3
SECTION 11.4, SEISMIC GROUND MOTION
Replace with the following:
11.4 SEISMIC GROUND MOTION VALUES
(11.41)
(11.42)
and the spectral response acceleration at a period of 1 second (S1), adjusted for the target risk of collapse, shall be
determined as the lesser value of Equations 11.43 and 11.44:
(11.43)
(11.44)
where
SSD = mapped deterministic, 5 percent damped, spectral response acceleration parameter at short periods as defined in
Section 11.4.1
SSUH = mapped uniformhazard, 5 percent damped, spectral response acceleration parameter at short periods as defined
in Section 11.4.1
CRS = mapped value of the risk coefficient at short periods as defined in Section 11.4.1
S1D = mapped deterministic, 5 percent damped, spectral response acceleration parameter at a period of 1 second as
defined in Section 11.4.1
3
11.4.1 Mapped Acceleration Parameters and Risk Coefficients. The parameters SSUH , S1UH, SSD, and S1D shall be
determined from the 0.2 and 1second spectral response accelerations shown on Figures 221 and 222 and Figures 225
through 226, respectively, and the risk coefficients CRS and CR1 shall be determined from Figures 223 and 224,
respectively.
11.4.2 Site Class. Based on the site soil properties, the site shall be classified as either Site Class A, B, C, D, E, or F in
accordance with Chapter 20. Where the soil properties are not known in sufficient detail to determine the Site Class, Site
Class D shall be used unless the authority having jurisdiction or geotechnical data determines Site Class E or F soils are
present at the site.
11.4.3 Site Coefficients, Risk Coefficients, and Risktargeted Maximum Considered Earthquake (MCER) Spectral
Response Acceleration Parameters. The spectral response acceleration for short periods (SS), adjusted for the target
risk of collapse, shall be determined as the lesser value of Equations 11.41 and 11.42:
Equation
SS = CRS SSUH Equation
S SD S = S Equation
1 R1 1UH S = C S Equation
1 1D S = S
3 To utilize the U.S. Geological Survey’s seismic design map web application to obtain ground motion values, visit
http://earthquake.usgs.gov/designmaps/usapp. Also see the USGS introduction to the web application included on the CD that
accompanies this volume.
S1UH = mapped uniformhazard, 5 percent damped, spectral response acceleration parameter at a period of 1 second as
defined in Section 11.4.1
CR1 = mapped value of the risk coefficient at a period of 1 second as defined in Section 11.4.1
The MCER spectral response acceleration for short periods (SMS) and at 1 second (SM1), adjusted for Site Class effects and
the target risk of collapse, shall be determined by Equations 11.45 and 11.46, respectively.
SMS = FaSs (11.45)
SM1 = FvS1 (11.46)
where site coefficients Fa and Fv are defined in Tables 11.41 and 11.42, respectively. When the simplified design
procedure of Section 12.14 is used, the value Fa shall be determined in accordance with Section 12.14.8.1, and the values
of Fv, S1, SMS, and SM1 need not be determined. Where S1 is less than or equal to 0.04 and SS is less than or equal to 0.15,
the structure is permitted to be assigned to Seismic Design Category A and is only required to comply with Section 11.7.
Table 11.41 Site Coefficient, Fa
Site
Class
Spectral Response Acceleration Parameter at Short Period
SS = 0.25
SS = 0.5
SS = 0.75
SS = 1.0
SS = 1.25
A
0.8
0.8
0.8
0.8
0.8
B
1.0
1.0
1.0
1.0
1.0
C
1.2
1.2
1.1
1.0
1.0
D
1.6
1.4
1.2
1.1
1.0
E
2.5
1.7
1.2
0.9
0.9
F
See Section 11.4.7
Note: Use straightline interpolation for intermediate values of SS.
Table 11.42 Site Coefficient, Fv
Site
Class
Spectral Response Acceleration Parameter at 1second Period
S1 = 0.1
S1 = 0.2
S1 = 0.3
S1 = 0.4
S1 = 0.5
A
0.8
0.8
0.8
0.8
0.8
B
1.0
1.0
1.0
1.0
1.0
C
1.7
1.6
1.5
1.4
1.3
D
2.4
2.0
1.8
1.6
1.5
E
3.5
3.2
2.8
2.4
2.4
F
See Section 11.4.7
Note: Use straightline interpolation for intermediate values of S1.
11.4.4 Design Spectral Acceleration Parameters. Design earthquake spectral response acceleration parameter at short
periods, SDS, and at a 1second period, SD1, shall be determined from Equations 11.47 and 11.48, respectively. Where
the alternate simplified design procedure of Section 12.14 is used, the value of SDS shall be determined in accordance
with Section 12.14.8.1, and the value of SD1 need not be determined:
(11.47)
(11.48)
11.4.5 Design Response Spectrum. Where a design response spectrum is required by this standard and sitespecific
ground motion procedures are not used, the design response spectrum curve shall be developed as indicated in Figure
11.41 and as follows: Equation
2
DS 3 MS S = S Equation
1 1
2
D 3 M S = S
1. For periods less than T0, the design spectral response acceleration, Sa, shall be taken as given by Equation 11.49:
(11.49) Equation
0
0 4 0.6 a DS
S S . T
T
. .
= +..
. .
2. For periods greater than or equal to T0 and less than or equal to TS, the design spectral response acceleration, Sa, shall
be taken equal to SDS.
Figure 11.41 Showing design response spectrum.
1.0
0
1
0 1
Period, T (sec)
Spectral Response Acceleration, Sa (g)
SDS
SD1
D1
a
S S
T
=
T L
2
1T
S SD TL
a
·
=
T 0 T S
3. For periods greater than TS, and less than or equal to TL, the design spectral response acceleration, Sa, shall be taken
as given by Equation 11.410:
(11.410) Equation
D1
a
S S
T
=
4. For periods greater than TL, Sa shall be taken as given by Equation 11.411:
(11.411) Equation
Equation
where
SDS = the design spectral response acceleration parameter at short periods;
SD1 = the design spectral response acceleration parameter at 1second period;
T = the fundamental period of the structure, seconds;
T0 = 0.2 SD1/SDS;
TS = SD1/SDS; and
TL = longperiod transition period (seconds) shown in Figure 227.
11.4.6 MCER Response Spectrum. Where a MCER response spectrum is required, it shall be determined by
multiplying the design response spectrum by 1.5.
11.4.7 SiteSpecific Ground Motion Procedures. The sitespecific ground motion procedures set forth in Chapter 21
are permitted to be used to determine ground motions for any structure. A site response analysis shall be performed in
accordance with Section 21.1 for structures on Site Class F sites, unless the exception to Section 20.3.1 is applicable.
For seismically isolated structures and for structures with damping systems on sites with S1 greater than or equal to 0.6, a
ground motion hazard analysis shall be performed in accordance with Section 21.2.
Figure 11.41 Design response spectrum.
SECTION 11.8, GEOLOGIC HAZARDS AND GEOTECHNICAL INVESTIGATION
Replace with the following:
11.8 Geologic Hazards and Geotechnical Investigation
11.8.1 Site Limitation for Seismic Design Categories E and F. A structure assigned to Seismic Design Category E or
F shall not be located where there is a known potential for an active fault to cause rupture of the ground surface at the
structure.
11.8.2 Geotechnical Investigation Report Requirements for Seismic Design Categories C through F. A
geotechnical investigation report shall be provided for a structure assigned to Seismic Design Category C, D, E, or F in
accordance with this section. An investigation shall be conducted and a report shall be submitted that shall include an
evaluation of the following potential geologic and seismic hazards:
1. Slope instability;
2. Liquefaction;
3. Total and differential settlement; and
4. Surface displacement due to faulting or seismicinduced lateral spreading or lateral flow.
The report shall contain recommendations for appropriate foundation designs or other measures to mitigate the effects of
the above hazards.
EXCEPTION: Where deemed appropriate by the authority having jurisdiction, a sitespecific geotechnical report is
not required when prior evaluations of nearby sites with similar soil conditions provide sufficient direction relative to
the proposed construction.
11.8.3 Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F.
The geotechnical investigation report for a structure assigned to Seismic Design Category D, E, or F shall include:
1. The determination of dynamic seismic lateral earth pressures on basement and retaining walls due to design
earthquake ground motions.
2. The potential for liquefaction and soil strength loss evaluated for site peak ground acceleration, earthquake
magnitude, and source characteristics consistent with the maximum considered earthquake geometric mean peak
ground accelerations. Peak ground acceleration shall be determined based on either: (a) a sitespecific study taking
into account soil amplification effects as specified in Section 11.4.7 or (b) the peak ground acceleration, PGAM, from
Equation 11.81:
PGAM = FPGA PGA (11.81)
where
PGAM = maximum considered earthquake geometric mean peak ground acceleration adjusted for Site Class
effects;
PGA = mapped maximum considered earthquake geometric mean peak ground acceleration shown in Figures
228 through 2211; and
FPGA = site coefficient from Table 11.81.
3. Assessment of potential consequences of liquefaction and soil strength loss as computed in Item 2, including
estimation of total and differential settlement, lateral soil movement, lateral soil loads on foundations, reduction in
foundation soilbearing capacity and lateral soil reaction, soil downdrag and reduction in axial and lateral soil
reaction for pile foundations, increases in soil lateral pressures on retaining walls, and flotation of buried structures.
4. Discussion of mitigation measures such as selection of appropriate foundation type and depths, selection of
appropriate structural systems to accommodate anticipated displacements and forces, ground stabilization, or any
combination of these measures and how they shall be considered in the design of the structure.
Table 11.81 Site Coefficient FPGA
Site
Class
Mapped MCE Geometric Mean Peak Ground Acceleration, PGA
PGA = 0.1
PGA = 0.2
PGA = 0.3
PGA = 0.4
PGA = 0.5
A
0.8
0.8
0.8
0.8
0.8
B
1.0
1.0
1.0
1.0
1.0
C
1.2
1.2
1.1
1.0
1.0
D
1.6
1.4
1.2
1.1
1.0
E
2.5
1.7
1.2
0.9
0.9
F
See Section 11.4.7
Note: Use straightline interpolation for intermediate values of PGA.
Commentary to Chapter 11 Modifications
COMMENTARY TO SECTION 11.1.2
C11.1.2 Scope. The scope statement establishes in general terms the applicability of the standard as a base of reference.
Certain structures are exempt and need not comply. The reasons for each are described below.
Note that it is not acceptable to use a combination of International Building Code (IBC) and International Residential Code
(IRC) conventional construction provisions. Conventional requirements of either the IBC or the IRC can be combined with
engineered design of elements in accordance with IBC engineered design requirements. Elements designed using the IBC
engineered design requirements are not exempt from the seismic requirements of ASCE/SEI 7.
Exemption 1 – Detached one and twofamily dwellings in Seismic Design Categories A, B, and C, along with those located
where Ss < 0.4g, are exempt because they represent low seismic risks.
Exemption 2 – This exemption recognizes that the woodframe seismic design requirements of the International Residential
Code (IRC) substantially meet the intent of conventional construction (woodframe) provisions included in the NEHRP
Recommended Seismic Provisions through the 2003 Edition.
Exemption 3 – This exemption recognizes that woodframe seismic design requirements of International Building Code
(IBC) Section 2308 substantially meet the intent of conventional construction (woodframe) provisions included in the
NEHRP Recommended Seismic Provisions through the 2003 Edition.
Exemption 4 – Agricultural storage structures generally are exempt from most code requirements because of the
exceptionally low risk to life involved.
Exemption 5 – Bridges, transmission towers, nuclear reactors, and other structures with special configurations and uses are
not covered because regulations developed to apply to buildings and buildinglike structures do not adequately address their
design and performance issues.
The standard is not retroactive and usually applies to existing structures only where there is an addition, change of use, or
alteration. Minimum acceptable seismic resistance of existing buildings is a policy issue normally set by the authority having
jurisdiction. Appendix 11B of the standard contains rules of application for basic conditions. ASCE 31, Seismic Evaluation
of Buildings, and ASCE 41, Seismic Rehabilitation of Existing Buildings, are available for technical guidance but do not
contain policy recommendations. The International Code Council includes a chapter in the IBC to control the alteration,
repair, addition, and change of occupancy of existing buildings and also maintains the International Existing Building Code
(IEBC) and an associated commentary.
COMMENTARY TO SECTION 11.2
C11.2 DEFINITIONS
Renaming the maximum considered earthquake (MCE) ground motions as the risktargeted maximum considered earthquake
(MCER) ground motions is an editorial change recommended by the BSSC’s Provisions Update Committee and accepted by
the BSSC’s Board. The MCER ground motions are based on the 2008 USGS seismic hazard maps and also incorporate three
technical changes to ASCE/SEI 705:
1. Use of risktargeted ground motions,
2. Use of maximum direction ground motions, and
3. Use of nearsource 84th percentile ground motions.
Reasons for each of the three technical changes are included in the commentary that accompanies the modifications to
Chapter 21.
COMMENTARY TO SECTIONS 11.4.3 AND 11.4.4
C11.4.3 Site Coefficients, Risk Coefficients, and Risktargeted Maximum Considered Earthquake (MCER) Spectral
Response Acceleration Parameters. The following illustrates the process of developing MCER response spectral
accelerations using the formulas and maps of Section 11.4.3 and Chapter 22, respectively, and provides a summary of design
ground motions for 34 city sites in regions of the United States of greatest seismic risk. Additional information and
references explaining the differences from the MCE ground motions in ASCE/SEI 705 are included in the commentary to
Chapter 21.
Illustration of the Development of MCER Spectral Response Acceleration Using Section 11.4.3 Equations and Chapter 22
UniformHazard, Risk Coefficient, and Deterministic Maps.
The formulas of Section 11.4.3 (and the associated uniformhazard, risk coefficient, and deterministic maps of Chapter 22)
are intended to add transparency to the development of MCER ground motions. The development of MCER ground motions
is explained in Section 21.2 and its commentary as part of the sitespecific ground motion procedures for seismic design. As
will be illustrated, the formulas (and maps) add transparency by emulating the sitespecific procedure. A cost of this
transparency is the added complexity of more formulas (and maps). However, a USGS website similar to the USGS Java
ground motion parameter calculator automates use of the proposed formulas (and maps):
http://earthquake.usgs.gov/designmaps/usapp.
The three steps that the website implements are as follows:
Step 1 – Adjust uniformhazard ground motions (Site Class B) for target risk of collapse
As illustrated in the top row of Figure C11.41, the first step is to obtain the mapped uniformhazard (2 percentin50years
probability of exceedance) spectral response acceleration for short periods (SSUH) from Figure 221 and for a period of 1
second (S1UH) from Figure 222, and then to multiply these values by the corresponding mapped risk coefficients (CRS and
CR1) from Figures 223 and 224, respectively. This step is expressed in Equations 11.41 for the short periods and 11.43 for
the 1second period and is consistent with Section 21.2.1 of the sitespecific procedure in Chapter 21. The resulting spectral
response accelerations, CRS, SSUH and CR1S1UH, are referred to as probabilistic ground motions. Figure C11.41 illustrates this
for the 1second period only using small maps of the conterminous United States that depict S1UH, CR1, and CR1S1UH.
The reasons for using 2 percentin50years (uniformhazard) spectral response accelerations, which were the basis for the
probabilistic portions of the MCE ground motion maps in ASCE/SEI 705, are explained in the commentary of the 2003
NEHRP Recommended Provisions. As explained below in the Chapter 21 commentary, the uniformhazard maps (Figures
221 and 222) represent the spectral response acceleration in the maximum direction, which are larger than the geometric
mean spectral response acceleration maps developed by the USGS by factors of 1.1 for the short periods and 1.3 for the 1
second period. The risk coefficients adjust these uniformhazard (2 percentin50years) spectral response accelerations to
achieve building designs with 1 percent probability of collapse in 50 years (i.e., uniform risk), as explained below in the
Chapter 21 commentary.
Step 2 – Take minimum of probabilistic and deterministic ground motions (Site Class B)
As illustrated in the middle row of Figure C11.41, the second step in the development of MCER ground motions is to obtain
the mapped deterministic spectral response acceleration for short periods (SSD) from Figure 225 and for a period of 1 second
(S1D) from Figure 226, and then to take the minimum of each of these values (expressed in Equations 11.42 and 11.44,
respectively) and the corresponding value resulting from Step 1 (i.e., those expressed in Equations 11.41 and 11.43,
respectively). This step is consistent with Sections 21.2.2 (“Deterministic Ground Motions”) and 21.2.3 (“Site Specific
MCER”) of the sitespecific procedure in Chapter 21. The resulting spectral response accelerations are denoted SS for the
short periods and S1 for the 1second period. Figure C11.41 illustrates this for the 1second period only using small maps of
the conterminous United States that depict CR1S1UH, S1D, and S1.
The reasons for using the minimum of probabilistic and deterministic spectral response accelerations, which was done
previously (but not transparently) in developing the MCE ground motions maps in ASCE/SEI 705, are explained in the
commentary of the 2003 NEHRP Recommended Provisions. In brief, deterministic ground motions provide a reasonable and
practical upperbound to design ground motions, but their use implies a somewhat higher level of collapse risk than the 1
percent probability of collapse in 50 years associated with probabilistic (risktargeted) ground motions. In general,
deterministic ground motions govern only at sites near active sources in regions of high seismicity.
As defined in ASCE/SEI 705 Section 21.2.2, the deterministic spectral response accelerations (for Site Class B) shall not be
taken as lower than 1.5g for the short periods and 0.6g for the 1second period; hence, the ground motions on the proposed
deterministic maps (Figures 225 and 226) are no lower than these values. Otherwise the ground motions on the proposed
deterministic maps are 180 percent (as opposed to 150 percent in ASCE/SEI 705) of median spectral response accelerations,
for reasons explained below in the section entitled “Deterministic Ground Motions – 84th Percentile.” Like the proposed
uniformhazard maps used in Step 1, the proposed deterministic maps represent the spectral response acceleration in the
maximum direction.
Step 3 – Adjust Site Class B ground motions for site condition (e.g., Site Class D)
As illustrated in the bottom row of Figure C11.41, the third step is to multiply the spectral response accelerations resulting
from Step 2 (SS and S1) by the corresponding site coefficients (Fa and Fv) from Tables 11.41 and 11.42, respectively. This
step is expressed in Equation 11.45 for the short periods and 11.46 for the 1second period, where the resulting ground
motions are named risktargeted maximum considered earthquake (MCER) spectral response accelerations and are denoted
SMS and SM1, respectively. Figure C11.41 illustrates the step for the 1second period only using a small map of the
conterminous United States that depicts S1, an abbreviated version of Table 11.42, and another small map that depicts SM1.
This step is the same as that in ASCE/SEI 705 Section 11.4.3, except that the resulting MCE spectral response accelerations
(SMS and SM1) have been renamed MCER spectral response accelerations.
Figures C11.42 and C11.43 are maps of the United States and California, respectively, showing values of the MCER 1
second spectral response acceleration parameter, SM1, and associated regions of Seismic Design Category, assuming Site
Class D conditions. These maps illustrate MCER ground motions resulting from the threestep process described above for
the 1second period only.
The design ground motions are 2/3 of these MCER ground motions as calculated using Equations 11.47 and 11.48.
Summary of Design Ground Motions – 34 United States Cities
Example values of the design ground motions that incorporate both USGS updates to uniformhazard values (and hazard
functions), including the new NGA relations, and the three technical changes mentioned above, are shown next. For
comparison, values of design ground motions of the current standard (ASCE/SEI 705) and, for California sites, values of
design ground motions of the 2001 California Building Code (CBC) are given. In all cases, example values are based on
design ground motions, representative of Site Class D conditions (i.e., default site class).
Table C11.41 lists the 34 city sites by region, the county (or counties) and associated populations they represent, and the
latitude and longitude of the specific location of the city site. Typically, each city is the largest city of the county or
metropolitan statistical area (MSA) of interest. The exception is Los Angeles County which has four city sites due to its large
geographical area and associated risk. The specific location (latitude and longitude) of city sites is important for sites in high
seismic regions (i.e., near an active source) since ground motions can vary greatly over relatively small distances. Example
sites are selected to be coincident with the location of the hazard grid point nearest the center of the city of interest. Hazard
grid points are the discrete locations at which the USGS calculates values of probabilistic and deterministic ground motions
(and risk coefficients). At the time that these examples were developed, ground motions were available (from the USGS)
only for these discrete locations; however, final maps and database tools such as the USGS online ground motion parameter
calculator also provide values of ground motions at intermediate locations.
Table C11.42 provides values of shortperiod spectral acceleration, SDS, and Table C11.43 provides values of 1second
spectral acceleration, SD1, for each of the 34 city sites of Table C11.41. Spectral acceleration values and Seismic Design
Category (SDC) are given for both ASCE/SEI 705 provisions and changes put forth in these provisions (2009 Provisions).
For California city sites, these tables also provide the corresponding values of seismic coefficients (2.5Ca, at short periods,
and, Cv, at 1 second) of the 2001 California Building Code (1997 Uniform Building Code or UBC). Weighted mean values
of spectral acceleration (and seismic coefficients) are calculated for each region considering the population associated with
each city site in Tables 11.42 and 11.43.
The following observations are made by comparing the design ground motions of these Provisions with those of ASCE/SEI
705 and the design coefficients of the 2001 California Building Code (CBC):
1. On a regional basis, the changes to ASCE/SEI 705 put forth in these Provisions result in only a slight increase or
decrease in design ground motions, on average. Notable exceptions are shortperiod ground motions in the central and
eastern United States (CEUS) for which the changes reduce design values and for certain city sites (e.g., St. Louis,
Chicago, and New York) where the changes also lower the Seismic Design Category.
2. In the western region (WUS), the changes to ASCE/SEI 705 put forth in these Provisions result in a modest increase, or
decrease, in design ground motions (plus or minus 10 percent), and generally lower seismic design values from those of
2001 CBC (1997 UBC).
3. For certain city sites (e.g., San Bernardino and San Diego), the changes to ASCE/SEI 705 put forth in these Provisions
result in a substantial increase, or decrease, in design ground motions due primarily to changes in underlying updated
USGS hazard functions.
Step 1 Figure C11.41 Illustration of process for developing 1second MCER Site Class D ground motions using formulas of Section 11.4.3 and associated mapped values of ground motions and risk coefficients of Chapter 22.
Step 2 Figure C11.41 Illustration of process for developing 1second MCER Site Class D ground motions using formulas of Section 11.4.3 and associated mapped values of ground motions and risk coefficients of Chapter 22.
Step 3 Figure C11.41 Illustration of process for developing 1second MCER Site Class D ground motions using formulas of Section 11.4.3 and associated mapped values of ground motions and risk coefficients of Chapter 22.
Figure C11.41 Illustration of process for developing 1second MCER Site Class D ground motions using formulas of
Section 11.4.3 and associated mapped values of ground motions and risk coefficients of Chapter 22.
S1 – Map of Site Class B
ground motions
Fv – Site coefficient
(Table 11.42)
SM1 – Map of MCER ground
motions (Site Class D)
Figure C11.42 Map illustrating values of the MCER 1second spectral response acceleration parameter, SM1 (%g), and associated regions of Seismic Design Category, assuming Site Class D conditions.
Figure C11.42 Map illustrating values of the MCER 1second spectral response acceleration parameter, SM1
(%g), and associated regions of Seismic Design Category, assuming Site Class D conditions.
Figure C11.43 Map illustrating values of the MCER 1second spectral response acceleration parameter, SM1 (%g), and associated regions of Seismic Design Category, assuming Site Class D conditions, for California sites.
Figure C11.43 Map illustrating values of the MCER 1second spectral response acceleration parameter, SM1
(%g), and associated regions of Seismic Design Category, assuming Site Class D conditions, for California
sites.
Table C11.41 Showing ThirtyFour Cities, Site Locations (Latitude and Longitude), and Associated Counties and Populations At Risk for Which Values of Ground Motions Are Provided
Table C11.41 ThirtyFour Cities, Site Locations (Latitude and Longitude), and Associated Counties and Populations At Risk for
Which Values of Ground Motions Are Provided
Table C11.42 Showing Comparison of Values of the ShortPeriod Design Ground Motion Parameter (SDS) and Corresponding Seismic Design Category (SDC) Put Forth in These Provisions with ASCE/SEI 705 and 1997 UBC Values for 34 City Site Locations (Assuming Default Site Class D)
Table C11.42 Comparison of Values of the ShortPeriod Design Ground Motion Parameter (SDS) and Corresponding Seismic Design
Category (SDC) Put Forth in These Provisions with ASCE/SEI 705 and 1997 UBC Values for 34 City Site Locations (Assuming
Default Site Class D)
Table C11.43 Showing Comparison of Values of the 1Second Period Design Ground Motion Parameter (SD1) and Corresponding Seismic Design Category (SDC) Put Forth in These Provisions with ASCE/SEI 705 and 1997 UBC Values for 34 City Site Locations (Assuming Default Site Class D)
Table C11.43 Comparison of Values of the 1Second Period Design Ground Motion Parameter (SD1) and Corresponding Seismic
Design Category (SDC) Put Forth in These Provisions with ASCE/SEI 705 and 1997 UBC Values for 34 City Site Locations
(Assuming Default Site Class D)
COMMENTARY TO SECTION 11.8.3
C11.8.3 Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F. The
dynamic lateral earth pressure on basement and retaining walls during the period of earthquake ground shaking is considered
to be an earthquake load, E, for use in design load combinations. This dynamic earth pressure is superimposed on the preexisting
static lateral earth pressure during ground shaking. The preexisting static lateral earth pressure is considered to be
an H load.
While the dynamic seismic lateral earth pressures (Item 1) may be determined for design earthquake ground motions, taken
as 2/3 of maximum considered earthquake ground motions, the potential for liquefaction and soil strength loss and related
consequences (Items 2 and 3) must be evaluated for maximum considered earthquake ground motions because they can be
catastrophic to a structure.
Page intentionally left blank.
Modifications to Chapter 12, Seismic Design Requirements
for Building Structures
TABLE 12.21, DESIGN COEFFICIENTS AND FACTORS
FOR SEISMICFORCERESISTING SYSTEMS
Revise as indicated (substantive changes are shaded, deletions are shown in strikeout, and
additions are underlined):
Table 12.21 Design Coefficients and Factors for SeismicForceResisting Systems
SeismicForceResisting
System
ASCE/SEI 705
Section Where
Detailing
Requirements
Are Specified
Response
Modification
Coefficient,
Ra
System
Overstren
gth Factor,
O0
g
Deflection
Amplificat
ion
Factor,
Cd
b
Structural System
Limitations and Building
Height (ft) Limitc
Seismic Design Category
B
C
Dd
Ed
Fe
A. BEARING WALL SYSTEMS
1. Special reinforced concrete
shear walls
14.2 and 14.2.3.6
5
2½
5
NL
NL
160
160
100
2. Ordinary reinforced
concrete shear walls
14.2 and 14.2.3.4
4
2½
4
NL
NL
NP
NP
NP
3. Detailed plain concrete
shear walls
14.2 and 14.2.3.2
2
2½
2
NL
NP
NP
NP
NP
4. Ordinary plain concrete
shear walls
14.2 and 14.2.3.1
1½
2½
1½
NL
NP
NP
NP
NP
5. Intermediate precast shear
walls
14.2 and 14.2.3.5
4
2½
4
NL
NL
40k
40k
40k
6. Ordinary precast shear
walls
14.2 and 14.2.3.3
3
2½
3
NL
NP
NP
NP
NP
7. Special reinforced
masonry shear walls
14.4 and 14.4.3
5
2½
3½
NL
NL
160
160
100
8. Intermediate reinforced
masonry shear walls
14.4 and 14.4.3
3½
2½
2¼
NL
NL
NP
NP
NP
9. Ordinary reinforced
masonry shear walls
14.4
2
2½
1¾
NL
160
NP
NP
NP
10. Detailed plain masonry
shear walls
14.4
2
2½
1¾
NL
NP
NP
NP
NP
11. Ordinary plain masonry
shear walls
14.4
1½
2½
1¼
NL
NP
NP
NP
NP
12. Prestressed masonry
shear walls
14.4
1½
2½
1¾
NL
NP
NP
NP
NP
13. Lightframed walls
sheathed with wood
structural panels rated for
shear resistance or steel
sheets
14.1, 14.1.4.2,
and 14.5
6½
3
4
NL
NL
65
65
65
14. Lightframed walls with
shear panels of all other
materials
14.1, 14.1.4.2,
and 14.5
2
2½
2
NL
NL
35
NP
NP
15. Lightframed wall
systems using flat strap
bracing
14.1, 14.1.4.2,
and 14.5
4
2
3½
NL
NL
65
65
65
16. Ordinary reinforced AAC
masonry shear walls
14.4.5.4
2
2 ½
2
NL
35
NP
NP
NP
17. Plain AAC masonry shear
walls
14.4.5.3
1 ½
2 ½
1 ½
NL
NP
NP
NP
NP
B. BUILDING FRAME SYSTEMS
1. Steel eccentrically braced
frames, moment resisting
connections at columns
away from links
14.1
8
2
4
NL
NL
160
160
100
2. Steel eccentrically braced
frames, nonmomentresisting,
connections at
columns away from links
14.1
7
2
4
NL
NL
160
160
100
23. Special steel
concentrically braced
frames
14.1
6
2
5
NL
NL
160
160
100
34. Ordinary steel
concentrically braced
frames
14.1
3¼
2
3¼
NL
NL
35j
35j
NPj
45. Special reinforced
concrete shear walls
14.2 and 14.2.3.6
6
2½
5
NL
NL
160
160
100
56. Ordinary reinforced
concrete shear walls
14.2 and 14.2.3.4
5
2½
4½
NL
NL
NP
NP
NP
67. Detailed plain concrete
shear walls
14.2 and 14.2.3.2
2
2½
2
NL
NP
NP
NP
NP
78. Ordinary plain concrete
shear walls
14.2 and 14.2.3.1
1½
2½
1½
NL
NP
NP
NP
NP
89. Intermediate precast
shear walls
14.2 and 14.2.3.5
5
2½
4½
NL
NL
40k
40k
40k
910. Ordinary precast shear
walls
14.2 and 14.2.3.3
4
2½
4
NL
NP
NP
NP
NP
101. Composite steel and
concrete eccentrically
braced frames
14.3
8
2
4
NL
NL
160
160
100
112. Composite steel and
concrete concentrically
braced frames
14.3
5
2
4½
NL
NL
160
160
100
123. Ordinary composite
steel and concrete braced
frames
14.3
3
2
3
NL
NL
NP
NP
NP
134. Composite steel plate
shear walls
14.3
6½
2½
5½
NL
NL
160
160
100
145. Special composite
reinforced concrete shear
walls with steel elements
14.3
6
2½
5
NL
NL
160
160
100
156. Ordinary composite
reinforced concrete shear
walls with steel elements
14.3
5
2½
4½
NL
NL
NP
NP
NP
167. Special reinforced
masonry shear walls
14.4
5½
2½
4
NL
NL
160
160
100
178. Intermediate reinforced
masonry shear walls
14.4
4
2½
4
NL
NL
NP
NP
NP
189. Ordinary reinforced
masonry shear walls
14.4
2
2½
2
NL
160
NP
NP
NP
1920. Detailed plain
masonry shear walls
14.4
2
2½
2
NL
NP
NP
NP
NP
201. Ordinary plain masonry
shear walls
14.4
1½
2½
1¼
NL
NP
NP
NP
NP
212. Prestressed masonry
shear walls
14.4
1½
2½
1¾
NL
NP
NP
NP
NP
223. Lightframed walls
sheathed with wood
structural panels rated for
shear resistance or steel
sheets
14.1, 14.1.4.2, and
14.5
7
2½
4½
NL
NL
65
65
65
234. Lightframed walls
with shear panels of all
14.1, 14.1.4.2, and
14.5
2½
2½
2½
NL
NL
35
NP
NP
other materials
25. Bucklingrestrained
braced frames, nonmoment
resisting beamcolumn
connections
14.1
7
2
5½
NL
NL
160
160
100
246. Bucklingrestrained
braced frames, momentresisting
beamcolumn
connections
14.1
8
2½
5
NL
NL
160
160
100
257. Special steel plate shear
wall
14.1
7
2
6
NL
NL
160
160
100
C. MOMENTRESISTING FRAME SYSTEMS
1. Special steel moment
frames
14.1 and 12.2.5.5
8
3
5½
NL
NL
NL
NL
NL
2. Special steel truss
moment frames
14.1
7
3
5½
NL
NL
160
100
NP
3. Intermediate steel
moment frames
12.2.5.6, 12.2.5.7,
12.2.5.8, 12.2.5.9,
and 14.1
4.5
3
4
NL
NL
35h,i
NPh
NPi
4. Ordinary steel moment
frames
12.2.5.6, 12.2.5.7,
12.2.5.8, and 14.1
3.5
3
3
NL
NL
NPh
NPh
NPi
5. Special reinforced
concrete moment frames
12.2.5.5 and 14.2
8
3
5½
NL
NL
NL
NL
NL
6. Intermediate reinforced
concrete moment frames
14.2
5
3
4½
NL
NL
NP
NP
NP
7. Ordinary reinforced
concrete moment frames
14.2
3
3
2½
NL
NP
NP
NP
NP
8. Special composite steel
and concrete moment
frames
12.2.5.5 and 14.3
8
3
5½
NL
NL
NL
NL
NL
9. Intermediate composite
moment frames
14.3
5
3
4½
NL
NL
NP
NP
NP
10. Composite partially
restrained moment
frames
14.3
6
3
5½
160
160
100
NP
NP
11. Ordinary composite
moment frames
14.3
3
3
2½
NL
NP
NP
NP
NP
12. Coldformed steel –
special bolted framem
14.1
3½
3 l
3½
35
35
35
35
35
D. DUAL SYSTEMS
WITH SPECIAL
MOMENT FRAMES
CAPABLE OF
RESISTING AT
LEAST 25% OF
PRESCRIBED
SEISMIC FORCES
12.2.5.1
1. Steel eccentrically braced
frames
14.1
8
2½
4
NL
NL
NL
NL
NL
2. Special steel
concentrically braced
frames
14.1
7
2½
5½
NL
NL
NL
NL
NL
3. Special reinforced
concrete shear walls
14.2
7
2½
5½
NL
NL
NL
NL
NL
4. Ordinary reinforced
concrete shear walls
14.2
6
2½
5
NL
NL
NP
NP
NP
5. Composite steel and
concrete eccentrically
braced frames
14.3
8
2½
4
NL
NL
NL
NL
NL
6. Composite steel and
concrete concentrically
braced frames
14.3
6
2½
5
NL
NL
NL
NL
NL
7. Composite steel plate
14.3
7½
2½
6
NL
NL
NL
NL
NL
shear walls
8. Special composite
reinforced concrete shear
walls with steel elements
14.3
7
2½
6
NL
NL
NL
NL
NL
9. Ordinary composite
reinforced concrete shear
walls with steel elements
14.3
6
2½
5
NL
NL
NP
NP
NP
10. Special reinforced
masonry shear walls
14.4
5½
3
5
NL
NL
NL
NL
NL
11. Intermediate reinforced
masonry shear walls
14.4
4
3
3½
NL
NL
NP
NP
NP
12. Bucklingrestrained
braced frame
14.1
8
2½
5
NL
NL
NL
NL
NL
13. Special steel plate shear
walls
14.1
8
2½
6½
NL
NL
NL
NL
NL
E. DUAL SYSTEMS
WITH INTERMEDIATE
MOMENT FRAMES
CAPABLE OF RESISTING
AT LEAST 25% OF
PRESCRIBED SEISMIC
FORCES
12.2.5.1
1. Special steel
concentrically braced
framesf
14.1
6
2½
5
NL
NL
35
NP
NPh,k
2. Special reinforced
concrete shear walls
14.2
6½
2½
5
NL
NL
160
100
100
3. Ordinary reinforced
masonry shear walls
14.4
3
3
2½
NL
160
NP
NP
NP
4. Intermediate reinforced
masonry shear walls
14.4
3½
3
3
NL
NL
NP
NP
NP
5. Composite steel and
concrete concentrically
braced frames
14.3
5½
2½
4½
NL
NL
160
100
NP
6. Ordinary composite
braced frames
14.3
3½
2½
3
NL
NL
NP
NP
NP
7. Ordinary composite
reinforced concrete shear
walls with steel elements
14.3
5
3
4½
NL
NL
NP
NP
NP
8. Ordinary reinforced
concrete shear walls
14.2
5½
2½
4½
NL
NL
NP
NP
NP
F. SHEAR WALLFRAME
INTERACTIVE
SYSTEM WITH
ORDINARY
REINFORCED
CONCRETE MOMENT
FRAMES AND
ORDINARY
REINFORCED
CONCRETE SHEAR
WALLS
12.2.5.10 and 14.2
4½
2½
4
NL
NP
NP
NP
NP
G. CANTILEVERED
COLUMN SYSTEMS
DETAILED TO
CONFORM TO THE
REQUIREMENTS FOR:
12.2.5.2
1. Special steel moment
frames
12.2.5.5 and 14.1
2½
1¼
2½
35
35
35
35
35
2. Intermediate steel
moment frames
14.1
1½
1¼
1½
35
35
35h
NPh,i
NPh,i
3. Ordinary steel moment
frames
14.1
1¼
1¼
1¼
35
35
NP
NPh,i
NPh,i
4. Special reinforced
concrete moment frames
12.2.5.5 and 14.2
2½
1¼
2½
35
35
35
35
35
5. Intermediate concrete
moment frames
14.2
1½
1¼
1½
35
35
NP
NP
NP
6. Ordinary concrete
moment frames
14.2
1
1¼
1
35
NP
NP
NP
NP
7. Timber frames
14.5
1½
1½
1½
35
35
35
NP
NP
H. STEEL SYSTEMS
NOT SPECIFICALLY
DETAILED FOR SEISMIC
RESISTANCE,
EXCLUDING
CANTILEVER COLUMN
SYSTEMS
14.1
3
3
3
NL
NL
NP
NP
NP
aResponse modification coefficient, R, for use throughout the standard. Note R reduces forces to a strength level, not an allowable stress
level.
bReflection amplification factor, Cd, for use in Sections 12.8.6, 12.8.7, and 12.9.2
cNL = Not Limited and NP = Not Permitted. For metric units use 30.5 m for 100 ft and use 48.8 m for 160 ft. Heights are measured
from the base of the structure as defined in Section 11.2.
dSee Section 12.2.5.4 for a description of building systems limited to buildings with a height of 240 ft (73.2 m) or less.
eSee Section 12.2.5.4 for building systems limited to buildings with a height of 160 ft (48.8 m) or less.
fOrdinary moment frame is permitted to be used in lieu of intermediate moment frame for Seismic Design Categories B or C.
gThe tabulated value of the overstrength factor, O0, is permitted to be reduced by subtracting onehalf for structures with flexible
diaphragms, but shall not be taken as less than 2.0 for any structure.
hSee Sections 12.2.5.6 and 12.2.5.7 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category D or E.
iSee Sections 12.2.5.8 and 12.2.5.9 for limitations for steel OMFs and IMFs in structures assigned to Seismic Design Category F.
jSteel ordinary concentrically braced frames are permitted in singlestory buildings up to a height of 60 ft (18.3 m) where the dead load
of the roof does not exceed 20 psf (0.96 kN/m2) and in penthouse structures.
l Alternatively, the seismic load effect with overstrength, Em, can be based on the expected strength determined in accordance with AISI
S110.
m Coldformed steel – special bolted moment frames shall be limited to one story in height in accordance with AISI S110.
TABLE 12.61, PERMITTED ANALYTICAL PROCEDURES
Replace with the following:
Table 12.61 Permitted Analytical Procedures
Seismic
Design
Category
Structural Characteristics
Equivalent
Lateral Force
Analysis Section
12.8
Modal Response
Spectrum
Analysis Section
12.9
Seismic
Response
History
Procedures
Chapter 16
B, C
All structures
P
P
P
D, E, F
Regular structures not exceeding 160 feet in
height and all structures of light frame
construction
P
P
P
Regular structures equal to or exceeding
160 feet in height with T < 3.5 Ts
P
P
P
Irregular structures not exceeding 160 feet in
height and having only horizontal
irregularities type 2, 3, 4, or 5 of Table 12.3
1 or vertical irregularities type 4, 5a or 5b of
Table 12.32
P
P
P
All other structures
NP
P
P
Note: P – Permitted; NP – Not permitted.
SECTION 12.8.7, PDELTA LIMIT
Replace with the following:
12.8.7 Pdelta Limit. Stability coefficient, ., as determined for each level of the structure by the following equation,
shall not exceed 0.10:
(12.816)
where:
Px = the total vertical design load at and above Level x. Where calculating the vertical design load
for purposes of determining Pdelta effects, the individual load factors need not exceed 1.0.
. = the design story drift calculated in accordance with Section 12.8.6.
I = the occupancy importance factor determined in accordance with Section 11.5.1.
Vx = the seismic shear force acting between Level x and x  1.
hsx = the story height below Level x.
Cd = the deflection amplification factor from Table 12.21
EXCEPTION: The stability coefficient, ., shall be permitted to exceed 0.10 if either of the following applies: Equation
Equation
1. The resistance to lateral forces is determined to increase continuously in a monotonic nonlinear static
(pushover) analysis according to ASCE/SEI 41 Section 3.3.3.3.2 using Sa defined as a MCER spectral response
acceleration according to the Provisions at the effective fundamental period. Modeling and analysis shall
conform to ASCE/SEI 41 Section 3.3.3, except that the analysis shall be done for seismic actions occurring
simultaneously with the effects of dead load in combination with not less than 25 percent of the required design
live loads, reduced as permitted for the area of a single floor. Degradation shall be modeled and Pdelta effects
shall be included in the analysis. A review of the nonlinear static analysis shall be performed by an independent
team having experience in seismic analysis methods and the theory and application of nonlinear seismic
analysis and structural behavior under earthquake loading. The review team shall be composed of at least two
members including at least one registered design professional.
2. Compliance with the provisions of the nonlinear response history procedure in Chapter 16 is demonstrated.
SECTION 12.11.2.2.1, TRANSFER OF ANCHORAGE FORCES INTO DIAPHRAGM
Replace with the following:
12.11.2.2.1 Transfer of Anchorage Forces into Diaphragm. Diaphragms shall be provided with continuous ties or
struts between diaphragm chords to distribute these anchorage forces into the diaphragm.
EXCEPTION: In buildings with diaphragms of lightframe construction, continuous crossties are not required
provided all of the following are satisfied:
1. The unsupported height of the wall does not exceed 12 feet,
2. Anchorages are spaced no more than 4 feet on center,
3. The length of the diaphragm in the direction parallel to the wall being anchored does not exceed 2.5 times the
length of the diaphragm in the orthogonal direction, and
4. The anchorage connection extends far enough into the diaphragm to transfer the anchorage force into the
diaphragm.
Diaphragm connections shall be positive, mechanical, or welded. Added chords are permitted to be used to form
subdiaphragms to transmit the anchorage forces to the main continuous crossties. The maximum lengthtowidth ratio
of the structural subdiaphragm shall be 2.5 to 1. Connections and anchorages capable of resisting the prescribed forces
shall be provided between the diaphragm and the attached components. Connections shall extend into the diaphragm a
sufficient distance to develop the force transferred into the diaphragm.
SECTION 12.11.2.2.3, WOOD DIAPHRAGMS
Replace with the following:
12.11.2.2.3 Wood Diaphragms. In wood diaphragms, the continuous ties shall be in addition to the diaphragm
sheathing.
EXCEPTION: Where continuous crossties are not required by Section 12.11.2.2.1 and the anchorage connections
extend into the diaphragm a sufficient distance to develop the force transferred into the diaphragm sheathing.
Anchorage shall not be accomplished by use of toenails or nails subject to withdrawal nor shall wood ledgers or
framing be used in crossgain bending or crossgrain tension. The diaphragm sheathing shall not be considered
effective as providing the ties or struts required by this section.
SECTION 12.14.7.5.1, TRANSFER OF ANCHORAGE FORCES INTO DIAPHRAGM
Replace with the following:
12.14.7.5.1 Transfer of Anchorage Forces into Diaphragm. Diaphragms shall be provided with continuous ties or
struts between diaphragm chords to distribute these anchorage forces into the diaphragm.
EXCEPTION: In buildings with diaphragms of lightframed construction, continuous crossties are not required
provided all of the following are satisfied:
1. The unsupported height of the wall does not exceed 12 feet,
2. Anchorages are spaced no more than 4 feet on center,
3. The length of the diaphragm in the direction parallel to the wall being anchored does not exceed 2.5 times the
length of the diaphragm in the orthogonal direction, and
4. The connection extends far enough into the diaphragm to transfer the anchorage force into the diaphragm.
Added chords are permitted to be used to form subdiaphragms to transmit the anchorage forces to the main continuous
crossties. The maximum lengthtowidth ratio of the structural subdiaphragm shall be 2.5 to 1. Connections and
anchorages capable of resisting the prescribed forces shall be provided between the diaphragm and the attached
components. Connections shall extend into the diaphragm a sufficient distance to develop the force transferred into the
diaphragm.
SECTION 12.14.7.5.2, WOOD DIAPHRAGMS
Replace with the following:
12.14.7.5.2 Wood Diaphragms. In wood diaphragms, the continuous ties shall be in addition to the diaphragm
sheathing.
EXCEPTION: Where continuous crossties are not required by Section 12.14.7.5.1 and the anchorage connections
extend into the diaphragm a sufficient distance to develop the force transferred into the diaphragm sheathing.
Anchorage shall not be accomplished by use of toenails or nails subject to withdrawal nor shall wood ledgers or framing
be used in crossgain bending or crossgrain tension. The diaphragm sheathing shall not be considered effective as
providing the ties or struts required by this section.
SECTION 12.14.8.1, SEISMIC BASE SHEAR
Revise, in part, to read as follows:
. . . In calculating SDS, Ss shall be in accordance with Section 11.4.3, but need not be taken larger than 1.5.
[Remainder of section stays the same.]
Commentary to Chapter 12 Modifications
COMMENTARY TO SECTION 12.6
C12.6 ANALYSIS SELECTION PROCEDURE
Table 12.61 applies only to buildings without seismic isolation (Chapter 17) or passive energy devices (Chapter 18). The
four basic procedures addressed in Table 12.61 are equivalent lateral force (ELF) analysis (Section 12.8), modal response
spectrum (MRS) analysis (Section 12.9), linear response history (LRH) analysis, and nonlinear response history (NRH)
analysis. Requirements for performing response history analysis are provided in Chapter 16. Nonlinear static (pushover)
analysis is not provided as an “approved” analysis procedure in ASCE/SEI 705. The value of Ts = SD1/SDS depends on the
site class because SDS and SD1 include such effects. When ELF is not allowed, the analysis must be performed using modal
response spectrum or response history analysis.
ELF is not allowed for buildings with the listed irregularities because it assumes a gradually varying distribution of mass and
stiffness along the height and negligible torsional response. The 3.5Ts limit recognizes that higher modes are more
significant in taller buildings (Lopez and Cruz, 1996; Chopra, 2007), such that the ELF method may underestimate the design
base shear and may not predict correctly the vertical distribution of seismic forces.
Table C12.61 demonstrates that 3.5Ts generally increases as ground motion intensity increases and as soils become softer.
Assuming that the fundamental building period is about 0.1 times the number of stories, the maximum building height for
which the ELF applies ranges from about 10 stories for low seismic hazard sites with firm soil to 30 stories for high seismic
hazard sites with soft soil. Since this trend was not intended, the modification to Section 12.6 adds a height limit of 160 feet.
Table C12.61 Values of 3.5TS for Various Cities and Various Site Classes
Location
Ss (g)
S1 (g)
3.5Ts (seconds) for Site Class
A&B
C
D
E
Denver
0.219
0.057
0.91
1.29
1.37
1.07
Boston
0.275
0.067
0.85
1.21
1.30
1.03
New York City
0.359
0.070
0.68
0.97
1.08
0.93
Las Vegas
0.582
0.179
1.08
1.50
1.68
1.89
St. Louis
0.590
0.169
1.00
1.40
1.60
1.81
San Diego
1.128
0.479
1.31
1.73
1.99
2.91
Memphis
1.341
0.368
0.96
1.38
1.59
2.25
Charleston
1.414
0.348
0.86
1.25
1.47
2.08
Seattle
1.448
0.489
1.18
1.55
1.78
2.63
San Jose
1.500
0.600
1.40
1.82
2.10
2.12
Salt Lake City
1.672
0.665
1.39
1.81
2.09
3.10
COMMENTARY TO SECTION 12.8.7
C12.8.7 Pdelta Limit. ASCE/SEI 705 allows amplified forces to be used in a linear elastic analysis where the stability
coefficient, ., exceeds 0.10. By comparison, FEMA 350 requires explicit modeling of Pdelta effects for steel momentresisting
frames where . exceeds approximately 0.04. Where the tangent stiffness of the structure may become negative,
dynamic displacement demands can increase significantly (Gupta and Krawinkler, 2000). Structures with . not greater than
0.10 generally are expected to have a positive tangent stiffness, depending on the progression of plastic hinging and strain
hardening. The 2009 Provisions allows structures to exceed this limit only if a nonlinear static analysis including Pdelta
effects demonstrates that the tangent stiffness remains positive up to the target displacement computed for the MCER or if
nonlinear dynamic analysis demonstrates adequate resistance to instability.
The occupancy importance factor, I, is inserted into Equation 12.816 to correct an error in ASCE/SEI 7. In this way, the
stability coefficient is based on the elastic stiffness of the system.
ADDITIONAL REFERENCES FOR CHAPTER 12 COMMENTARY
Federal Emergency Management Agency. 2000. Recommended Seismic Design Criteria for New Steel MomentFrame
Buildings, FEMA 350. Prepared for FEMA by the SAC Joint Venture. Federal Emergency Management Agency,
Washington, D.C.
Gupta, A., and H. Krawinkler. 2000. “Dynamic Pdelta effects for flexible inelastic steel structures,” ASCE Journal of
Structural Engineering, 126(1):145154.
Modifications to Chapter 13, Seismic Design Requirements for
Nonstructural Elements
SECTION 13.6.5.5, ADDITIONAL REQUIREMENTS [FOR COMPONENT SUPPORTS]
Replace Item 6f with the following:
Attachments into concrete utilize anchors that have not been prequalified for seismic applications in accordance with
ACI 355.2.
SECTION 13.6.8.2, FIRE PROTECTION SPRINKLER SYSTEMS
IN SEISMIC DESIGN CATEGORY C
Replace with the following:
13.6.8.2 Fire Protection Sprinkler Systems. Fire protection sprinkler systems designed and constructed in accordance
with NFPA 13 shall be deemed to meet the other requirements of this section.
SECTION 13.6.8.3, FIRE PROTECTION SPRINKLER SYSTEMS
IN SEISMIC DESIGN CATEGORIES D THROUGH F
Delete this section and renumber remaining sections.
Commentary to Chapter 13 Modifications
COMMENTARY TO SECTION 13.6.5.5
C13.6.5.5 Additional Requirements [for Component Supports]. As reflected in this section of the standard and in the
footnote to Table 13.61, vibration isolated equipment with snubbers is subject to amplified loads as a result of dynamic
impact.
Use of expansion anchors for nonvibration isolated mechanical equipment rated over 10 hp is prohibited based on
experience with older anchor types. The ASCE 7 Seismic Subcommittee is considering a proposal that also would exempt
anchors qualified by simulated seismic testing and longterm vibration testing.
The previous language in Item 6f was intended to identify anchor types that would be considered nonductile. The previous
requirement has been superseded by requirements for qualification that include checks for ductility and good performance in
earthquake conditions.
COMMENTARY TO SECTION 13.6.8.2
C13.6.8.2 Fire Protection Sprinkler Systems. NFPA 132007 applies to Seismic Design Categories C, D, E, and F. The
lateral design procedures of NFPA 132007 have been revised for consistency with the ASCE/SEI 705 design approach
while retaining traditional sprinkler system design concepts. Using conservative upperbound values of the various design
parameters, a single lateral force coefficient, Cp, was developed. It is a function of the mapped short period response
parameter Ss. Stresses in the pipe and connections are controlled by limiting the maximum reaction at bracing points as a
function of pipe diameter.
In Seismic Design Category C, the prescriptive requirements of NFPA 132007, using a default lateral force of 50 percent of
the weight of the waterfilled pipe, provide a conservative design, although application of the NFPA sway bracing calculation
may produce a lower design lateral force.
Page intentionally left blank.
Modifications to Chapter 14, Material Specific Seismic Design and
Detailing Requirements
SECTION 14.1, STEEL
Replace with the following:
14.1 STEEL
Structures, including foundations, constructed of steel to resist seismic loads shall be designed and detailed in accordance
with this standard including the reference documents and additional requirements provided in this section.
14.1.1 Reference Documents. The design, construction, and quality of steel components that resist seismic forces shall
conform to the applicable requirements of the following as amended herein:
1. AISC 360
2. AISC 341
3. AISI NAS
4. AISI S110
5. AISIGP
6. AISIPM
7. AISI Lateral
8. AISI WSD
9. ASCE 19
10. ASCE 8
11. SJI Tables
14.1.1.1 Modifications to AISC 34105. The text of AISC 341 shall be modified as indicated in Sections 14.1.1.1.1
and 14.1.1.1.2. Italics are used for text to indicate requirements that differ from AISC 341.
14.1.1.1.1 Replace Section 15.7 with the following:
15.7 BeamtoColumn Connections
Where a brace or gusset plate connects to both members at a beamtocolumn connection, the connection shall
conform to one of the following:
(1) The connection shall accommodate the required rotation at a minimum story drift of 2.5 percent of the story
height or
(2) The connection shall be designed to resist a moment equal to the lesser of the following:
(i) A moment corresponding to 1.1RyFyZ (LRFD) or (1.1/1.5)RyFyZ (ASD), as appropriate, of the beam.
(ii) A moment corresponding to S1.1RyFyZ (LRFD) or S[(1.1/1.5)RyFyZ] (ASD), as appropriate, of the column.
This moment shall be considered in combination with the required strength of the brace connection and beam
connection, including amplified diaphragm collector forces.
1.4.1.1.1.2 Add new Section 16.7 as follows:
16.7 BeamtoColumn Connections
Where a brace or gusset plate connects to both members at a beamtocolumn connection, the connection shall
conform to one of the following:
(1) The connection shall accommodate the required rotation at a minimum story drift of 2.5 percent of the story
height or
(2) The connection shall be designed to resist a moment equal to the lesser of the following:
(i) A moment corresponding to 1.1RyFyZ (LRFD) or (1.1/1.5)RyFyZ (ASD), as appropriate, of the beam.
(ii) A moment corresponding to S1.1RyFyZ (LRFD) or S[(1.1/1.5)RyFyZ] (ASD), as appropriate, of the column.
This moment shall be considered in combination with the required strength of the brace connection and beam
connection, including amplified diaphragm collector forces.
14.1.2 Seismic Design Categories B and C. Steel structures assigned to Seismic Design Category B or C shall be of
any construction permitted by the reference documents in Section 14.1.1. An R factor as set forth in Table 12.21 is
permitted where the structure is designed and detailed in accordance with the requirements of AISC 341 for structural
steel buildings, AISI S110 for coldformed steel construction, or AISI Lateral for lightframed coldformed steel
construction. Systems not detailed in accordance with AISC 341, AISI S110, or AISI Lateral shall use the R factor
designated for “Structural steel systems not specifically detailed for seismic resistance” in Table 12.21.
14.1.3 Seismic Design Categories D through F. Steel structures assigned to Seismic Design Category D, E, or F shall
be designed and detailed in accordance with AISC 341 for structural steel, AISI S110 for coldformed steel construction,
or AISI Lateral for lightframed coldformed steel construction.
14.1.4 Coldformed Steel. The design of coldformed carbon or lowalloy steel to resist seismic loads shall be in
accordance with the requirements of AISI NAS, AISI S110 and the design of coldformed stainless steel structural
members to resist seismic loads shall be in accordance with the requirements of ASCE 8.
14.1.4.1 Modifications to AISI S110 (2007 edition). The text of AISI S110 shall be modified as indicated in Sections
14.1.4.1.1 through 14.1.2.1.5. Italics are used for text within Sections 14.1.4.1.1 through 14.1.2.1.5 to indicate
requirements that differ from AISI S110.
14.1.4.1.1 AISI S110, Section D1. Revise Section D1 to read as follows:
D1 ColdFormed Steel Special Bolted Moment Frames (CFSSBMF)
Coldformed steel–special bolted moment frames (CFSSBMF) systems shall withstand inelastic deformations
through friction and bearing at their bolted connections. Beams, columns, and connections shall satisfy the
requirements in this section. CFSSBMF systems shall be limited to onestory structures, no greater than 35 feet in
height, without column splices and satisfying the requirements in this section. The SBMF shall engage all columns
supporting the roof or floor above. The single size beam and single size column with the same bolted moment
connection detail shall be used for each frame. The frame is to be supported on a level floor or foundation.
14.1.4.1.2 AISI S110, Section D1.1.1. Revise Section D1.1.1 to read as follows:
D1.1.1 Connection Limitations
Beamtocolumn connections in CFSSBMF systems shall be bolted connections with snugtight highstrength
bolts. The bolt spacing and edge distance shall be in accordance with the limits of AISI S100,
Section E3. The 8bolt configuration shown in Table D11 shall be used. The faying surfaces of the beam
and column in the bolted moment connection region shall be free of any lubricants or debris.
14.1.4.1.3 AISI S110, Section D1.2.1. Revise Section D1.2.1 to read as follows:
D1.2.1 Beam Limitations
In addition to the requirements of Section D1.2.3, beams in CFSSBMF systems shall be ASTM A653 Gr. 55
galvanized steel coldformed Csections members with lips, and designed in accordance with Chapter C of
AISI S100. The beam depth shall be between 12 in (305 mm) and 20 in (508 mm). The flat depthtothickness
ratio of the web shall not exceed 6.18 .
14.1.4.1.4 AISI S110, Section D1.2.2. Revise Section D1.2.2 to read as follows:
D1.2.2 Column Limitations
In addition to the requirements of D1.2.3, columns in CFSSBMF systems shall be ASTM A500 Gr. B coldformed
hollow structural section (HSS) members painted with a standard industrial finished surface, and
designed in accordance with Chapter C of AISI S100. The column depth shall be between 8 in (203 mm) and
12 in (305 mm). The flat depthtothickness ratio shall not exceed 1.40 . Equation
Equation Equation
E / Fy
14.1.4.1.5 AISI S110, Section D1.3. Revise Section D1.3 to read as follows:
D1.3 Design Story Drift
Where the applicable building code does not contain design coefficients for CSFSBMF systems, the
provisions of Appendix 1 shall apply. The design story drift shall not exceed 0.03h, unless approved by
authority having jurisdiction. In no case shall the design story drift exceed 0.05h.
For structures having a period less than TS, as defined in the applicable building code, alternate methods of
computing . shall be permitted, provided such alternate methods are acceptable to the authority having
jurisdiction.
[Remainder of Section 14.1 is unchanged.]
SECTION 14.2.2, MODIFICATIONS TO ACI 318
Replace with the following:
14.2.2 Modifications to ACI 318. The text of ACI 318 shall be modified as indicated in Sections 14.2.2.1 through
14.2.2.9. Italics are used for text within Sections 14.2.2.1 through 14.2.2.9 to indicate provisions that differ from ACI
318.
14.2.2.1 Definitions. Add the following definitions to Section 2.2.
DETAILED PLAIN CONCRETE STRUCTURAL WALL: A wall complying with the requirements of Chapter 22.
ORDINARY PRECAST STRUCTURAL WALL: A precast wall complying with the requirements of Chapters 1
through 18.
WALL PIER: A wall segment with a horizontal lengthtothickness ratio of at least 2.5, but not exceeding 6, whose
clear height is at least two times its horizontal length.
14.2.2.2 ACI 318, Section 7.10. Modify Section 7.10 by revising Section 7.10.5.6 to read as follows:
7.10.5.6 Where anchor bolts are placed in the top of columns or pedestals, the bolts shall be enclosed by lateral
reinforcement that also surrounds at least four vertical bars of the column or pedestal. The lateral reinforcement
shall be distributed within 5 in. of the top of the column or pedestal, and shall consist of at least two No.4 or three
No.3 bars. In structures assigned to Seismic Design Categories C, D, E or F, the ties shall have a hook on each free
end that complies with 7.1.4.
14.2.2.3 Scope. Modify Section 21.1.1.3 to read as follows:
21.1.1.3 All members shall satisfy requirements of Chapters 1 to 19 and 22. Structures assigned to SDC B, C, D, E,
or F also shall satisfy 21.1.1.4 through 21.1.1.8, as applicable, except as modified by the requirements of Chapters
14 and 15 of this document.
14.2.2.4 Intermediate Precast Structural Walls: Modify Section 21.4 by renumbering Section 21.4.3 to Section
21.4.4 and adding new Sections 21.4.3 and 21.4.5, to read as follows:
21.4 Connections that are designed to yield shall be capable of maintaining 80 percent of their design strength at
the deformation induced by design displacement, or shall use type 2 mechanical splices.
21.4.4 Elements of the connection that are not designed to yield shall develop at least 1.5 Sy.
21.4.5 Wall piers not designed as part of a moment frame shall have transverse reinforcement designed to resist the
shear forces determined from Section 21.3.3. Spacing of transverse reinforcement shall not exceed 8 in. Transverse
reinforcement shall be extended beyond the pier clear height for at least 12 in.
EXCEPTIONS: The preceding requirement need not apply in the following situations:
1. Wall piers that satisfy Section 21.13.
2. Wall piers along a wall line within a story where other shear wall segments provide lateral support to the wall
piers and such segments have a total stiffness of at least six times the sum of the inplane stiffnesses of all the
wall piers.
Wall segments with a horizontal lengthtothickness ratio less than 2.5 shall be designed as columns.
14.2.2.5 Wall Piers and Wall Segments. Modify Section 21.9 by adding a new Section 21.9.10 to read as follows:
21.9.10 Wall Piers and Wall Segments in Special Structural Walls.
21.9.10.1 Wall piers not designed as a part of a special momentresisting frame shall have transverse reinforcement
designed to satisfy the requirements in Section 21.9.10.2.
EXCEPTIONS:
1. Wall piers that satisfy Section 21.13.
2. Wall piers along a wall line within a story where other shear wall segments provide lateral support to the wall
piers, and such segments have a total stiffness of at least six times the sum of the inplane stiffnesses of all the
wall piers.
21.9.10.2 Transverse reinforcement with seismic hooks at both ends shall be designed to resist the shear forces
determined from Section 21.6.5.1. Spacing of transverse reinforcement shall not exceed 6 in. (152 mm). Transverse
reinforcement shall be extended beyond the pier clear height for at least 12 in. (304 mm).
21.9.10.3 Wall segments with a horizontal lengthtothickness ratio less than 2.5 shall be designed as columns.
14.2.2.6 Special Precast Structural Walls. Modify Section 21.10.2 to read as follows:
21.10.2 Special structural walls constructed using precast concrete shall satisfy all the requirements of Section 21.9
in addition to 21.4 as modified in Section 14.2.2.7.
14.2.2.7 Foundations. Modify Section 21.12.1.1 to read as follows:
21.12.1.1 Foundations resisting earthquakeinduced forces or transferring earthquakeinduced forces between
structure and ground shall comply with requirements of Section 21.12 and other applicable code provisions unless
modified by Sections 12.1.5, 12.13 or 14.2 of ASCE/SEI 705.
14.2.2.8 Detailed Plain Concrete Shear Walls. Modify Section 22.6 by adding a new Section 22.6.7 to read:
22.6.7 Detailed Plain Concrete Shear Walls.
22.6.7.1 Detailed plain concrete shear walls are walls conforming to the requirements for ordinary plain concrete
shear walls and 22.6.7.2
22.6.7.2 Reinforcement shall be provided as follows:
a. Vertical reinforcement of at least 0.20 in.2 (129 mm2) in crosssectional area shall be provided continuously
from support to support at each corner, at each side of each opening, and at the ends of walls. The continuous
vertical bar required beside an opening is permitted to substitute for the No. 5 bar required by Section 22.6.6.5.
b. Horizontal reinforcement at least 0.20 in.2 (129 mm2) in crosssectional area shall be provided:
1. Continuously at structurally connected roof and floor levels and at the top of walls.
2. At the bottom of loadbearing walls or in the top of foundations where doweled to the wall
3. At a maximum spacing of 120 in. (3048 mm).
Reinforcement at the top and bottom of openings, where used in determining the maximum spacing specified in Item
3 in the preceding text, shall be continuous in the wall.
14.2.2.9 Strength Requirements for Anchors: Modify Section D.4 by adding a new exception at the end of Section
D.4.2.2 to read as follows:
EXCEPTION: If Nb is determined using Equation D7, the concrete breakout strength of Section D.4.2 shall be
considered satisfied by the design procedure of Sections D.5.2 and D.6.2 without the need for testing regardless of
anchor bolt diameter and tensile embedment.
SECTIONS 14.2.3, ADDITIONAL DETAILING REQUIREMENTS FOR CONCRETE PILES,
AND 14.2.3.1, CONCRETE PILE REQUIREMENTS FOR SDC C
Replace with the following:
14.2.3 Additional Detailing Requirements for Concrete Piles. In addition to the foundation requirements set forth in
ACI 318 Sections 12.1.5, 12.13 and 21.12, design, detailing and construction of concrete piles shall conform to the
provisions of this section.
14.2.3.1 Concrete Pile Requirements for Seismic Design Category C. Concrete piles in structures assigned to
Seismic Design Category C shall comply with the requirements of this section.
14.2.3.1.1 Anchorage of Piles. All concrete piles and concrete filled pipe piles shall be connected to the pile cap by
embedding the pile reinforcement in the pile cap for a distance equal to the development length as specified in ACI 318
as modified by Section 14.2.2 of this standard or by the use of fieldplaced dowels anchored in the concrete pile. For
deformed bars, the development length is the full development length for compression or tension, in the case of uplift,
without reduction in length for excess area.
Hoops, spirals, and ties shall be terminated with seismic hooks as defined in ACI 318 Section 2.2.
Where a minimum length for reinforcement or the extent of closely spaced confinement reinforcement is specified at the
top of the pile, provisions shall be made so that those specified lengths or extents are maintained after pile cutoff.
SECTION 14.2.3.2, CONCRETE PILE REQUIREMENTS FOR SEISMIC DESIGN
CATEGORIES D THROUGH F
Replace Sections 14.2.3.2.1 through 14.2.3.2.5 with the following:
14.2.3.2.1 Site Class E or F Soil. Where concrete piles are used in Site Class E or F, they shall have transverse
reinforcement in accordance with ACI 318 Sections 21.6.4.2 through 21.6.4.4 within seven pile diameters of the pile cap
and the interfaces between strata that are hard or stiff and strata that are liquefiable or are composed of soft to medium
stiff clay.
14.2.3.2.2 Nonapplicable ACI 318 Sections for Grade Beam and Piles. ACI 318 Section 21.12.3.3 need not apply
where grade beams have the required strength to resist the forces from the load combinations with overstrength factor of
Section 12.4.3.2 or 12.14.3.2.2. ACI 318 Section 21.12.4.4(a) need not apply to concrete piles, and Section 21.12.4.4(b)
need not apply to precast, prestressed concrete piles.
14.2.3.2.3 Reinforcement for Uncased Concrete Piles (SDC D through F). Reinforcement shall be provided where
required by analysis. For uncased castinplace drilled or augered concrete piles, a minimum of four longitudinal bars
with a minimum longitudinal reinforcement ratio of 0.005 and transverse reinforcement in accordance with ACI 318
Sections 21.6.4.2 through 21.6.4.4 shall be provided throughout the minimum reinforced length of the pile as defined
below starting at the top of the pile. The longitudinal reinforcement shall extend beyond the minimum reinforced length
of the pile by the tension development length.
The minimum reinforced length of the pile shall be taken as the greater of:
1. Onehalf of the pile length;
2. A distance of 10 ft (3 m);
3. Three times the pile diameter;
4. The flexural length of the pile which shall be taken as the length of from the bottom of the pile cap to a point where
the concrete section cracking moment multiplied by a resistance factor 0.4 exceeds the required factored moment at
that point.
In addition, for piles located in Site Class E or F, longitudinal reinforcement and transverse confinement reinforcement,
as described above, shall extend the full length of the pile.
Where transverse reinforcement is required, transverse reinforcing ties shall be a minimum of No. 3 bars for up to 20in.
diameter (300 mm) piles and No.4 bars for piles of larger diameter.
In Site Classes A through D, longitudinal reinforcement and transverse confinement reinforcement, as defined above,
shall extend a minimum of seven times the pile diameter above and below the interfaces of soft to medium stiff clay or
liquefiable strata except that transverse reinforcing ties not located within the minimum reinforced length shall be
permitted to use a transverse spiral reinforcement ratio of not less than onehalf of that required in ACI 318 Section
21.6.4.4(a). Spacing of transverse reinforcement not located within the minimum reinforced length is permitted to be
increased, but shall not exceed the least of the following:
1. 12 longitudinal bar diameters;
2. Onehalf the pile diameter;
3. 12 in. (305 mm).
14.2.3.2.4 Reinforcement for MetalCased Concrete Piles (SDC D through F). Reinforcement requirements are the
same as for uncased concrete piles.
EXCEPTION: Spiralwelded metalcasing of a thickness not less than No. 14 gauge can be considered as
providing concrete confinement equivalent to the closed ties or equivalent spirals required in an uncased
concrete pile, provided that the metal casing is adequately protected against possible deleterious action due
to soil constituents, changing water levels, or other factors indicated by boring records of site conditions.
14.2.3.2.5 Reinforcement for Precast Concrete Piles (SDC D through F). Transverse confinement reinforcement
consisting of closed ties or equivalent spirals shall be provided in accordance with ACI 318 Sections 21.6.4.2 through
21.6.4.4 for the full length of the pile.
EXCEPTION: In other than Site Classes E or F, the specified transverse confinement reinforcement shall be provided
within three pile diameters below the bottom of the pile cap, but it shall be permitted to use a transverse reinforcing ratio
of not less than onehalf of that required in ACI 318 Section 21.6.4.4(a) throughout the remainder of the pile length.
[Remainder of Section 14.2.3.2 is unchanged.]
NEW SECTION 14.2.4, ACCEPTANCE CRITERIA FOR SPECIAL PRECAST STRUCTURAL
WALLS BASED ON VALIDATION TESTING
Add the following new section:
14.2.4 Acceptance Criteria for Special Precast Structural Walls Based on Validation Testing
14.2.4.1 Notation
Symbols additional to those in ACI 318 Chapter 2 are defined.
Emax = maximum lateral resistance of test module determined from test results (forces or moments)
En = nominal lateral resistance of test module calculated using specified geometric properties of test members,
specified yield strength of reinforcement, specified compressive strength of concrete, a strain compatibility
analysis or deformation compatibility analysis for flexural strength and a strength reduction factor f of 1.0
Ent = calculated lateral resistance of test module using the actual geometric properties of test members, the actual
strengths of reinforcement, concrete, and coupling devices, obtained by testing per Sections 14.2.4.7.7,
14.2.4.7.8, and 14.2.4.7.9, and a strength reduction factor f of 1.0
. = drift ratio
ß = relative energy dissipation ratio
14.2.4.2 Definitions
Definitions additional to those in ACI 318 Chapter 2 are defined.
14.2.4.2.1 Coupling Elements. Devices or beams connecting adjacent vertical boundaries of structural walls and used
to provide stiffness and energy dissipation for the connected assembly greater than the sum of those provided by the
connected walls acting as separate units.
14.2.4.2.2 Drift Ratio. Total lateral deformation of the test module divided by the height of the test module.
14.2.4.2.3 Global Toughness. The ability of the entire lateral force resisting system of the prototype structure to
maintain structural integrity and continue to carry the required gravity load at the maximum lateral displacements
anticipated for the ground motions of the maximum considered earthquake.
14.2.4.2.4 Prototype Structure. The concrete wall structure for which acceptance is sought.
14.2.4.2.5 Relative Energy Dissipation Ratio. Ratio of actual to ideal energy dissipated by test module during
reversed cyclic response between given drift ratio limits, expressed as the ratio of the area of the hysteresis loop for that
cycle to the area of the circumscribing parallelograms defined by the initial stiffnesses during the first cycle and the peak
resistances during the cycle for which the relative energy dissipation ratio is calculated. See Section 14.2.4.9.1.3.
14.2.4.2.5 Test Module. Laboratory specimen representing the critical walls of the prototype structure. See Section
14.2.4.5.
14.2.4.3 Scope and General Requirements
14.2.4.3.1 These provisions define minimum acceptance criteria for new precast structural walls, including coupled
precast structural walls, designed for regions of high seismic risk or for structures assigned to high seismic performance
or design categories, where acceptance is based on experimental evidence and mathematical analysis.
14.2.4.3.2 These provisions are applicable to precast structural walls, coupled or uncoupled, with height to length, hw/lw,
ratios equal to or greater than 0.5. These provisions are applicable for either prequalifying precast structural walls for a
specific structure or prequalifying a new precast wall type for construction in general.
14.2.4.3.3 Precast structural walls shall be deemed to have a response that is at least equivalent to the response of
monolithic structural walls designed in accordance with ACI 318 Sections 21.1 and 21.9, and the corresponding
structural walls of the prototype structure shall be deemed acceptable, when all of the conditions in Sections 14.2.4.3.3.1
through 14.2.4.3.3.5 are satisfied.
14.2.4.3.3.1 The prototype structure satisfies all applicable requirements of these provisions and of ACI 318 except
Section 21.9.
14.2.4.3.3.2 Tests on wall modules satisfy the conditions in Sections 14.2.4.4 and 14.2.4.9.
14.2.4.3.3.3 The prototype structure is designed using the design procedure substantiated by the testing program.
14.2.4.3.3.4 The prototype structure is designed and analyzed using effective initial properties consistent with those
determined in accordance with Section 14.2.4.7.11, and the prototype structure meets the drift limits of these provisions.
14.2.4.3.3.5 The structure as a whole, based on the results of the tests of Section 14.2.4.3.3.2 and analysis, is
demonstrated to have adequate global toughness (the ability to retain its structural integrity and support its specified
gravity loads) through peak displacements equal to or exceeding the storydrift ratios specified in Section 14.2.4.7.4,
14.2.4.7.5 or 14.2.4.7.6, as appropriate.
14.2.4.4 Design Procedure
14.2.4.4.1 Prior to testing, a design procedure shall be developed for the prototype structure and its walls. That
procedure shall account for effects of material nonlinearity, including cracking, deformations of members and
connections, and reversed cyclic loading. The design procedure shall include the procedures specified in Sections
14.2.4.4.1.1 through 14.2.4.4.1.4 and shall be applicable to all precast structural walls, coupled and uncoupled, of the
prototype structure.
14.2.4.4.1.1 Procedures shall be specified for calculating the effective initial stiffness of the precast structural walls, and
of coupled structural walls, that are applicable to all the walls of the prototype structure.
14.2.4.4.1.2 Procedures shall be specified for calculating the lateral strength of the precast structural walls, and of
coupled structural walls, applicable to all precast walls of the prototype structure.
14.2.4.4.1.3 Procedures shall be specified for designing and detailing the precast structural walls so that they have
adequate ductility capacity. These procedures shall cover wall shear strength, sliding shear strength, boundary tie
spacing to prevent bar buckling, concrete confinement, reinforcement strain, and any other actions or elements of the
wall system that can affect ductility capacity.
14.2.4.4.1.4 Procedures shall be specified for determining that an undesirable mechanism of nonlinear response, such as
a story mechanism due to local buckling of the reinforcement or splice failure, or overall instability of the wall, does not
occur.
14.2.4.4.2 The design procedure shall be used to design the test modules and shall be documented in the test report.
14.2.4.4.3 The design procedure used to proportion the test specimens shall define the mechanism by which the system
resists gravity and earthquake effects and shall establish acceptance values for sustaining that mechanism. Portions of
the mechanism that deviate from code requirements shall be contained in the test specimens and shall be tested to
determine acceptance values.
14.2.4.5 Test Modules
14.2.4.5.1 At least two modules shall be tested. At least one module shall be tested for each limiting engineering design
criteria (shear, axial load and flexure) for each characteristic configuration of precast structural walls, including
intersecting structural walls or coupled structural walls. If all the precast walls of the structure have the same
configuration and the same limiting engineering design criterion, then two modules shall be tested. Where intersecting
precast wall systems are to be used, the response for the two orthogonal directions shall be tested.
14.2.4.5.2 Where the design requires the use of coupling elements, those elements shall be included as part of the test
module.
14.2.4.5.3 Modules shall have a scale large enough to represent the complexities and behavior of the real materials and
of the load transfer mechanisms in the prototype walls and their coupling elements, if any. Modules shall have a scale
not less than one half and shall be fullscale if the validation testing has not been preceded by an extensive analytical and
experimental development program in which critical details of connections are tested at full scale.
14.2.4.5.4 The geometry, reinforcing details, and materials properties of the walls, connections, and coupling elements
shall be representative of those to be used in the prototype structure.
14.2.4.5.5 Walls shall be at least two panels high unless the prototype structure is one for which a single panel is to be
used for the full height of the wall.
14.2.4.5.6 Where precast walls are to be used for bearing wall structures, as defined in ASCE/SEI 705, the test modules
shall be subject during lateral loading to an axial load stress representative of that anticipated at the base of the wall in
the prototype structure.
14.2.4.5.7 The geometry, reinforcing, and details used to connect the precast walls to the foundation shall replicate those
to be used in the prototype structure.
14.2.4.5.8 Foundations used to support the test modules shall have geometric characteristics, and shall be reinforced and
supported, so that their deformations and cracking do not affect the performance of the modules in a way that would be
different than in the prototype structure.
14.2.4.6 Testing Agency. Testing shall be carried out by an independent testing agency approved by the Authority
Having Jurisdiction. The testing agency shall perform its work under the supervision of a registered design professional
experienced in seismic structural design.
14.2.4.7 Test Method
14.2.4.7.1 Test modules shall be subjected to a sequence of displacementcontrolled cycles representative of the drifts
expected under earthquake motions for the prototype structure. If the module consists of coupled walls, approximately
equal drifts (within 5 percent of each other) shall be applied to the top of each wall and at each floor level. Cycles shall
be to predetermined drift ratios as defined in Sections 14.2.4.7.2 through 14.2.4.7.6.
14.2.4.7.2 Three fully reversed cycles shall be applied at each drift ratio.
14.2.4.7.3 The initial drift ratio shall be within the essentially linear elastic response range for the module. See
14.2.4.7.11. Subsequent drift ratios shall be to values not less than 5/4 times, and not more than 3/2 times, the previous
drift ratio.
14.2.4.7.4 For uncoupled walls, testing shall continue with gradually increasing drift ratios until the drift ratio in percent
equals or exceeds the larger of : (a) 1.5 times the drift ratio corresponding to the design displacement or (b) the
following value:
(14.2.41)
where hw = height of entire wall for prototype structure (in inches) and lw = length of entire wall in direction of shear
force (in inches).
14.2.4.7.5 For coupled walls, hw/lw in Equation 14.2.41 shall be taken as the smallest value of hw/lw for any individual
wall of the prototype structure.
14.2.4.7.6 Validation by testing to limiting drift ratios less than those given by Equation 14.2.41 shall be acceptable
provided testing is conducted in accordance with this document to drift ratios equal or exceeding of those determined for
the response to a suite of nonlinear time history analyses conducted in accordance with the 2009 NEHRP Recommended
Seismic Provisions for risktargeted maximum considered earthquake ground motions.
14.2.4.7.7 Actual yield strength of steel reinforcement shall be obtained by testing coupons taken from the same
reinforcement batch as used in the test module. Two tests, conforming to the ASTM specifications cited in ACI 318
Section 3.8, shall be made for each reinforcement type and size. Equation
Equation
14.2.4.7.8 Actual compressive strength of concrete shall be determined by testing of concrete cylinders cured under the
same conditions as the test module and tested at the time of testing the module. Testing shall conform to the applicable
requirements of ACI 318 Sections 5.6.1 through 5.6.4.
14.2.4.7.9 Where strength and deformation capacity of coupling devices does not depend on reinforcement tested as
required in Section 14.2.4.7.7, the effective yield strength and deformation capacity of coupling devices shall be obtained
by testing independent of the module testing.
14.2.4.7.10 Data shall be recorded from all tests such that a quantitative interpretation can be made of the performance
of the modules. A continuous record shall be made of test module drift ratio versus applied lateral force, and
photographs shall be taken that show the condition of the test module at the peak displacement and after each key testing
cycle.
14.2.4.7.11 The effective initial stiffness of the test module shall be calculated based on test cycles to a force between
0.6Ent and 0.9Ent, and using the deformation at the strength of 0.75Ent to establish the stiffness.
14.2.4.8 Test Report
14.2.4.8.1 The test report shall contain sufficient evidence for an independent evaluation of all test procedures, design
assumptions, and the performance of the test modules. As a minimum, all of the information required by Sections
14.2.4.8.1.1 through 14.2.4.8.1.11 shall be provided.
14.2.4.8.1.1 A description shall be provided of the design procedure and theory used to predict test module strength,
specifically the test module nominal lateral resistance, En, and the test module actual lateral resistance Ent.
14.2.4.8.1.2 Details shall be provided of test module design and construction, including fully dimensioned engineering
drawings that show all components of the test specimen.
14.2.4.8.1.3 Details shall be provided of specified material properties used for design, and actual material properties
obtained by testing in accordance with Section 14.2.4.7.7.
14.2.4.8.1.4 A description shall be provided of test setup, including fully dimensioned diagrams and photographs.
14.2.4.8.1.5 A description shall be provided of instrumentation, its locations, and its purpose.
14.2.4.8.1.6 A description and graphical presentation shall be provided of applied drift ratio sequence.
14.2.4.8.1.7 A description shall be provided of observed performance, including photographic documentation, of the
condition of each test module at key drift ratios including, (as applicable), the ratios corresponding to first flexural
cracking or joint opening, first shear cracking, and first crushing of the concrete for both positive and negative loading
directions, and any other significant damage events that occur. Photos shall be taken at peak drifts and after the release
of load.
14.2.4.8.1.8 A graphical presentation shall be provided of lateral force versus drift ratio response.
14.2.4.8.1.9 A graphical presentation shall be provided of relative energy dissipation ratio versus drift ratio.
14.2.4.8.1.10 A calculation shall be provided of effective initial stiffness for each test module as observed in the test and
as determined in accordance with Section 14.2.4.7.11 and a comparison made as to how accurately the design procedure
has been able to predict the measured stiffness. The design procedure shall be used to predict the overall structural
response and a comparison made as to how accurately that procedure has been able to predict the measured response.
14.2.4.8.1.11 The test date, report date, name of testing agency, report author(s), supervising registered design
professional, and test sponsor shall be provided.
14.2.4.9 Test Module Acceptance Criteria
14.2.4.9.1 The test module shall be deemed to have performed satisfactorily when all of the criteria Sections 14.2.4.9.1.1
through 14.2.4.9.1.3 are met for both directions of inplane response. If any test module fails to pass the validation
testing required by these provisions for any test direction, then the wall system has failed the validation testing.
14.2.4.9.1.1 Peak lateral strength obtained shall be at least 0.9Ent and not greater than 1.2 Ent.
14.2.4.9.1.2 In cycling up to the drift level given by Sections 14.2.4.7.4 through 14.2.4.7.6, fracture of reinforcement or
coupling elements, or other significant strength degradation, shall not occur. For a given direction, peak lateral strength
during any cycle of testing to increasing displacement shall not be less than 0.8 times Emax for that direction.
14.2.4.9.1.3 For cycling at the given drift level for which acceptance is sought in accordance with Section 14.2.4.7.4,
14.2.4.7.5 or 14.2.4.7.6, as applicable, the parameters describing the third complete cycle shall have satisfied the
following:
1. The relative energy dissipation ratio shall not be less than 1/8 and
2. The secant stiffness between drift ratios of 1/10 and +1/10 of the maximum applied drift shall not be less than 0.10
times the stiffness for the initial drift ratio specified in Section 14.2.4.7.3.
SECTION 14.4.5, MODIFICATIONS TO CHAPTER 1 OF ACI530/ASCE 5/TMS 402
Add the following new sections:
14.4.5.3 Plain (unreinforced) AAC masonry shear walls shall satisfy the requirements of Section 1.14.2.2.6 of ACI
530/ASCE 5/TMS 402.
14.4.5.4 Ordinary reinforced AAC masonry shear walls shall satisfy the requirements of Section 1.14.2.2.8 of ACI
530/ASCE 5/TMS 402.
Commentary to Chapter 14 Modifications
COMMENTARY TO SECTION 14.1.1
ASCE/SEI 705 included two different systems for both eccentrically braced frames (EBF) and buckling restrained braced
frames (BRBF). The primary distinction between these two systems was whether or not there were moment resisting beamcolumn
connections within the braced bays. However, testing at the University of California at Berkeley (Uriz and Mahin,
2004) has indicated designs that do not properly account for the stiffness and distribution of forces in braced frame
connections may be subject to undesirable performance. This modification to ASCE/SEI 705 consolidates the EBF and
BRBF building frame systems into a single designation with proper consideration of the beamcolumn connection demands.
This modification to ASCE/SEI 705 and the related changes to AISC 34105 Sections 15.7 and 16.7 also allow the engineer
either to:
1. Provide a fully restrained moment connection meeting the requirements for ordinary moment connections in AISC 341
05 and thereby directly providing a load path to resist the connection force and deformation demands or
2. Provide a connection with the ability to accommodate the potential rotation demands. An example of this would be a
configuration tested at Lehigh University (Figure 1 of Fahnestock, et. al. 2006) that effectively formed a pinned
condition in the beam just beyond the beamcolumnbrace connection.
COMMENTARY TO SECTION 14.1.4
C14.1.4 ColdFormed Steel. This section adopts three standards by direct reference: AISI NAS, North American
Specification for the Design of ColdFormed Steel Structural Members, AISI S110, Standard for Seismic Design of Cold
Formed Steel Structural Systems – Special Bolted Moment Frames, and ASCE/SEI 8, Specification for the Design of Cold
Formed Stainless Steel Structural Members.
Each document has specific limits of applicability. AISI NAS applies to the design of structural members that are coldformed
to shape from carbon or lowalloy steel sheet, strip, plate or bar not more than oneinch in thickness (AISI NAS,
Section A1.1). Building on the requirements of AISI NAS, AISI S110 has additional special seismic design provisions for a
newly designated seismic force resisting system entitled “coldformed steel – special bolted moment frame (CFSSBMF).”
Finally, ASCE 8 governs the design of structural members that are coldformed to shape from annealed and coldrolled sheet,
strip, plate, or flat bar stainless steels (ASCE 8, Section 1.1.1). All three documents focus on loadcarrying members in
buildings; however, allowances are made for applications in nonbuilding structures, if dynamic effects are appropriately
considered.
Within AISI NAS and ASCE 8, there are requirements on the general provisions for the applicable types of steel; design of
elements, members, structural assemblies, connections and joints; and mandatory testing. In addition, AISI NAS contains a
chapter on the design of coldformed steel structural members and connections undergoing cyclic loading. Both standards
contain extensive commentaries for the benefit of the user.
C14.1.4.1.1 CFSSBMF need to use the samesize beams and samesize columns throughout. In addition, the system needs
to engage all primary columns, which support the roof or floor above, and those columns need to be supported on a level
floor or foundation.
C14.1.4.1.2 These modifications were made for consistency with the test database.
C14.1.4.1.3 To be consistent with the test database (Uang and Sato, 2007), the limitations on both beam depth, steel grade,
and surface treatment are added in Section D1.2.1 of AISI S110.
C14.1.4.1.4 To be consistent with the test database (Uang and Sato, 2007), the limitations on column depth, steel grade, and
surface treatment are added in Section D1.2.2 of AISI S110. The widththickness ratio was reduced based upon further
review of the test specimens.
C14.1.4.1.5 AISI S110 is intended primarily for industrial platforms; however, the standard is not limited to these nonbuilding
structures and does not prohibit architectural attachments (such as partition walls). Therefore, the 0.05h drift limit in
Section D1.3 of AISI S110 has been reduced to 0.03h to more closely align with the 0.025h drift limit of ASCE/SEI 7. The
sentence, “In no case shall the design story drift exceed 0.05h.” was added to ensure an absolute upper bound on the drift
limit.
C14.1.4.2 LightFramed ColdFormed Construction. This subsection of coldformed steel relates to lightframed
construction, which is defined as a method of construction where the structural assemblies are formed primarily by a system
of repetitive wood or coldformed steel framing members or subassemblies of these members (ASCE/SEI 7, Section 11.2).
Not only does this subsection repeat the direct adoptions of AISI NAS and ASCE 8, but it also allows the user to choose from
an additional suite of standards that address different aspects of construction, including the following:
1. AISI GP, Standard for ColdFormed Steel Framing – General Provisions, applies to the design, construction, and
installation of structural and nonstructural coldformed steel framing members where the specified minimum base metal
thickness is between 18 mils and 118 mils (AISI GP, Section A1).
2. AISI WSD, Standard for ColdFormed Steel Framing – Wall Stud Design, applies to the design and installation of coldformed
steel studs for both structural and nonstructural walls in buildings (AISI WSD, Section A1).
COMMENTARY TO SECTION 14.2
C14.2 CONCRETE
The section adopts by reference ACI 318 for structural concrete design and construction. In addition, modifications to ACI
318 are made that are needed to coordinate the provisions of that material design standard with the provisions of ASCE/SEI
7. Work is ongoing to better coordinate the provisions of the two documents (ACI 318 and ASCE/SEI 7) such that the
provisions in Section 14.2 will be significantly reduced in future editions of ASCE/SEI 7.
C14.2.2.2 ACI 318 Section 7.10. ACI 318 Section 7.10.5.6 prescribes reinforcement details for ties in compression
members. Those details are appropriate for SDC A and B structures. This modification prescribes additional details for ties
around anchor bolts in structures assigned to SDC C through F.
A wall pier is recognized as a separate category of structural element in this document but not ACI 318.
C14.2.2.3 Scope. This provision describes how the ACI 318 provisions should be interpreted for consistency with the
ASCE/SEI 7 provisions.
C14.2.2.4 Intermediate Precast Structural Walls. ACI 318 Section 21.4 imposes requirements on precast walls for
moderate seismic risk applications. Ductile behavior is to be ensured by yielding of the steel elements or reinforcement
between panels or this provision requires the designer to determine the deformation in the connection corresponding to the
earthquake design displacement, and then to check from experimental data that the connection type used can accommodate
that deformation without significant strength degradation.
The wall pier requirements of Section 21.4.5 are patterned after the same requirements of Section 14.2.2.4 for wall piers that
are part of structures in high seismic design categories. The 2006 Edition of the International Building Code restricts yielding
to steel reinforcement only because of concern that steel elements in the body of a connection could fracture due to inelastic
strain demands.
Several steel element connections have been tested under simulated seismic loading and the adequacy of their loaddeformation
characteristics and strain capacity have been demonstrated (Schultz and Magana, 1996). One such connection
was used in the fivestory building test that was part of the PRESSS Phase 3 research. The connection was used to provide
damping and energy dissipation, and demonstrated a very large strain capacity (Nakaki et al., 2001). Since then, several other
steel element connections have been developed that can achieve similar results (Banks and Stanton), (Nakaki et al.). In view
of these results, it is appropriate to allow yielding in steel elements that have been shown experimentally to have adequate
strain capacity to maintain at least 80 percent of their yield force through the full design displacement of the structure.
C14.2.2.5 Wall Piers and Wall Segments. Wall piers are typically segments between openings in walls that are thin in the
direction normal to the horizontal length of the wall. In current practice these elements are often not regarded as columns or
as part of the structural walls. If not properly reinforced these elements are vulnerable to shear failure and that failure
prevents the wall from developing the assumed flexural hinging. Section 21.9.10 is written to reduce the likelihood of a
shear failure. Wall segments with a horizontal lengthtothickness ratio less than 2.5 are required to be designed as columns
in compliance with Section 21.9 if they are utilized as part of the lateralforceresisting system, even though the shortest
crosssectional dimension may be less than 12 in. in violation of Section 21.6.1.1. Such wall segments may be designed to
comply with Section 21.13 if they are not utilized as part of the lateralforceresisting system. Wall segments with a
horizontal lengthtothickness ratio larger than or equal to 2.5, which do not meet the definition of wall piers (Section
14.2.2.2), must be designed as special structural walls or as portions of special structural walls in full compliance with
Section 21.9 or 21.10.
C14.2.2.7 Foundations. The intention is that there should be no conflicts between the provisions of ACI 318 Section 21.12
and ASCE/SEI 705 Section 12.1.5, 12.13, or 14.2. However, the additional detailing requirements for concrete piles of
Section 14.2.3 can result in conflicts with ACI 318 provisions if the pile in not fully embedded in the soil.
C14.2.2.8 Detailed Plain Concrete Walls. Design requirements for plain masonry walls have existed for many years and
the corresponding type of concrete construction is the plain concrete wall. To allow the use of such walls as the lateralforceresisting
system in SDC A and B, this provision requires such walls to contain at least the minimal reinforcement specified in
Section 22.6.7.2.
C14.2.2.9 Strength Requirements for Anchors. ACI 318 requires laboratory testing to establish the strength of anchor
bolts greater than 2 in. in diameter or exceeding 25 in. in tensile embedment depth. This modification makes the ACI 318
equation giving the basic concrete breakout strength of a single anchor in tension in cracked concrete applicable irrespective
of the anchor bolt diameter and tensile embedment depth.
Korean Power Engineering (KPE) has made tension tests on anchors with diameters up to 4.25 in. and embedment depths up
to 45 in. and found that the diameter and embedment depth limits of ACI 318 Section D.4.2.2 for the design procedure for
anchors in tension (Section D.5.2) can be eliminated. KPE also has conducted shear tests on anchors with diameters up to 3.0
in. and embedment depths as large as 30 in. and found no effect of the embedment depth on shear strength. However, the
diameter tests showed that the basic shear breakout strength Equation D24 needed some modification for the complete
elimination of the 2 in. limit to be fully appropriate. Analytical work performed at the University of Stuttgart supports the
need for some modification to Equation D24. Changes consistent with the Korean and Stuttgart findings have already been
made to the FIB Design Guide for anchors.
COMMENTARY TO SECTION 14.2.3
C14.2.3 Additional Detailing Requirements for Concrete Piles. Chapter 20 of the PCI Bridge Design Manual provides
detailed information on the structural design of piles and on pile to cap connections for precast prestressed concrete piles.
ACI 318 does not contain provisions governing the design and installation of portions of concrete piles, drilled piers, and
caissons embedded in ground except for SDC D, E and F structures.
C14.2.3.1.2 Reinforcement for Uncased Concrete Piles (SDC C). The transverse reinforcing requirements in the
potential plastic hinge zone of uncased concrete piles in Seismic Design Category C is a selective composite of two ACI 318
requirements. In the potential plastic hinge region of an intermediate momentresisting concrete frame column, the
transverse reinforcement spacing is restricted to the least of: (a) 8 times the diameter of the smallest longitudinal bar, (b) 24
times the diameter of the tie bar, (c) onehalf the smallest crosssectional dimension of the column, and (d) 12 in. Outside of
the potential plastic hinge region of a special momentresisting frame column, the transverse reinforcement spacing is
restricted to the smaller of 6 times the diameter of the longitudinal column bars and 6 in.
C14.2.3.1.5 Reinforcement for Precast Nonprestressed Concrete Piles (SDC C). Transverse reinforcement requirements
in and outside of the plastic hinge zone of precast nonprestressed piles are clarified. The transverse reinforcement
requirement in the potential plastic hinge zone is a composite of two ACI 318 requirements (see Section C14.2.3.1.2).
Outside of the potential plastic hinge region, the transverse reinforcement spacing is restricted to sixteen (16) times the
longitudinal bar diameter. This should permit the longitudinal bars to reach compression yield before buckling. The
maximum 8in. tie spacing comes from current building code provisions for precast concrete piles.
C14.2.3.1.6 Reinforcement for Precast Prestressed Piles (SDC C). The transverse and longitudinal reinforcing
requirements given in ACI 318, Chapter 21, were never intended for slender precast prestressed concrete elements and will
result in unbuildable piles. These requirements are based on the Recommended Practice for Design, Manufacture and
Installation of Prestressed Concrete Piling (PCI Committee on Prestressed Concrete Piling, 1993).
Equation 14.2.41, originally from ACI 318, has always been intended to be a lowerbound spiral reinforcement ratio for
larger diameter columns. It is independent of the member section properties and can therefore be applied to large or small
diameter piles. For castinplace concrete piles and precast prestressed concrete piles, the resulting spiral reinforcing ratios
from this formula are considered to be sufficient to provide moderate ductility capacities (Fanous et al., 2007).
Full confinement per Equation 14.2.41 is required for the upper 20 feet of the pile length where curvatures are large. The
amount is relaxed by 50 percent outside of that length in view of lower curvatures and in consideration of confinement
provided by the soil.
C14.2.3.2.3 Reinforcement for Uncased Concrete Piles (SDC D through F). The reinforcement requirements for uncased
concrete piles are taken from the 2006 IBC requirements, and should be adequate to provide ductility in the potential plastic
hinge zones (Fanous et al., 2007).
C14.2.3.2.5 Reinforcement for Precast Concrete Piles (SDC D through F). The transverse reinforcement requirements
for precast nonprestressed concrete piles are taken from the 2006 IBC requirements and are should be adequate to provide
ductility in the potential plastic hinge zones (Fanous et al., 2007).
C14.2.3.2.6 Reinforcement for PrecastPrestressed Piles (SDC D through F). The reduced amounts of transverse
reinforcement specified in this provision compared to those required for column members in ACI 318 are justified by the
results of the study by Fanous et al., 2007. The last paragraph of the provision provides minimum transverse reinforcement
requirements outside of the zone of prescribed ductile detailing.
COMMENTARY TO SECTION 14.2.4
C14.2.4 Acceptance Criteria for Special Precast Structural Walls Based on Validation Testing
C14.2.4.1 Notation. Symbols additional to those in ACI 318 Chapter 2 are defined:
Ah = area of hysteresis loop.
E1,E2 = peak lateral resistance for positive and negative loading, respectively, for third cycle of loading sequence.
f1 = live load factor defined in Section 14.2.4.2.3.
hw = height of column of test module, in. or mm.
K, K’ = initial stiffness for positive and negative loading, respectively, for first cycle.
.1,.2 = drift ratios at peak lateral resistance for positive and negative loading, respectively, for third cycle of loading
sequence.
.1',.2' = drift ratios for zero lateral load for unloading at stiffness K, K’ from peak positive and negative lateral resistance,
respectively, for third cycle of loading sequence.
. = lateral displacement, in. or mm. See Figures. C14.2.4.2.21, C14.2.4.2.22, and C14.2.4.2.23.
.a = allowable story drift, in. or mm. See Table 12.121 of ASCE/SEI 705.
C14.2.4.2 Definitions
C14.2.4.2.1 Coupling elements. Coupling elements are connections provided at specific intervals along the vertical
boundaries of adjacent structural walls. Coupled structural walls are stiffer and stronger than the same walls acting
independently. For castinplace construction effective coupling elements are typically coupling beams having small spantodepth
ratios. The inelastic behavior of such beams is normally controlled by their shear strength. For precast construction,
effective coupling elements can be precast beams connected to the adjacent structural walls either by posttensioning, ductile
mechanical devices, or groutedinplace reinforcing bars. The resultant coupled construction can be either emulative of castin
place construction or nonemulative (jointed). However, for precast construction coupling beams can also be omitted and
mechanical devices used to connect directly the vertical boundaries of adjacent structural walls.
C14.2.4.2.2 Drift ratio. The definition of the drift ratio, ., is illustrated in Figure C14.2.4.2.21 for a three panel wall
module. The position of the module at the start of testing, with only its selfweight acting, is indicated by broken lines. The
module is set on a horizontal foundation support that is centered at A and is acted on by a lateral force H applied at the top of
the wall. The selfweight of the wall is distributed uniformly to the foundation support. However, under lateral loading, that
selfweight and any axial gravity load acting at the top of the wall cause overturning moments on the wall that are additional
to the overturning moment Hhw and can affect deformations. The chord AB of the centroidal axis of the wall is the vertical
reference line for drift measurements.
For acceptance testing a lateral force H is applied to the wall through the pin at B. Depending on the geometric and
reinforcement characteristics of the module that force can result in the module taking up any one, or a combination, of the
deformed shapes indicated by solid lines in Figures C14.2.4.2.21, C14.2.4.2.22 and C14.2.4.2.23.
Figure C14.2.4.2.22 illustrates several possible components of the displacement . for a wall that is effectively solid while
Figure C14.2.4.2.23 illustrates two possibly undesirable components of the displacement .. Regardless of the mode of
deformation of the wall, the lateral force causes the wall at B to displace horizontally by an amount .. The drift ratio is the
angular rotation of the wall chord with respect to the vertical and for the setup shown equals . / hw where hw is the wall
height and is equal to the distance between the foundation support at A and the load point at B. Where prestressing steel is
used in wall members, the stress fps in the reinforcement at the nominal and the probable lateral resistance shall be calculated
in accordance with ACI 318 Section 18.7.
C14.2.4.2.3 Global toughness. These provisions describe acceptance criteria for special precast structural walls based on
validation testing. The requirements of Section 21.1.1.8 of ACI 318 concerning toughness cover both to the energy
dissipation of the wall system which, for monolithic construction, is affected primarily by local plastic hinging behavior and
the toughness of the prototype structure as a whole. The latter is termed “global toughness” in these provisions and is a
condition that does not apply to the walls alone. That global toughness requirement can be satisfied only though analysis of
the performance of the prototype structure as a whole when the walls perform to the criteria specified in these provisions.
The required gravity load for global toughness evaluations is the value given by these provisions. For conformity with
Section 9.2.1 of ACI 31808, UBC 1997, IBC 2006 and NFPA 5000, the required gravity load is 1.2D + f1L where the
seismic force is additive to gravity forces and 0.9D where the seismic force counteracts gravity forces. D is the effect of dead
loads, L is the effect of live loads, and f1 is a factor equal to 0.5 except for garages, areas occupied as places of public
assembly, and all areas where the live load is greater than 100 psf (4.79 kN/m2) where f1 equals 1.0.
C14.2.4.2.5 Relative energy dissipation ratio. This concept is illustrated in Figure C14.2.4.2.21 for the third loading cycle
to the limiting drift ratio required by Section 14.2.4.7.4, 14.2.4.7.5 or 14.2.4.7.6, as appropriate.
Figure 14.2.4.2.22 illustrates several possible components of the displacement . for a wall that is effectively solid while
Figure C14.2.4.2.23 illustrates two possibly undesirable components of the displacement .. Regardless of the mode of
deformation of the wall, the lateral force causes the wall at B to displace horizontally by an amount .. The drift ratio is the
angular rotation of the wall chord with respect to the vertical and for the setup shown equals . / hw where hw is the wall
height and is equal to the distance between the foundation support at A and the load point at B.
Where prestressing steel is used in wall members, the stress fps in the reinforcement at the nominal and the probable lateral
resistance shall be calculated in accordance with Section 18.7 of ACI 318.
C14.2.4.2.3 Global toughness. These provisions describe acceptance criteria for special precast structural walls based on
validation testing. The requirements of ACI 318 Section 21.1.1.8 concerning toughness cover both to the energy dissipation
of the wall system which, for monolithic construction, is affected primarily by local plastic hinging behavior and the
toughness of the prototype structure as a whole. The latter is termed “global toughness” in these provisions and is a condition
that does not apply to the walls alone. That global toughness requirement can be satisfied only though analysis of the
performance of the prototype structure as a whole when the walls perform to the criteria specified in these provisions.
The required gravity load for global toughness evaluations is the value given by these provisions. For conformity with
Section 9.2.1 of ACI 31808, UBC 1997, IBC 2006 and NFPA 5000, the required gravity load is 1.2D + f1L where the
seismic force is additive to gravity forces and 0.9D where the seismic force counteracts gravity forces. D is the effect of dead
loads, L is the effect of live loads, and f1 is a factor equal to 0.5 except for garages, areas occupied as places of public
assembly, and all areas where the live load is greater than 100 psf (4.79 kN/m2) where f1 equals 1.0.
C14.2.4.2.5 Relative energy dissipation ratio. This concept is illustrated in Figure C14.2.4.2.5 for the third loading cycle
to the limiting drift ratio required by Section 14.2.4.7.4, 14.2.4.7.5 or 14.2.4.7.6, as appropriate. For Figure C14.2.4.2.5, it is
assumed that the test module has exhibited different initial stiffnesses, K and K’, for positive and negative lateral forces and
that the peak lateral resistances for the third cycle for the positive and negative loading directions, E1 and E2, also differ. The
area of the hysteresis loop for the third cycle, Ah, is hatched. The circumscribing figure consists of two parallelograms,
ABCD and DFGA. The slopes of the lines AB and DC are the same as the initial stiffness, K, for positive loading and the
slopes of the lines DF and GA are the same as the initial stiffness, K', for negative loading. The relative energy dissipation
ratio concept is similar to the equivalent damping concept used in Section 17.8.3 of the ASCE/SEI 705 for required tests of
seismic isolation systems.
Figure C14.2.4.2.21 Showing Definition of drift ratio ..
Figure C14.2.4.2.23 Showing Undesirable deformations along horizontal joints: (a) excessive gap opening between panels and (b) shear slip.
Figure C14.2.4.2.22 Showing Typical wall deformation components.
Figure C14.2.4.2.21 Definition of drift ratio ..
Figure C14.2.4.2.22 Typical wall deformation components.
(c) Deformation due to shear
(b) Deformation due to flexure
(d) Deformation due to extension of
reinforcement at foundation to wall
interface
(a) Wall and loading
Figure C14.2.4.2.23 Undesirable deformations along horizontal joints:
(a) excessive gap opening between panels and (b) shear slip.
Figure C14.2.4.2.5 Showing Relative energy dissipation ratio.
For a given cycle the relative energy dissipation ratio, ß, is the area, Ah, inside the lateral forcedrift ratio loop for the module,
divided by the area of the effective circumscribing parallelograms ABCD and DFGA. The areas of the parallelograms equal
the sum of the absolute values of the lateral force strengths, E1 and E2, at the drift ratios .1 and .2 multiplied by the sum of the
absolute values for the drift ratios .1' and .2'.
C14.2.4.3 Scope and general requirements. While only ACI Committee 318 can determine the requirements necessary
for precast walls to meet the provisions of ACI 318 Section 21.1.1.8, ACI 318 Section 1.4 already permits the building
official to accept wall systems, other than those explicitly covered by ACI 318 Chapter 21, provided specific tests, load
factors, deflection limits, construction procedures and other pertinent requirements have been established for acceptance of
such systems consistent with the intent of the code. The purpose of these provisions is to provide a framework that
establishes the specific tests, load factors, deflection limits and other pertinent requirements appropriate for acceptance, for
regions of high seismic risk or for structures assigned to high seismic performance or design categories, of precast wall
systems, including coupled wall systems, not satisfying all the requirements of ACI 318 Chapter 21. For regions of moderate
seismic risk or for structures assigned to intermediate seismic performance or design categories, less stringent provisions than
those specified here are appropriate.
These provisions assume that the precast wall system to be tested has details differing from those prescribed by ACI 318
Section 21.9 for conventional monolithic reinforced concrete construction. Such walls may, for example, involve the use of
precast elements, precast prestressed elements, posttensioned reinforcement, or combinations of those elements and
reinforcement.
Figure C14.2.4.2.5 Relative energy dissipation ratio.
For monolithic reinforced concrete walls a fundamental design requirement of ACI 318 Chapter 21 is that walls with hw/lw
exceeding1.0 be proportioned so that their inelastic response is dominated by flexural action on a critical section located near
the base of the wall. That fundamental requirement is retained in these provisions. The reason is that tests on modules, as
envisioned in these provisions, cannot be extrapolated with confidence to the performance of panelized walls of proportions
differing from those tested for the development of ACI 318 Chapter 21 if the shearslip displacement pattern of Figure
C14.2.4.2.2.3, or the shear deformation response of Figure C14.2.4.2.2.2, governs the response developed in the test on the
module. Two other fundamental requirements of ACI 318 Chapter 21 are for ties around heavily strained boundary element
reinforcement and the provision of minimum amounts of uniformly distributed horizontal and vertical reinforcement in the
web of the wall. Ties around boundary element reinforcement to inhibit its buckling in compression are required where the
strain in the extreme compression fiber is expected to exceed some critical value. Minimum amounts of uniformly distributed
horizontal and vertical reinforcement over the height and length of the wall are required to restrain the opening of inclined
cracks and allow the development of the drift ratios specified in Sections 14.2.4.7.4, 14.2.4.7.5 and 14.2.4.7.6. Deviations
from those tie and distributed reinforcement requirements are possible only if a theory is developed that can substantiate
reasons for such deviations and that theory is tested as part of the validation testing.
C14.2.4.3.1. These provisions are not intended for use with existing construction or for use with walls that are designed to
conform to all the requirements of ACI 318 Section 21.9. The criteria of these provisions are more stringent than those for
walls designed to ACI 318 Section 21.9. Some walls designed to Section 21.9, and having low height to length ratios, may
not meet the drift ratio limits of Equation 14.2.41 because their behavior may be governed by shear deformations. The
height to length ratio of 0.5 is the least value for which Equation 14.2.41 is applicable.
C14.2.4.3.3 For acceptance, the results of the tests on each module must satisfy the acceptance criteria of Section 14.2.4.9.
In particular, the relative energy dissipation ratio calculated from the measured results for the third cycle between the
specified limiting drift ratios must equal or exceed 1/8. For uncoupled walls, relative energy dissipation ratios increase as the
drift ratio increases. Tests on slender monolithic walls have shown relative energy dissipation ratios, derived from rotations at
the base of the wall, of about 4045 percent at large drifts. The same result has been reported even where there has been a
significant opening in the web of the wall on the compression side. For 0.020 drift ratios and walls with height to length
ratios of 4, relative energy dissipation ratios have been computed as 30, 18, 12, and 6 percent, for monolithic reinforced
concrete, hybrid reinforced/posttensioned prestressed concrete with equal flexural strengths provided by the prestressed and
deformed bar reinforcement, hybrid reinforced/posttensioned prestressed concrete with 25 percent of the flexural strength
provided by deformed bar reinforcement and 75 percent by the prestressed reinforcement, and posttensioned prestressed
concrete special structural walls, respectively. Thus, for slender precast uncoupled walls of emulative or nonemulative
design it is to be anticipated that at least 35 percent of the flexural capacity at the base of the wall needs to be provided by
deformed bar reinforcement if the requirement of a relative energy dissipation ratio of 1/8 is to be achieved. However, if
more than about 40 percent of the flexural capacity at the base of the wall is provided by deformed bar reinforcement, then
the selfcentering capability of the wall following a major event is lost and that is one of the prime advantages gained with
the use of posttensioning. For squat walls with height to length ratios between 0.35 and 0.69 the relative energy dissipation
has been reported as remaining constant at 23 percent for drifts between that for first diagonal cracking and that for a postpeak
capacity of 80 percent of the peak capacity. Thus, regardless of whether the behavior of a wall is controlled by shear or
flexural deformations a minimum relative energy dissipation ratio of 1/8 is a realistic requirement.
For coupled wall systems, theoretical studies and tests have demonstrated that the 1/8 relative energy dissipation ratio can be
achieved by using central posttensioning only in the walls and appropriate energy dissipating coupling devices connecting
adjacent vertical wall boundaries.
C14.2.4.3.3.4. The ASCE/SEI 705 allowable story drift limits are the basis for the drift limits of IBC 2006 and NFPA 5000.
Allowable story drifts, .a, are specified in Table 1617.3 of IBC 2006 and likely values are discussed in the Commentary to
Section 14.2.4.7.4. The limiting initial drift ratio consistent with .a equals .a/fCdhw, where f is the strength reduction factor
appropriate to the condition, flexure or shear, that controls the design of the test module. For example, for .a/hw equal to
0.015, the required deflection amplification factor Cd of 5, and f equal to 0.9, the limiting initial drift ratio, corresponding to
B in Figure C14.2.4.9.1, is 0.0033. The use of a f value is necessary because the allowable story drifts of the IBC are for the
design seismic load effect, E, while the limiting initial drift ratio is at the nominal strength, En , which must be greater than
E/f. The loaddeformation relationship of a wall becomes significantly nonlinear before the applied load reaches Ent. While
the load at which that nonlinearity becomes marked depends on the structural characteristics of the wall, the response of
most walls remains linear up to about 75 percent of Ent.
C14.2.4.3.3.5. The criteria of Section 14.2.4.9 are for the test module. In contrast, the criterion of Section 14.2.4.3.3.5 is for
the structural system as a whole and can be satisfied only by the philosophy used for the design and analysis of the building
as a whole. The criterion adopted here is similar to that described in the last paragraph of R21.1.1 of ACI 318 and the intent
is that test results and analyses demonstrate that the structure, after cycling three times through both positive and negative
values of the limiting drift ratio specified in Section 14.2.4.7.4, 14.2.4.7.5 or 14.2.4.7.6, as appropriate, is still capable of
supporting the gravity load specified as acting on it during the earthquake.
Figure C14.2.4.9.1 Quantities used in evaluating acceptance criteria.
Figure C14.2.4.9.1 Quantities used in evaluating acceptance criteria.
C14.2.4.4 Design Procedure.
C14.2.4.4.1. The test program specified in these provisions is intended to verify an existing design procedure for precast
structural walls for a specific structure or for prequalifying a generic type of special precast wall system for construction in
general. The test program is not for the purpose of creating basic information on the strength and deformation properties of
such systems for design purposes. Thus, the test modules should not fail during the validation testing, a result that is the
opposite of what is usually necessary during testing in the development phase for a new or revised design procedure. For a
generic precast wall system to be accepted based on these provisions, a rational design procedure is to have been developed
prior to this validation testing. The design procedure is to be based on a rational consideration of material properties and
force transfer mechanisms, and its development will usually require preliminary and possibly extensive physical testing that
is not part of the validation testing. Because special wall systems are likely to respond inelastically during designlevel
ground shaking, the design procedure must consider wall configuration, equilibrium of forces, compatibility of deformations,
the magnitudes of the lateral drifts, reversed cyclic displacements, the relative values of each limiting engineering design
criteria (shear, flexure and axial load) and use appropriate constitutive laws for materials that include considerations of
effects of cracking, loading reversals and inelasticity.
The effective initial stiffness of the structural walls is important for calculating the fundamental period of the prototype
structure. The procedure used to determine the effective initial stiffness of the walls is to be verified from the validation test
results as described in Section 14.2.4.7.11.
Provisions Sections 14.2.4.4.1.1 through 14.2.4.4.1.3 state the minimum procedures to be specified in the design procedure
prior to the start of testing. The Authority Having Jurisdiction may require that more details be provided in the design
procedure than those of Sections 14.2.4.4.1.1 through 14.2.4.4.1.3 prior to the start of testing.
C14.2.4.4.2. The justification for the small number of test modules, specified in Section 14.2.4.5.1 is that a previously
developed rational design procedure is being validated by the test results. Thus, the test modules for the experimental
program must be designed using the procedure intended for the prototype wall system and strengths must be predicted for the
test modules before the validation testing is started.
Figure C14.2.4.5.1 (a) Showing Coupled wall test module with coupling beams and (b) Showing Coupled wall test module with vertical mechanical couplers.
C14.2.4.5 Test Modules.
C14.2.4.5.1. One module must be tested for each limiting engineering design criterion, such as shear, or axial load and
flexure, for each characteristic configuration of walls. Thus, in accordance with Section 14.2.4.4.3 if the test on the module
results in a maximum shear stress of 3vfc’ then the maximum shear stress that can be used in the prototype is that same value.
Each characteristic inplane configuration of walls, or coupled walls, in the prototype structure must also be tested. Thus, as
a minimum for oneway structural walls, two modules with the configuration shown in Figure C14.2.4.2.21, and, for one
way coupled walls, two modules with the configuration shown in either Figure C14.2.4.5.1(a) or in Figure C14.2.4.5.1(b),
must be tested. In addition, if intersecting wall systems are to be used then the response of the wall systems for the two
orthogonal directions needs to be tested. For twoway wall systems and coupled wallframe systems, testing of configurations
other than those shown in Figures C14.2.4.2.21 and C14.2.4.5.1 may be appropriate when it is difficult to realistically model
the likely dominant earthquake deformations using orthogonal direction testing only.
This provision should not be interpreted as implying that only two tests will need to be made to qualify a generic system.
During the development of that system it is likely that several more tests will have been made, resulting in progressive
refinements of the mathematical model used to describe the likely performance of the generic structural wall system and its
construction details. Consequently, only one test of each module type for each limiting engineering design condition, at a
specified minimum scale and subjected to specific loading actions, may be required to validate the system. Further, as stated
in Section 14.2.4.9.1, if any one of those modules for the generic wall system fails to pass the validation testing required by
these provisions, then the generic wall system has failed the validation testing
In most prototype structures, a slab is usually attached to the wall and, as demonstrated by the results of the PRESSS building
test, the manner in which the slab is connected to the wall needs to be carefully considered. The connection needs to be
adequate to allow the development of story drifts equal to those anticipated in these provisions. However, in conformity with
common practice for the subassemblage tests used to develop the provisions of Chapter 21of ACI 318, there is no
requirement for a slab to be attached to the wall of the test module. The effect of the presence of the slab should be examined
in the development program that precedes the validation testing.
C14.2.4.5.3. Test modules need not be as large as the corresponding walls in the prototype structure. The scale of the test
modules, however, must be large enough to capture all the complexities associated with the materials of the prototype wall,
its geometry and reinforcing details, load transfer mechanisms, and joint locations. For modules involving the use of precast
elements, for example, scale effects for load transfer through mechanical connections should be of particular concern. The
issue of the scale necessary to capture fully the effects of details on the behavior of the prototype should be examined in the
development program that precedes the validation testing.
drift
angle, .
angle, .
drift
angle, .
drift
centrally posttensioned
coupling beams
grouted deformed top bars
deflected
configuration
central unbonded
posttensioning
central unbonded
posttensioning
undeflected
position
relative vertical
deflection
drift
drift
undeflected
position
mechanical coupling
devices
deflected
configuration
Figure C14.2.4.5.1 (a) Coupled wall test module with coupling beams;
(b) Coupled wall test module with vertical mechanical couplers.
C14.2.4.5.4. It is to be expected that for a given generic precast wall structure, such as an unbonded centrally posttensioned
wall constructed using multiple precast or precast pretensioned concrete wall panels, validation testing programs will initially
use specific values for the specified strength of the concrete and reinforcement in the walls, the layout of the connections
between panels, the location of the posttensioning, the location of the panel joints, and the design stresses in the wall.
Pending the development of an industry standard for the design of such walls, similar to the standard for special hybrid
moment frames, specified concrete strengths, connection layouts, posttensioning amounts and locations, etc., used for such
walls will need to be limited to the values and layouts used in the validation testing programs.
C14.2.4.5.5. For walls constructed using precast or precast/prestressed panels and designed using nonemulative methods,
the response under lateral load can change significantly with joint opening (Figure C14.2.4.2.22d and Figure C14.2.4.2.2
3a). The number of panels used to construct a wall depends on wall height and design philosophy. If, in the prototype
structure, there is a possibility of horizontal joint opening under lateral loading at a location other than the base of the wall,
then the consequences of that possibility need to be considered in the development and validation test programs. Joint
opening at locations other than the base can be prevented through the use of capacity design procedures.
C14.2.4.5.6. The significance of the magnitude of the gravity load that acts simultaneously with the lateral load needs to be
addressed during the validation testing if the development program suggests that effect is significant.
C14.2.4.5.7. Details of the connection of walls to the foundation are critical, particularly for nonemulative wall designs.
The deformations that occur at the base of the wall due to plastic hinging or extension of the reinforcing bars or posttensioning
steel crossing the wall to foundation interface, (Figure C14.2.4.2.22d), are in part determined by details of the
anchorage and the bonding of those reinforcements on either side of the interface. Grout will be normally used to bed panels
on the foundation and the characteristics of that grout in terms of materials, strength and thickness, can have a large effect on
wall performance. The typical grout pad with a thickness of 1 inch (25 mm) or less can be expected to provide a coefficient
of friction of about 0.6 under reversed loadings. Pads with greater thickness and without fiber reinforcement exhibit lesser
coefficients of friction. Adequate frictional resistance is essential to preventing undesirable shearslip deformations of the
type shown in Figure C14.2.4.2.2.3(b).
C14.2.4.5.8. The geometry of the foundations need not duplicate that used in the prototype structure. However, the
geometric characteristics of the foundations (width, depth and length) need to be large enough that they do not influence the
behavior of the test module.
C14.2.4.6 Testing Agency. In accordance with the spirit of the requirements of Sections 1.3.5 and 1.4 of ACI 318, it is
important that testing be carried out by a recognized independent testing agency, approved by the agency having jurisdiction
and that the testing and reporting be supervised by a registered design professional familiar with the proposed design
procedure and experienced in testing and seismic structural design.
C14.2.4.7 Test Method. The test sequence is expressed in terms of drift ratio, and the initial ratio is related to the likely
range of linear elastic response for the module. That approach, rather than testing at specific drift ratios of 0.005, 0.010, etc.,
is specified because, for modules involving prestressed concrete, the likely range of elastic behavior varies with the prestress
level.
An example of the test sequence specified in Sections 14.2.4.7.2 through 14.2.4.7.6 is illustrated in Figure C14.2.4.7. The
sequence is intended to ensure that displacements are increased gradually in steps that are neither too large nor too small. If
steps are too large, the drift capacity of the system may not be determined with sufficient accuracy.
If the steps are too small, the system may be unrealistically softened by loading repetitions, resulting in artificially low
maximum lateral resistances and artificially high maximum drifts. Also, when steps are too small, the rate of change of
energy stored in the system may be too small compared with the change occurring during a major event. Results, using such
small steps, can mask undesirable brittle failure modes that might occur in the inelastic response range during a major event.
Because significant diagonal cracking is to be expected in the inelastic range in the web of walls, and in particular in squat
walls, the pattern of increasing drifts used in the test sequence can markedly affect diagonal crack response in the postpeak
range of behavior.
The drift capacity of a building in a major event is not a single quantity, but depends on how that event shakes the structure.
In the forward near field, a single pulse may determine the maximum drift demand, in which case a single large drift demand
cycle for the test module would give the best estimation of the drift capacity. More often, however, many small cycles
precede the main shock and that is the scenario represented by the specified loading.
Figure C14.2.4.7 Showing Example of specified test sequence.
There is no requirement for an axial load to be applied to the wall simultaneously with the application of the lateral
displacements. In many cases it will be conservative not to apply axial load because, in general, the shear capacity of the
wall and the resistance to slip at the base of the wall increase as the axial load on the wall increases. However, as the height
of the wall increases and the limiting drift utilized in the design of the wall increases, the likelihood of extreme fiber crushing
in compression at maximum drift increases, and the importance of the level of axial load increases. The significance of the
level of axial loading should be examined during the development phase.
C14.2.4.7.4 For the response of a structure to the design seismic shear force, building codes (e.g., UBC 97, IBC 2006 or
NFPA 5000) or recommended provisions (e.g., ASCE/SEI 705 and FEMA 356) specify a maximum allowable drift.
However, structures designed to meet that drift limit may experience greater drifts under the design basis earthquake ground
motion and are likely to experience greater drifts under the risktargeted maximum considered earthquake ground motion. In
addition to the characteristics of the ground motion, actual drifts will depend on the strength of the structure, its initial elastic
stiffness, and the ductility expected for the given lateral load resisting system. Specification of suitable limiting drifts for the
test modules requires interpretation and allowance for uncertainties in the assumed ground motions and structural properties.
In IBC 2006, the design seismic shear force applied at the base of a building is related directly to its weight and the design
elastic response acceleration, and inversely to a response modification factor, R. That R factor increases with the expected
ductility of the lateral force resisting system of the building. Special structural walls satisfying the requirements of Sections
21.1 and 21.9 are assigned an R value of 6 when used in a building frame system and a value of 5 when used in a bearing
wall system. They are also assigned allowable story drift ratios that are dependent on the hazard to which the building is
exposed. When the design seismic shear force is applied to a building, the building responds inelastically and the resultant
computed drifts, (the design story drifts), must be less than a specified allowable drift. Additional guidance is given in
FEMA 356 where the deformations for rectangular walls with height to length ratios greater than 2.5, and flanged wall
sections with height to length ratios greater than 3.5, are to be assumed to be controlled by flexural actions. When structural
walls are part of a building representing a substantial hazard to human life in the event of a failure, the allowable story drift
ratio for shear controlled walls is 0.0075 and for flexure controlled walls is a function of the plastic hinge rotation at the base
of the wall. For flexure controlled walls values range up to a maximum of about 0.02 for walls with confined boundary
elements with low reinforcement ratios and shear stress less than 3vfc’.
Figure C14.2.4.7 Example of specified test sequence.
To compensate for the use of the R value, IBC Section 1617.4.6 requires that the drift determined by an elastic analysis for
the codeprescribed seismic forces be multiplied by a deflection amplification factor, Cd ,to determine the design story drift
and that the design story drift must be less than the allowable story drift. In building frame systems, structural walls
satisfying the requirements of Section 21.9 of ACI 318 are assigned a Cd value of 5. However, research has found that design
story drift ratios determined in the foregoing manner may be too low. Drift ratios of 6 times IBCcalculated values, (rather
than 5), are more representative of the upper bounds to expected drift ratios. The value of 6 is also in agreement with the
finding that the drift ratio of an inelastic structure is approximately the same as that of an elastic structure with the same
initial period. For flexure controlled walls the value of 6/5 times the present IBC limits on calculated drift ratio, would lead
to a limit on real drift ratios of up to 0.024.
Duffy et al. reviewed experimental data for shear walls to define postpeak behavior and limiting drift ratios for walls with
height to length ratios between 0.25 and 3.5. Seo et al. reanalyzed the data of Duffy et al. together with data from tests
conducted subsequent to the analysis of Duffy et al. Duffy et al. established that for squat walls with web reinforcement
satisfying ACI 31802 requirements and height to length ratios between 0.25 and 1.1, there was a significant range of
behavior for which drifts were still reliable in the postpeak response region. Typically the postpeak drift increased by 0.005
for a 20 percent degradation in capacity under cyclic loading. For greater values of degradation, drifts were less reliable.
That finding has also been confirmed through tests conducted by Hidalgo et al. (2002) on squat walls with effective height to
length ratios ranging between 0.35 and 1.0. Values of the drift ratio of the walls at inclined cracking and at peak capacity
varied little with web reinforcement. By contrast, drifts in the postpeak range were reliable to a capacity equal to 80 percent
of the peak capacity and were 0.005 greater than the drifts at peak capacity provided the walls contained horizontal and
vertical web reinforcement equal to 0.25 percent.
From an analysis of the available test data, and from theoretical considerations for a wall rotating flexurally about a plastic
hinge at its base, Seo et al. concluded that the limiting drift at peak capacity increased almost linearly with the height to
length ratio of the wall. When the additional post peak drift capacity for walls with adequate web reinforcement was added
to the drift at peak capacity, the total available drift capacity in percent was given by 1.0 = 0.67 (hw / lw) + 0.5 = 3.0 where hw
is the height of the wall, and lw is the length of the wall.
The data from the tests of Hidalgo et al. (2002) suggest that while that formula is correct for squat walls, the lower limit on
drift can be decreased to 0.8 as specified in these provisions and that the use of that formula should be limited to walls with
height to length ratios equal to or greater than 0.5. For wall height to length ratios less than 0.5, the behavior is controlled
principally by shear deformations (Figure C14.2.4.2.2.2c), and Equation 14.2.41 should not be used. The upper value of
0.030 for the drift ratio was somewhat optimistic because the data were for walls with height to length ratios equal to or less
than 3.5 and subsequent tests have shown that the upper limit of 2.5, as specified in Equation 14.2.4.1, is a more realistic
limit.
C14.2.4.7.5 The design capacity for coupled wall systems must be developed by the drift ratio corresponding to that for the
wall with the least hw/lw value. However, it is desirable that testing be continued to the drift given by Equation 14.2.41 for
the wall with the greatest hw/lw in order to assess the reserve capacity of the coupled wall system.
C14.2.4.7.6 The drift limits of Equation 14.2.4.1 are representative of the maximum that can be achieved by walls designed
to ACI 318. The use of smaller drift limits is appropriate if the designer wishes to use performance measures less than the
maximum permitted by ACI 318. Examples are the use of reduced shear stresses so that the likelihood of diagonal cracking
of the wall is minimized or reduced compressive stresses in the boundary elements of the wall so that the risk of crushing is
reduced. Nonlinear time history analyses for the response to a suite of risktargeted maximum considered earthquakes
(MCER) ground motions, rather than 1.5 times a suite of the corresponding design basis earthquake (DBE) ground motions, is
required because the drifts for the response to the MCER motion can be significantly larger than 1.5 times the drifts for the
response to the DBE motions.
C14.2.4.7.10 In many cases, data additional to the minimum specified in Section 14.2.4.7.7 may be useful to confirm both
design assumptions and satisfactory response. Such data include relative displacements, rotations, curvatures, and strains.
C14.2.4.8 Test Report. The test report must be sufficiently complete and selfcontained for a qualified expert to be satisfied
that the tests have been designed and carried out in accordance with these criteria, and that the results satisfy the intent of
these provisions. Sections 14.2.4.8.1.1 through 14.2.4.8.1.11 state the minimum evidence to be contained within the test
report. The authority having jurisdiction or the registered design professional supervising the testing may require that
additional test information be reported.
C14.2.4.9 Test Module Acceptance Criteria.
The requirements of this clause apply to each module of the test program and not to an average of the results of the program.
Figure C14.2.4.9.1 illustrates the intent of this clause.
Figure C14.2.4.9.1 Showing Unacceptable hysteretic behavior.
C14.2.4.9.1.1 Where nominal strengths for opposite loading directions differ, as is likely for C, L or T shaped walls, the
criterion of Section 14.2.4.9.1.1 applies separately to each direction.
C14.2.4.9.1.2 At high cyclicdrift ratios, strength degradation is inevitable. To limit the level of degradation so that drift ratio
demands do not exceed anticipated levels, a maximum strength degradation of 0.20Emax is specified. Where strengths differ
for opposite loading directions, this requirement applies independently to each direction.
C14.2.4.9.1.3. If the relative energy dissipation ratio is less than 1/8, there may be inadequate damping for the building as a
whole. Oscillations may continue for some time after an earthquake, producing lowcycle fatigue effects, and displacements
may become excessive.
If the stiffness becomes too small around zero drift ratio, the structure will be prone to large displacements for small lateral
force changes following a major earthquake. A hysteresis loop for the third cycle between peak drift ratios of 1/10 times the
limiting drift ratio given by Equation 14.2.41, that has the form shown in Figure C14.2.4.9.1, is acceptable. At zero drift
ratio, the stiffnesses for positive and negative loading are about 11 percent of the initial stiffnesses. Those values satisfy
Section 14.2.4.9.1. An unacceptable hysteresis loop form would be that shown in Figure C14.2.4.9.1 where the stiffness
around zero drift ratio is unacceptably small for both positive and negative loading.
COMMENTARY TO SECTION 14.4.5
C14.4.5 Modifications to Chapter 1 of ACI 530/ASCE 5/TMS 402. The seismic design factors, SDC limits, and height
restrictions of these provisions are based on a combination of testing, analysis, underlying consensus standards, experience,
and consistency with comparable structural systems.
The testing and analysis, described in Tanner et al. (2005a and b) and Varela et al. (2005b), began in 1999 and were
developed as part of an integrated research strategy. This strategy, presented at ICCES hearings in 2003 and affirmed in its
essence using performancebased methods similar to those in the 90percentcomplete draft of FEMA P695 (Applied
Technology Council, 2008), had as its objective the development of seismic design factors consistent with at most a 10
percent probability of collapse under what was essentially equivalent to the maximum considered earthquake ground motion.
That research developed factors of R and Cd equal to 3 with no restrictions on SDC or height. Additional information on that
research is presented in American Society of Testing and Materials (2007), Masonry Standards Joint Committee (2005a and b
and 2008a and b), The Masonry Society (2007), Tanner et al. (2005a and b), and Varela et al. (2006).
Figure C14.2.4.9.1 Unacceptable hysteretic behavior.
Following the initial presentation of this strategy and its associated proposals in the ICCES forum, it was discussed
extensively with the BSSC’s Provisions Update Committee and other interested parties including the BSSC’s Code Resource
Support Committee. Those discussions led to a modification of the proposal to R and Cd factors equal to 2, to SDC from A to
C, and to height restrictions of 35 ft for SDC C. These values and their associated restrictions are consistent with a
probability of failure much lower than 10 percent under what was essentially equivalent to the risktargeted maximum
considered earthquake ground motion (MCER).
Structures of autoclaved aerated concrete (AAC) masonry are designed and constructed using U.S. consensus standards
including material standards (American Society of Testing and Materials, 2007), design provisions, and mandatory
construction requirements (Masonry Standards Joint Committee, 2005a and b and 2008a and b). These U.S. consensus
standards are augmented by refereed documents (The Masonry Society, 2007) and the online recommendations of the
Autoclaved Aerated Concrete Products Association (http://www.aacpa.org/).
In the United States, AAC masonry buildings built with local approvals, under design rules consistent with the consensus
standards, and with heights greater than those permitted by these provisions, have successfully resisted hurricane winds with
no damage.
The seismic design factors, SDC limits, and height restrictions of these provisions are consistent (or even more conservative)
than those assigned to Ordinary Reinforced Masonry Shear Walls of clay or concrete masonry.
ADDITIONAL REFERENCES FOR CHAPTER 14 COMMENTARY
Ali, A. and J. K. Wight. 1990. Reinforced Concrete Structural Walls with Staggered Opening Configurations Under
Reversed Cyclic Loading, Report UMCE 9005. Department of Civil Engineering, University of Michigan, Ann Arbor.
American Concrete Institute Innovation Task Group I and Collaborators. 2001. Acceptance Criteria for Moment Frames
Based on Structural Testing, T1.101, and Commentary, T1.1R01. ACI, Farmington Hills, Michigan.
American Concrete Institute Innovation Task Group I and Collaborators. 2001 “Special Hybrid Moment Frames Composed
of Discretely Jointed Precast and PostTensioned Concrete Members (ACI T1.2XX) and Commentary (ACI T1.2RXX),”
ACI Structural Journal, 98(5):771784.
American Society of Testing and Materials. 2007. “Standard Specification for Precast Autoclaved Aerated Concrete
(PAAC) Wall Construction Units,” ASTM C138607, Annual Book of ASTM Standards. American Society of Testing and
Materials, West Conshohocken, Pennsylvania.
Applied Technology Council. 2008. Quantification of Building Seismic Performance Factors: 90 Percent Complete Draft,
FEMA P695. Federal Emergency Management Agency, Washington, D.C.
Banks, G., and J. Stanton. 2005. “PaneltoPanel Connections for HollowCore Shear Walls Subjected to Seismic Loading,”
in Proceedings of the 2005 PCI Convention, Palm Springs, California.
Bora, C., M. G. Oliva, S. D. Nakaki, and R. Becker. 2005. “Development of a Precast Concrete ShearWall System
Requiring Special Code Acceptance,” PCI Journal, 52(1):122135.
Building Seismic Safety Council. 1987. Guide to Use of NEHRP Recommended Provisions in Earthquake Resistant Design
of Buildings, 1985 Edition, FEMA 140. FEMA, Washington, D.C.
Building Seismic Safety Council. 2000. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and
Other Structures, FEMA 368 and 369. FEMA, Washington, D.C.
Cheok, G. S., and H. S. Lew. 1991. “Performance of Precast Concrete BeamtoColumn Connections Subject to Cyclic
Loading,” PCI Journal, 36(3):5667.
Duffy, T. A., A. Goldman, and C. R. Farrar. 1993. Shear Wall Ultimate Drift Limits, Report NUREG/CR6104, LA12649
MS. U.S. Nuclear Regularity Commission, Washington, D.C.
Elliott, K. S., G. Davies, and W. Omar. 1992. “Experimental and Theoretical Investigation of Precast Concrete
HollowCored Slabs Used as Horizontal Floor Diaphragms,” The Structural Engineer, 70(10):175187.
Englekirk, R. E. 1987. “Concepts for the Development of Earthquake Resistant Ductile Frames of Precast Concrete,” PCI
Journal, 32(1).
Fahnestock, Larry A., James M. Ricles, and Richard Sause. 2006. “Experimental Study of a LargeScale Buckling
Restrained Using the PsudoDynamic Testing Method” in Proceedings of the 8th National Conference on Earthquake
Engineering, San Francisco, California.
Fanous, A., S. Sritharan, M. Suleiman, and A. Arulmoli, A. 2007. Minimum Spiral Reinforcement Requirements and lateral
Displacement Limits for Prestressed Concrete Piles in High Seismic Regions, ISUERI Ames Report. Department of Civil,
Construction and Environmental Engineering, Iowa State University, Ames.
Federal Emergency Management Agency. 2000. “Concrete,” Chapter 6 in NEHRP Guidelines for the Seismic Rehabilitation
of Buildings, FEMA 356 and 357. FEMA, Washington, D.C.
French, C. W., M. Hafner, and V. Jayashanker. 1989. “Connections Between Precast Elements  Failure Within Connection
Region,” ASCE Journal of Structural Engineering, 115(12):31713192.
Hawkins, N. M., and R. E. Englekirk. 1987. “U.S.Japan Seminar on P/C Concrete Construction in Seismic Zones,” PCI
Journal, 32(2).
Hidalgo, P.A., C.A. Ledezma, and R. A. Jordan. 2002. “Seismic Behavior of Squat Reinforced Concrete Shear Walls,”
Earthquake Spectra, 18(2):287308.
Hutchinson, R.L., S.H. Rizkalla, M. Lau, and M. Heuvel. 1991. “Horizontal PostTensioned Connections for Precast
Concrete Bearing Shear Walls,” PCI Journal, 36(3):6476.
International Code Council. 2006. International Building Code. ICC, Falls Church, Virginia.
International Conference of Building Officials. 1997. Uniform Building Code, Vol. 2, Structural Engineering Design
Provisions. ICBO, Whittier, California.
Ishizuka, T., and N. M. Hawkins. 1987. Effect of Bond Deterioration on the Seismic Response of Reinforced and Partially
Prestressed Concrete and Ductile Moment Resistant Frames, SM872. University of Washington, Department of Civil
Engineering.
Jayashanker, V., and C. E. French. 1988. An Interior Moment Resistant Connection Between Precast Elements Subjected to
Cyclic Lateral Loads, Structural Engineering Report 8710. University of Minnesota, Minneapolis.
Kurama, Y. C. 2002. “Hybrid PostTensioned Precast Concrete Walls for Use in Seismic Regions,” PCI Journal, 47(5):36
59.
Masonry Standards Joint Committee (MSJC). 2005a. MSJC Code and Specification: Building Code Requirements for
Masonry Structures, ACI 53005/ASCE 505/TMS 40205. The American Concrete Institute, Farmington Hills, Michigan;
the American Society of Civil Engineers, Reston, Virginia; and the Masonry Society, Boulder, Colorado.
Masonry Standards Joint Committee (MSJC). 2005a. MSJC Code and Specification: Specifications for Masonry Structures,
ACI 530.105/ASCE 605/TMS 60205. The American Concrete Institute, Farmington Hills, Michigan; the American
Society of Civil Engineers, Reston, Virginia; and the Masonry Society, Boulder, Colorado.
Masonry Standards Joint Committee (MSJC). 2008a. MSJC Code and Specification: Building Code Requirements for
Masonry Structures, TMS 40208/ACI 53008/ASCE 508. The Masonry Society, Boulder, Colorado; the American
Concrete Institute, Farmington Hills, Michigan; and the American Society of Civil Engineers, Reston, Virginia.
Masonry Standards Joint Committee. 2008b. MSJC Code and Specification: Specifications for Masonry Structures, TMS
60208/ACI 530.108/ASCE 608. The Masonry Society, Boulder, Colorado; the American Concrete Institute, Farmington
Hills, Michigan; and the American Society of Civil Engineers, Reston, Virginia.
Mast, R. F. 1992. “A Precast Concrete Frame System for Seismic Zone Four.” PCI Journal 37(1):5064.
Precast/Prestressed Concrete Institute. 2004. “Precast Prestressed Concrete Piles,” Chapter 20 in Bridge Design Manual,
PCI BM2004. PCI, Chicago, Illinois.
The Masonry Society. 2007. Masonry Designers’ Guide, 5th ed., edited by Phillip J. Samblanet. The Masonry Society,
Boulder, Colorado.
Nakaki, S. D., and R. E. Englekirk. 1991. “PRESSS Industry Seismic Workshops: Concept Development,” PCI Journal
36(5):5461.
Nakaki, S., J. F. Stanton, and S. Sritharan. 2001. “The PRESSS FiveStory Precast Concrete Test Building, University of
California, San Diego, La Jolla, California,” PCI Journal, 46(5):2026.
National Fire Protection Association. 2006. Building Construction and Safety Code, NFPA 5000. NFPA, Quincy,
Massachusetts.
Neille, D. S. 1977. “Behavior of Headed Stud Connections for Precast Concrete Connections for Precast Concrete Panels
Under Monotonic and Cycled Shear Loading,” thesis submitted in partial fulfillment of the requirements of Doctor of
Philosophy, University of British Columbia.
New Zealand Society for Earthquake Engineering. 1991. “Guidelines for the Use of Structural Precast Concrete in
Buildings.”
Park, R., and K. J. Thompson. 1977. “Cyclic Load Tests on Prestressed and Partially Prestressed BeamColumn Joints,”
PCI Journal, 22(5):84110.
PCI Ad Hoc Committee on Precast Walls. 1997. “Design for Lateral Force Resistance with Precast Concrete Shear Walls,
PCI Journal, 42(2):4465.
Pekau, O. A., and D. Hum. 1991. “Seismic Response of FrictionJointed Precast Panel Shear Walls,” PCI Journal,
36(2):5671.
Powell, G., F. Filippou, V. Prakash, and S. Campbell. 1993. “Analytical Platform for Precast Structural Systems,” in
Proceedings, ASCE Structures Congress '93. ASCE, New York.
Priestley, M. J. N. 1991. “Overview of PRESSS Research Program,” PCI Journal 36(4):5057.
Priestley, M. J. N., and J. T. Tao. 1993. “Seismic Response of Precast Prestressed Concrete Frames with Partially Debonded
Tendons,” PCI Journal, 38(1):5869.
Priestley, M. J. N., S. Sritharan, J. Conley, and S. Pampanin. 1999. “Preliminary Results and Conclusions from the PRESSS
FiveStory Precast Concrete Test Building,” PCI Journal, 44(6):4267.
Schultz, A. E. and R.A. Magana. 1996. “Seismic Behavior of Connections in Precast Concrete Walls,” Paper SP 16212, in
Proceedings of the Mete A. Sozen Symposium, pp.273311, ACI SP 162. American Concrete Institute, Farmington Hills,
Michigan.
Seo, SY., LH Lee, and N. M. Hawkins. 1998. “The Limiting Drift and Energy Dissipation Ratio for Shear Walls Based on
Structural Testing,” Journal of the Korean Concrete Institute,10(6):335343.
Stanton, J. F., T. R. Hicks, and N. M. Hawkins. 1991. “PRESSS Project 1.3: Connection Classification and Evaluation,”
PCI Journal, 36(5):6271.
Stanton, J. F. and S. D. Nakaki. 2002. Design Guidelines for Precast Concrete Seismic Structural SystemsUnbonded Post
Tensioned Split Walls, PRESSS Report 01/0309, UW Report SM 0202. Department of Civil Engineering, University of
Washington, Seattle.
Tanner, J. E., J. L. Varela, and R. E. Klingner. 2005a. “Design and Seismic Testing of a Twostory Fullscale Autoclaved
Aerated Concrete (AAC) Assemblage Specimen,” ACI Structures Journal, 102 (1):114119.
Tanner, J. E., J. L. Varela, R. E. Klingner, M. J. Brightman, and U. Cancino.2005b. “Seismic Testing of Autoclaved Aerated
Concrete (AAC) Shear Walls: A Comprehensive Review,” Structures Journal, American Concrete Institute, Farmington
Hills, Michigan, vol. 102, no. 3, May  June 2005, pp. 374382.
Taylor, C. P., P. E. Cote, and J. W. Wallace. “Design of Slender Reinforced Concrete Walls with Openings,” ACI Structural
Journal, 95(4):420433.
Thompson, K. J., and R. Park. 1980. “Seismic Response of Partially Prestressed Concrete,” ASCE Journal of the Structural
Division, 106(ST8):17551775.
Uang, CM., and A. Maarouf. 1993. “Seismic Displacement Amplification Factor in Uniform Building Code,” SEAONC
Research Bulletin Board, BB933, pp. B1B2, and “Displacement Amplification Factor for Seismic Design Provisions,” in
Proceedings of the Structures Congress, ASCE, Vol.1, pp. 211216. Irvine, California.
Uriz, Patxi, and Stephen A. Mahin. 2004. “Seismic Performance Assessment of Concentrically Braced Steel Frames,” Paper
1639 in Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada.
Varela et al. 2006: Varela, J. L., J. E. Tanner, and R. E. Klingner. 2006. “Development of Seismic ForceReduction and
Displacement Amplification Factors for AAC Structures,” Earthquake Spectra, 22(1):267286.
Modifications to Chapter 15, Seismic Design Requirements for
Nonbuilding Structures
TABLE 15.42, SEISMIC COEFFICIENTS FOR
NONBUILDING STRUCTURES NOT SIMILAR TO BUILDINGS
Revise the following items as indicated (deletions in strikeout and additions underlined):
Castinplace concrete silos, stacks, and
chimneys having walls continuous to the
foundation
15.6.2
3
1.75
3
NL
NL
NL
NL
NL
All other reinforced masonry structures
not similar to buildings
14.4.1
3
2
2.5
NL
NL
NL
50
50
All other nonreinforced masonry
structures not similar to buildings
14.4.1
1.25
2
1.5
NL
NL
50
50
50
Concrete chimneys and stacks
15.6.2
2
1.5
1.5
NL
NL
NL
NL
NL
All other steel and reinforced concrete
distributed mass cantilever structures not
covered herein including stacks,
chimneys, silos, and skirtsupported
vertical vessels that are not similar to
buildings
15.6.2 15.7.10 and
15.7.10.5 a and b.
3
2
2.5
NL
NL
NL
NL
NL
SECTION 15.5.3, STEEL STORAGE RACKS
Replace with the following:
15.5.3 Steel Storage Racks. Steel storage racks supported at or below grade shall be designed in accordance with
Section 2.7 of the ANSI/RMI MH 16.1 standard and its force and displacement requirements.
For storage racks supported above grade, the value of V in Section 2.7.2 of ANSI/RMI MH 16.1 shall not be taken less
than the value of Fp determined in accordance with Section 13.3.1 of this standard, where Rp is taken equal to R, and ap is
taken equal to 2.5.
Alternatively, in addition to the requirements of Section 15.5.1, steel storage racks shall be designed in accordance with
the requirements of Sections 15.5.3.1 through 15.5.3.4
[Sections 15.5.3.1 through 15.5.3.4 are unchanged.]
SECTION 15.6.2, STACKS AND CHIMNEYS
Replace with the following:
15.6.2 Stacks and Chimneys. Stacks and chimneys are permitted to be either lined or unlined and shall be constructed
from concrete, steel, or masonry. Steel stacks, concrete stacks, steel chimneys, concrete chimneys, and liners shall be
designed to resist seismic lateral forces determined from a substantiated analysis using reference documents. Interaction
of the stack or chimney with the liners shall be considered. A minimum separation shall be provided between the liner
and chimney equal to Cd times the calculated differential lateral drift.
For concrete chimneys assigned to Seismic Design Category D, E or F, splices for vertical rebar shall be staggered such
that no more than 50 percent of the bars are spliced at any elevation. Design and detailing of crosssections in the
regions of breach openings, where the loss of crosssectional area is greater than 10 percent, shall be performed in one of
the following ways:
a. For vertical force, shear force, and bending moment demands along the vertical direction, design the affected crosssection
using the overstrength factor of 1.5. The following detailing requirements shall be satisfied:
i. The region of such overstrength shall extend above and below (except if the opening is at the base) the
opening(s) by a distance equal to half of the width of the largest opening in the affected region.
ii. Appropriate reinforcement development lengths shall be provided beyond the required region of overstrength.
iii. The jamb regions around each opening shall be detailed using the column tie requirements in Section 7.10.5 of
ACI 318. Such detailing shall extend for a jamb width of a minimum of two times the wall thickness and for a
height of the opening height plus twice the wall thickness above and below the opening, but no less than the
development length of the longitudinal bars. The percentage of longitudinal reinforcement in jamb regions shall
meet the requirements of Section 10.9 of ACI 318 for compression members.
b. Provided that the crosssectional moment of inertia in the opening region is at least 70 percent of the same above
and below it, it shall be permitted to treat the breach opening region as follows:
i. All detailing requirements listed in Item a. above for the overstrength option shall be followed, in addition to the
ones listed below.
ii. Hoop ties in jamb regions shall be detailed as columns of intermediate moment frames using the requirements
in Section 21.3.5 of ACI 318. The dimensions for jamb region shall be the same as that required in Item a.
above for the overstrength option.
iii. No construction joints within the opening region plus two times the wall thickness above and below the
opening.
iv. Ratio of outer diameter to wall thickness shall not exceed 20 within the opening region.
SECTION 15.7.6, GROUNDSUPPORTED STORAGE TANKS FOR LIQUIDS
Add the following exception to the end of Section 15.7.6.1, General:
EXCEPTION: For Tc > 4 seconds, Sac may be determined by a sitespecific study using one or more of the following
methods: (a) the procedures found in Chapter 21, provided such procedures, which rely on groundmotion attenuation
equations for computing response spectra, cover the natural period band containing Tc , (b) groundmotion simulation
methods employing seismological models of fault rupture and wave propagation, and (c) analysis of representative
strongmotion accelerogram data with reliable longperiod content extending to periods greater than Tc . However, in no
case shall the value of Sac be taken as less than the minimum of:
1. The value determined in accordance with Equation 15.711 using 50 percent of the mapped value of TL from Figure
227 or
2. 0.8 times the value determined in accordance with Equation 15.711 using the mapped value of TL from Figure 227.
In determining the value of Sac, the value of TL shall not be less than 4 seconds.
Commentary to Chapter 15 Modifications
COMMENTARY TO SECTION 15.5.3
C15.5.3 Steel Storage Racks. The two approaches to the design of steel storage racks set forth by the standard are intended
to produce comparable results. The specific revisions to the RMI specification cited in earlier editions of the Provisions and
the detailed requirements of the new ANSI/RMI standard reflect the recommendations of FEMA 460, Seismic Considerations
for Steel Storage Racks Located in Areas Accessible to the Public.
COMMENTARY TO SECTION 15.6.2
C15.6.2 Stacks and Chimneys. The design of stacks and chimneys to resist natural hazards generally is governed by wind
design considerations. The exceptions to this general rule involve locations with high seismicity, stacks and chimneys with
large elevated masses, and stacks and chimneys with unusual geometries. It is prudent to evaluate the effect of seismic loads
in all but those areas with the lowest seismicity. Although not specifically required, it is recommended that the special
seismic details required elsewhere in the standard be considered for application to stacks and chimneys.
Concrete chimneys have low ductility, and their seismic behavior is especially critical in the opening regions due to inherent
reduction in strength and loss of confinement for vertical reinforcement in the jamb regions around the openings. Spectacular
earthquakeinduced chimney failures have occurred in recent history (in Turkey in 1999) and have been attributed to
strength/detailing problems (Kilic and Sozen, 2003). Therefore, the R value of 3 traditionally used in ASCE/SEI 705 for
concrete stacks and chimneys is reduced to 2 and detailing requirements for breach openings are added in the 2009 NEHRP
Recommended Seismic Provisions.
Guyed steel stacks and chimneys are generally lightweight. As a result, the design loads due to natural hazards generally are
governed by wind. On occasion, large flares or other elevated masses located near the top may require indepth seismic
analysis. Although it does not specifically address seismic loading, Chapter 6 of Troitsky (1982) provides a methodology
appropriate for resolution of the seismic forces defined in the standard.
COMMENTARY TO SECTION 15.7.6.1
C15.7.6.1 General. The response of ground storage tanks to earthquakes is well documented by Housner, Mitchell and
Wozniak, Veletsos, and others. Unlike building structures, the structural response of these tanks is influenced strongly by the
fluidstructure interaction. Fluidstructure interaction forces are categorized as sloshing (convective) and rigid (impulsive)
forces. The proportion of these forces depends on the geometry (heighttodiameter ratio) of the tank. API 650, API 620,
AWWA D100, AWWA D110, AWWA D115, and ACI 350.3 provide the data necessary to determine the relative masses
and moments for each of these contributions.
The standard requires that these structures be designed in accordance with the prevailing reference documents, except that the
height of the sloshing wave, ds
, must be calculated using Equations 15.713. Note that API 650 and AWWA D100 include
this requirement in their latest editions.
Equations 15.710 and 15.711 provide the spectral acceleration of the sloshing liquid for the constantvelocity and constantdisplacement
regions of the response spectrum, respectively. The 1.5 factor in these equations is an adjustment for
0.5 percent damping. An exception in the use of Equation 15.711 was added for the 2009 NEHRP Recommended Seismic
Provisions. Actual sitespecific studies carried out since the introduction of the TL requirements of ASCE/SEI 705 indicate
that the mapped values of TL are extremely conservative. Because a revision of the TL maps is a timeconsuming task that
would not be possible during the 2009 Provisions update cycle, an exception was added to allow the use of sitespecific
values that are less than the mapped values with a floor of 4 seconds or onehalf the mapped value of TL. The exception was
added under Section 15.7.6 because TL is a tank issue. Discussion of the sitespecific procedures can be found in the Part 2
Commentary for Chapter 22.
ADDITIONAL REFERENCE FOR CHAPTER 15 COMMENTARY
Kilic, S., and M. Sozen. 2003. “Evaluation of Effect of August 17, 1999, Marmara Earthquake on Two Tall Reinforced
Concrete Chimneys,” ACI Structural Journal, 100(3).
Page intentionally left blank.
Modification to Chapter 16,
Seismic Response History Procedures
SECTION 16.1.3.2, THREEDIMENSIONAL ANALYSIS
Replace with the following:
16.1.3.2 ThreeDimensional Analysis. Where threedimensional analyses are performed, ground motions shall consist
of pairs of appropriate horizontal ground motion acceleration components that shall be selected and scaled from
individual recorded events. Appropriate ground motions shall be selected from events having magnitudes, fault
distances, and source mechanisms that are consistent with those that control the risktargeted maximum considered
earthquake (MCER). Where the required number of recorded ground motion pairs is not available, appropriate simulated
ground motion pairs are permitted to be used to make up the total number required. For each pair of horizontal ground
motion components, a square root of the sum of squares (SRSS) spectrum shall be constructed by taking the SRSS of the
5percentdamped response spectra for the scaled components (for direct scaling, an identical scale factor is applied to
both components of a pair). Each pair of motions shall be scaled such that for each period between 0.2T and 1.5T, the
average of the SRSS spectra from all horizontal component pairs does not fall below the corresponding ordinate of the
MCER response spectrum determined in accordance with Section 11.4.5 or 11.4.7.
At sites within 5 km of an active fault that controls the hazard, each pair of components shall be rotated to the faultnormal
and faultparallel direction of the causative fault and shall be scaled so that the average of the faultnormal
components is not less than the MCER response spectrum for each period between 0.2T and 1.5T.
Commentary to Chapter 16 Modification
COMMENTARY TO SECTION 16.1.3.2
C16.1.3.2 Threedimensional Analyses. One key change to the ground motion design requirements developed by the
BSSC’s Seismic Design Procedure Review Group (SDPRG) for the 2009 NEHRP Recommended Seismic Provisions is the
use of maximum direction ground motions. In addition to changing the design values defined in Chapter 11 and used
throughout the Provisions, implementing maximum direction ground motions affects the previous ground motion scaling
rules specified in Section 16.1.3.2. Studies (Maffei and Hashemi, 2008) of 50 ground motions of M6.5M7.9 earthquakes for
both farfield and nearfield records and for periods in the range of 0.1 to 3.0 seconds indicate that the maximum direction of
ground motion is slightly less than the SRSS of the two components with the SRSS spectrum tending to be approximately
1.16 times the maximum direction spectrum.
For each of the 50 ground motions, the maximum response of a singledegreeoffreedom (SDOF) oscillator (assuming 5
percent damping) was determined for ground motion orientations from 0 to 90 degrees (in onedegree increments) and was
compared to the associated SRSS of maximum response. The ratios of the SRSS of maximum response and the maximum
amplitude of the response for varying parameters are given in Tables C16.1.3.21 through C16.1.3.23.
Table C16.1.3.21 Ratio of SRSS of Maximum Response to Maximum
Amplitude as a Function of SDOF Period
SDoF Period
Number of Data
Points
RatioMean
Ratio –Standard
Deviation
0.1 sec
50
1.19
0.077
0.3 sec
50
1.16
0.068
1.0 sec
50
1.14
0.067
3.0 sec
50
1.13
0.077
Average
200
1.16
0.076
Table C16.1.3.22 Ratio of SRSS of Maximum Response to Maximum
Amplitude as a Function of Ground Motion Records
Ground Motion
Number of Data
Points
RatioMean
Ratio Standard
Deviation
FarField
88
1.16
0.067
NearField
112
1.15
0.078
Average
200
1.16
0.076
Table C16.1.3.23 Ratio of SRSS of Maximum Response to Maximum
Amplitude as a Function of Site Class
Site Class
Number of Data
Points
RatioMean
Ratio Standard
Deviation
B
8
1.15
0.066
C
84
1.15
0.072
D
108
1.16
0.073
Average
200
1.16
0.076
The modified scaling requirements simplify phrasing of existing language by replacing 10 percent less than 1.16 times the
MCER response spectrum with the MCER response spectrum, itself, resulting in an effective “1.0” multiplier. This effective
multiplier comes from (0.9)(1.16) ˜ 1.0.
However, for sites within approximately 5 km of an active fault that controls the groundmotion hazard, the near field strongmotion
database indicates that the faultnormal (FN) direction is (or is close to) the direction of maximum ground motion for
periods around 1.0 second and greater (Huang et al., 2008; WatsonLamprey and Boore, 2007). In this case, the two
horizontal components of a selected record are to be transformed so that one component is the motion in the FN direction and
the other component is the motion in the faultparallel (FP) direction. Scaling so that the average FN component response
spectrum is at the level of the MCER response spectrum ensures that the FN components will not be underestimated, which
would happen if the SRSS rule was applied at short distances. The same scale factor selected for the FN component of a
given record is used for the FP component also.
ADDITIONAL REFERENCES FOR CHAPTER 16 COMMENTARY
Huang, Y. N., A. Whittaker, and N. Luco. 2007. “NGA Relationships, USGS Seismic Hazard Maps, NearFault Ground
Motions and Site Effects: BSSC Project 07 Final Draft Report. BSSC, Washington, D.C.
Maffei, J., and A. Hashemi. 2008. Personal Communication.
WatsonLamprey, J. A., and D. M. Boore. 2007. “Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot,” Bulletin of the
Seismology Society of America, 97:15111524.
Modifications to Chapter 18, Seismic Design Requirements for Structures
with Damping Systems
SECTION 18.3.1, NONLINEAR RESPONSE HISTORY PROCEDURE
Replace with the following:
18.3.1 Nonlinear Response History Procedure. A nonlinear response history (time history) analysis shall utilize a
mathematical model of the structure and the damping system as provided in Chapter 16 and this section. The model
shall directly account for the nonlinear hysteretic behavior of elements of the structure and the damping devices to
determine its response, through methods of numerical integration, to suites of ground motions compatible with the
design response spectrum for the site.
The analysis shall be performed in accordance with Chapter 16 together with the requirements of this section. Inherent
damping of the structure shall not be taken greater than 5 percent of critical unless test data consistent with levels of
deformation at or just below the effective yield displacement of the seismicforceresisting system support higher values.
If the calculated force in an element of the seismic forceresisting system does not exceed 1.5 times its nominal strength,
that element is permitted to be modeled as linear.
18.3.1.1 Damping Device Modeling. Mathematical models of displacementdependent damping devices shall include
the hysteretic behavior of the devices consistent with test data and accounting for all significant changes in strength,
stiffness, and hysteretic loop shape. Mathematical models of velocitydependent damping devices shall include the
velocity coefficient consistent with test data. If this coefficient changes with time and/or temperature, such behavior
shall be modeled explicitly. The elements of damping devices connecting damper units to the structure shall be included
in the model.
Exception: If the properties of the damping devices are expected to change during the duration of the response
history analysis, the dynamic response is permitted to be enveloped by the upper and lower limits of device
properties. All these limit cases for variable device properties must satisfy the same conditions as if the time
dependent behavior of the devices were explicitly modeled.
18.3.1.2 Response Parameters. For each ground motion analyzed, individual response parameters consisting of the
maximum value of the individual member forces, member inelastic deformations and story drifts at each story shall
be determined. Moreover, for each ground motion used for response history analysis, individual response
parameters consisting of the maximum value of the discrete damping device forces, displacements, and velocities, in
the case of velocitydependent devices, shall be determined.
If at least seven ground motions are used for response history analysis, the design values of the damping device forces,
displacements, and velocities are permitted to be taken as the average of the values determined by the analyses. If fewer
than seven ground motions are used for response history analysis, the design damping device forces, displacements and
velocities shall be taken as the maximum value determined by the analyses. A minimum of three ground motions shall
be used.
SECTION 18.3.2, NONLINEAR STATIC PROCEDURE
Replace with the following:
18.3.2 Nonlinear Static Procedure. Nonlinear static procedures may be used to construct the lateral forcedisplacement
curve of the seismicforceresisting system in lieu of the elastoplastic curve assumed in the response
spectrum procedure and in the equivalent lateral force procedure. When nonlinear static procedures is used, the
nonlinear modeling described Chapter 16 shall be used. The resulting forcedisplacement curve shall be used in lieu of
the assumed effective yield displacement, DY, of Equation 18.610 to calculate the effective ductility demand under the
design earthquake ground motion, µD, and under the risktargeted maximum considered earthquake ground motion, µM,
in Equations 18.68 and 18.69, respectively. The value of (R/Cd) shall be taken as 1.0 in Equations 18.44, 18.45, 18.4
8, and 18.49 for the response spectrum procedure, and in Equations 18.56, 18.57 and 18.515 for the equivalent lateral
force procedure.
Page intentionally left blank.
FIGURE 19.21, FOUNDATION DAMPING FACTOR
Chapter 19, Soil Structure Interaction for Seismic Design
TABLE 19.21, VALUES OF G / G0 AND Vs / Vso
Replace with the following:
Site Class
Value of vs / vs0
Value of G / G0
SDS/2.5
= 0.1
0.4
= 0.8
= 0.1
0.4
= 0.8
A
1.00
1.00
1.00
1.00
1.00
1.00
B
1.00
0.97
0.95
1.00
0.95
0.90
C
0.97
0.87
0.77
0.95
0.75
0.60
D
0.95
0.71
0.32
0.90
0.50
0.10
E
0.77
0.22
*
0.60
0.05
*
F
*
*
*
*
*
*
Note: Use straight line interpolation for intermediate values of SDS/2.5.
* Should be evaluated from sitespecific analysis.
FIGURE 19.21, FOUNDATION DAMPING FACTOR
Replace with the following:
Page intentionally left blank.
Modification to Chapter 21, SiteSpecific Ground Motion
Procedures for Seismic Design
SECTION 21.2, GROUND MOTION HAZARD ANALYSIS
Replace Sections 21.2.1 through 21.2.3 with the following:
21.2.1 Probabilistic Ground Motions. The probabilistic spectral response acceleration shall be taken as the
spectral response acceleration in the maximum direction of ground motions represented by a 5 percent damped
acceleration response spectrum that is expected to achieve a 1 percent probability of collapse within a 50year
period. For the purpose of this provision, ordinates of the probabilistic groundmotion response spectrum shall
be determined by either Method 1 of Section 21.2.1.1 or Method 2 of Section 21.2.1.2.
21.2.1.1 Method 1. Ordinates of the probabilistic groundmotion response spectrum shall be determined as the
product of the risk coefficient at each spectral response period, CR, and the spectral response acceleration
represented by a 5 percent damped acceleration response spectrum having a 2 percent probability of exceedance
within a 50year period. The value of the risk coefficient, CR, shall be determined using values of CRS and CR1
from Figures 223 and 224, respectively. At spectral response periods less than or equal to 0.2 second, CR shall
be taken as equal to CRS. At spectral response periods greater than or equal to 1.0 second, CR shall be taken as
equal to CR1. At response spectral periods greater than 0.2 second and less than 1.0 second, CR shall be based
on linear interpolation of CRS and CR1.
21.2.1.2 Method 2. Ordinates of the probabilistic groundmotion response spectrum shall be determined at
each spectral response period from the iterative integration of a sitespecific hazard curve with a lognormal
probability density function representing the collapse fragility (i.e., probability of collapse as a function of
spectral response acceleration). At each period, the ordinate of the probabilistic groundmotion response
spectrum shall achieve a 1 percent probability of collapse within a 50year period for a collapse fragility having
(i) a 10 percent probability of collapse at said ordinate of the probabilistic groundmotion response spectrum
and (ii) a logarithmic standard deviation value of 0.8.
21.2.2 Deterministic Ground Motions. The deterministic spectral response acceleration at each period shall
be calculated as the largest 84th percentile 5 percent damped spectral response acceleration in the direction of
maximum horizontal response computed at that period for characteristic earthquakes on all known active faults
within the region. For the purposes of this standard, the ordinates of the deterministic ground motions response
spectrum shall not be taken as lower than the corresponding ordinates of the response spectrum determined in
accordance with Figure 21.21, where Fa and Fv are determined using Tables 11.41 and 11.42, respectively,
with the value of Ss taken as 1.5 and the value of S1 taken as 0.6.
21.2.3 SiteSpecific MCER. The sitespecific MCER spectral response acceleration at any period, SaM, shall be
taken as the lesser of the spectral response accelerations from the probabilistic ground motions of Section 21.2.1
and the deterministic ground motions of Section 21.2.2.
Commentary to the Chapter 21 Modification
C21.2 GROUND MOTION HAZARD ANALYSIS
As explained in the commentary to Chapter 11, the risktargeted maximum considered earthquake ground motions (MCER) in
the 2009 NEHRP Recommended Seismic Provisions are based on the 2008 USGS seismic hazard maps and also incorporate
three technical changes to ASCE/SEI 705:
1. Use of risktargeted ground motions,
2. Use of maximum direction ground motions, and
3. Use of nearsource 84th percentile ground motions.
Reasons for use of maximum direction ground motions are explained first in the commentary below, because they apply to
both the probabilistic and deterministic ground motions discussed subsequently. Use of risktargeted and nearsource 84th
percentile ground motions are discussed in the probabilistic and deterministic ground motions sections below, respectively.
The requirements in the previous editions of the Provisions and ASCE/SEI 7 do not define the direction of ground motions
used for design. The procedure used to develop the statistical estimate of ground motion results in the geometric mean
(geomean) of two orthogonal components of motion at a site. Many engineers find the maximum direction to be a more
meaningful parameter for structural design. The basic concept is that a structure is designed to resist the ground motion at its
site; the prediction of ground motion is inherently statistical, and the basis for the statistical estimate of the ground motion is
rooted in the probability that a structure will actually fail. In general, structures will not have the same resistance in all
directions; however, for those structures in which seismic resistance is a significant economic factor, there is a tendency to
design to the level required by building codes, with the result that the resistance of the structure is relatively insensitive to the
direction of the motion. When one considers such structures subjected to two simultaneous components of ground motion,
these structures characteristically fail in the direction of the stronger of the two components. Failure rates of simple buildings
in one recent study (lowrise wood buildings in Applied Technology Council, 2008) show this effect: the overall failure rate
for threedimensional analyses was higher than those for twodimensional analyses for the same set of structures analyzed for
the same 22 pairs of ground motions. The specification of maximum direction ground motions reduces the probability of
structural failure based upon equivalent static twodimensional design compared to the use of the geomean based demand,
but this reduction has not been quantified at this time. For consistency, revisions have been made to both probabilistic and
deterministic ground motion criteria to reflect required use of maximum direction ground motions.
The USGS updates of the uniformhazard and deterministic ground motion spectral value maps have used the new next
generation attenuation (NGA) relations for sites in the western United States (WUS). The new NGA relationships output an
average horizontal spectral demand and the dispersion in that demand, where this average is the rotated geomean denoted as
GMRotI50 (Boore et al., 2006). GM denotes the geometric mean of two horizontal components, Rot denotes that rotations
over all nonredundant angles are considered, I denotes that periodindependent rotations are used, and 50 identifies the
prediction of median values. The geometric mean of two horizontal components of ground motions is calculated as the
square root of the product of the two horizontal response spectral accelerations at each period of interest. As demonstrated by
Boore et al. (2006), GMRotI50 is numerically very similar to (i.e., within 3 percent of) the geometric mean of two asrecorded
components that was typically the output of older attenuation relationships.
A recent study (Huang et al., 2008a) found that nearsource ground motion spectral response accelerations of the new NGA
relations are somewhat less than those in the maximum direction of response. This study (2008a, 2008b) focused on large
magnitude earthquakes, with moment magnitudes greater than 6.5 and sitetosource distances less than 15 km. For this
family of earthquake records, ground motions in the maximum direction of response are about 110 percent of 5 percent
damped, shortperiod spectral response acceleration, and about 130 percent of 5 percent damped, 1second spectral response
acceleration calculated using the new NGA relations (GMRotI50). Table C21.21 presents summary results to enable
calculation of median and 84th percentile ratios of maximum to geomean spectral demands across the period range of 0 to 4.0
seconds; values of the ratio are assumed to remain constant for periods greater than 4.0 seconds. Values are rounded to the
nearest 0.1, which is the appropriate degree of precision. The ratio of 84th percentile (Column 3) to median (Column 2)
demands is approximately 1.8 to 1.9. Linear interpolation should be used to establish values of the ratios for periods not
listed.
Other regions (e.g., the central and eastern United States) are expected to have similar ratios of maximum direction ground
motions to geomean ground motions although the limited number of strongmotion records from the central and eastern
United States precludes rigorous evaluation such as that performed by the NGA study (Huang et al., 2008). However, studies
by Beyer and Bommer (2006) using a set of 949 earthquake records with much wider ranges of moment magnitude (4.2 to
7.9) and hypocentral distance (5 to 200 km) indicated similar ratios of maximum to geomean response to those of the Huang
et al. study on large magnitude, nearfault ground motions. The Beyer and Bommer data set included records from 20+
European earthquakes.
Table C21.21 Median and 84th Percentile of the Ratio of
Maximum Spectral Demand to Geomean Demand
Period
(second)
Median
84th Percentile
Period
(second)
Median
84th Percentile
0.0
1.1
2.0
0.5
1.2
2.1
0.1
1.1
2.0
1.0
1.3
2.3
0.2
1.1
2.0
2.0
1.3
2.5
0.3
1.1
2.0
4.0+
1.4
2.7
For consistency of ground motion scaling (against either geomean or maximum direction spectra) in threedimensional
response history analysis of structures, the 2009 Provisions has adopted changes related to Section 16.1.3.2 of ASCE/SEI 7
05 such that it enables the scaling of pairs of horizontal ground motion records matching maximum direction spectra (MCER
or design spectra of maximum direction of response) to be equivalent to that matching the corresponding geomean spectra.
Additional explanation of these changes is provided in Section C16.1.3.2.
C21.2.1 Probabilistic Ground Motions. The definition and basis of probabilistic ground motions in these new Provisions
has changed from that in ASCE/SEI 705, from a 2 percent in 50year hazard level to a 1 percent in 50year collapse risk
target. This change is intended to improve seismic design by achieving a more uniform level of collapse prevention. The
change affects the calculation and values of probabilistic ground motions, but not their use in the design process (i.e., 5
percent damped spectral response accelerations are still used). The technical basis of the change can be found in “Risk
Targeted versus Current Seismic Design Maps for the Conterminous United States” (Luco et al., 2007). A summary of the
technical basis is provided below.
In the 1997, 2000 and 2003 editions of the NEHRP Recommended Provisions, the probabilistic MCE ground motions are
defined as those that have a 2 percent probability of being exceeded in 50 years. In other words, the probabilistic MCE
ground motions are of uniform hazard, both geographically and across structural vibration periods. It has long been
recognized, however, that “it really is the probability of structural failure with resultant casualties that is of concern, and the
geographical distribution of that probability is not necessarily the same as the distribution of the probability of exceeding
some ground motion” (p. 296 of ATC 306, 1978).
The primary reason that the two probabilities are not the same is that there are geographic differences in the shape of the
ground motion versus annual frequency of exceedance hazard curves from which uniformhazard ground motions are read.
The commentary of earlier editions of the Provisions (post1997) reports that “because of these differences, questions were
raised concerning whether definition of the ground motion based on a constant probability for the entire United States would
result in similar levels of seismic safety for all structures” (p. 319 of the 2003 NEHRP Recommended Provisions
Commentary). The change to risktargeted ground motions uses the different shapes of hazard curves to adjust the uniformhazard
(2percentin50years) ground motions such that they are expected to result in a uniform annual frequency of
collapse, or risk level, when used in design. The adjustment factors, or risk coefficients, are akin to the ASCE/SEI 4305
sitespecific design factor, which is a function of an approximate slope of the ground motion hazard curve.
The adjustments to the uniformhazard ground motions are computed by making use of the socalled risk integral (e.g.,
McGuire, 2004). The risk integral calculates an annual frequency of collapse by coupling the ground motion hazard curve at
a location with the expected performance of a structure designed for that location. More precisely, the hazard curves are
coupled with the conditional probability of collapse as a function of the ground motion level. Earlier editions of the
Provisions express the expectation that “if a structure experiences a level of ground motion 1.5 times the design level [i.e.,
the MCE ground motion], the structure should have a low likelihood of collapse” (p. 320 of the 2003 NEHRP Provisions
Commentary). This “low likelihood of collapse” has been estimated as 10 percent (Applied Technology Council, 2009)
using stateoftheart incremental dynamic analysis (e.g., Vamvatsikos and Cornell, 2002) of structures designed in
accordance with this edition of the NEHRP Recommended Seismic Provisions (2009). For the likelihood of collapse under
other (than the MCE) ground motion levels, a socalled ßvalue of 0.8 has been used for the 2009 Provisions, based on both
the findings of the Applied Technology Council (2009) and other past research. Other ßvalues ranging from 0.5 to 1.0 have
been considered, with little effect on the resulting risk coefficients. The ground motion hazard curves used in the risk integral
are from the USGS.
Using more subjective estimates of the conditional probability of collapse as a function of the ground motion level, and early
(1976) hazard curves for only four locations, the authors of the resource document on which the Provisions are based
(Applied Technology Council, 1978) used the risk integral to estimate the annual frequency of collapse of buildings designed
for uniformhazard ground motions (see ATC 306, p. 310311). They found that “the probabilities of failure [i.e., risk
levels] were roughly the same for each of the four buildings.” In contrast, using contemporary hazard curves and building
performance expectations, Luco et al. (2007) have found that the risk levels are systematically lower in the central and
eastern United States (CEUS) than in the WUS due to welldocumented differences in the shapes of ground motion hazard
curves (e.g., Leyendecker et al., 2000). To result in uniform risk levels, adjustments to the uniformhazard ground motions
are needed.
The risk level targeted in these Provisions (2009) corresponds (approximately) to 1 percent probability of collapse in 50
years. This target is based on the average of the annual frequencies of collapse across the WUS that are expected to result
from (as calculated via the risk integral) design for the probabilistic MCE ground motions in the 2003 NEHRP Recommended
Provisions. Consequently, the requisite risk coefficients are generally within 15 percent of unity in the WUS (except in the
coastal region of Oregon, where they are slightly smaller). In the CEUS, the risk coefficients are generally smaller, again due
to the welldocumented differences in shapes of ground motion hazard curves there relative to the WUS. In the New Madrid
seismic zone and near Charleston, South Carolina, in particular, the adjustments to the uniformhazard ground motions are as
small as a factor of 0.7. Compared to the underlying uniformhazard ground motions, the risk coefficients are generally less
sensitive to refinements of the ground motion hazard curves (e.g., USGS updates or sitespecific analyses), since they depend
on the shape but not amplitude of the hazard curves. They vary with the structural vibration period and site class, but not
dramatically.
The change to risktargeted probabilistic ground motions complements improvements to the basis for response modification
factors (R factors) reflected in FEMA P695 (Applied Technology Council, 2009) and provides a more rational basis for
seismic design methods. As alluded to above, similar riskbased procedures are already being used for design and evaluation
of nuclear facilities, as well as offshore structures.
C21.2.2 Deterministic Ground Motions. Deterministic ground motions should account for uncertainties associated with
nearfault ground motions, particularly at longer periods, and necessitate a more statistically appropriate estimate of 5 percent
damped spectral response accelerations than those based on the 150 percent of the median ground motions used in ASCE/SEI
705. The use of 84th percentile ground motions in these Provisions (2009) effectively requires increasing median ground
motions by 180 percent. The technical basis of this change can be found in Huang et al. (2008a and 2008b). The authors
found that 150 percent of the median spectral response accelerations of the new NGA relations (average of the three
relations) to be significantly less than 84th percentile ground motions in the maximum direction of response. Near active
sources (in the WUS), 84th percentile ground motion in the maximum direction of response is about 200 percent (1.8 x 110
percent) of 5 percent damped, shortperiod spectral response acceleration, and about 230 percent (1.8 x 130 percent) of 5
percent damped, 1second spectral response acceleration of the new NGA relations for GMRotI50 (average value of the three
NGA relations). Table C21.22 summarizes ratios of 84th percentile maximum direction to median geomeandirection
response for periods from 0 to 4.0 seconds. Ratios for periods greater than 4.0 seconds are assumed to be the same as the
ratio for 4.0 seconds.
Table C21.22 Ratios of 84th Percentile to Median Spectral Demands for NGA Relationships
Period (seconds)
0.2
0.5
1.0
2.0
3.0
4.0
Equation
ß
BA
0.60
0.61
0.65
0.70
0.70
0.70
CB
0.59
0.59
0.62
0.64
0.65
0.65
CY
0.61
0.63
0.63
0.67
0.67
0.70
Equation
y84 / y50
1.82
1.84
1.89
1.95
1.96
1.98
ADDITIONAL REFERENCES FOR CHAPTER 21 COMMENTARY
Abrahamson, N., and W. J. Silva. 1997. "Empirical Response Spectral Attenuation Relations for Shallow Crustal
Earthquakes." Seismological Research Letters, 68(1):94127.
American Society of Civil Engineers. 2006. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 705.
ASCE, Reston, Virginia.
American Society of Civil Engineers. 2005. Seismic Design Criteria for Structures, Systems, and Components in Nuclear
Facilities, ASCE 4305. ASCE, Reston, Virginia.
Applied Technology Council. 1978. Tentative Provisions for the Development of Seismic Regulations for Buildings, ATC 3
06. ATC, Palo Alto, California.
Applied Technology Council. 2009. Quantification of Building Seismic Performance Factors, FEMA P695. Federal
Emergency Management Agency, Washington, D.C.
Beyer, K., and J. J. Bommer. 2006. Relationships between Median Values and between Aleatory Variabilities for Different
Definitions of the Horizontal Component of Motion, Bulletin of the Seismological Society of America, 96(4A):15121522.
Boore, D. M., and T. E. Fumal. 1997. "Equations for Estimating Horizontal Response Spectra and Peak Acceleration from
Western North American Earthquakes: A Summary of Recent Work," Seismological Research Letters, 68(1):128153.
Boore, D. M., J. WatsonLamprey, and N. A. Abrahamson. 2006. "OrientationIndependent Measures of Ground Motion,"
Bulletin of the Seismological Society of America, 96(4A):15021511.
Boore, D. M., and G. M. Atkinson. 2007. BooreAtkinson NGA Ground Motion Relations for the Geometric Mean
Horizontal Component of Peak And Spectral Ground Motion Parameters, PEER 2007/01. Pacific Earthquake Engineering
Research Center, Berkeley, California.
Campbell, K. W., and Y. Bozorgnia. 2003. "Updated NearSource Ground Motion (Attenuation) Relations for the
Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra." Bulletin of the
Seismological Society of America, 93:314331.
Campbell, K. W., and Y. Bozorgnia. 2007. CampbellBozorgnia NGA Ground Motion Relations for the Geometric Mean
Horizontal Component of Peak and Spectral Ground Motion Parameters," PEER 2007/02. Pacific Earthquake Engineering
Research Center, Berkeley, California.
Chiou, B. S.J., and R. R. Youngs. 2006. Chiou and Youngs PEERNGA Empirical Ground Motion Model for the Average
Horizontal Component of Peak Acceleration and PseudoSpectral Acceleration for Spectral Periods of 0.01 to 10 Seconds.
Pacific Earthquake Engineering Research Center, Berkeley, California, http://peer.berkeley.edu/products/CYProgram/
Chiou_Youngs_NGA_2006.pdf.
Huang, Y.N, A. S. Whittaker, and N. Luco. 2008a. NGA Relationships, USGS Seismic Hazard Maps, NearFault Ground
Motions and Site Effects, USGS, Golden, Colorado.
Huang, Y.N, A. S. Whittaker, and N. Luco. 2008b. “Maximum Spectral Demands in the NearFault Region,” Earthquake
Spectra, 24(1):319341.
Leyendecker, E.V., R. J. Hunt, A. D. Frankel, and K. S. Rukstales. 2000. “Development of Maximum Considered
Earthquake Ground Motion Maps,” Earthquake Spectra, 16(1):2140.
Luco, N., B. R. Ellingwood, R. O. Hamburger, J. D. Hooper, J. K. Kimball, and C. A. Kircher. 2007. “RiskTargeted versus
Current Seismic Design Maps for the Conterminous United States,” in Proceedings of the SEAOC 76th Annual Convention.
Structural Engineers Association of California, Sacramento, California.
McGuire, R. K. 2004. Seismic Hazard and Risk Analysis,” EERI Monograph MNO10. Earthquake Engineering Research
Institute, Oakland, California.
Sadigh, K., C. Y. Chang, J. A. Egan, F. Makdisi, and R. R. Youngs. 1997. "Attenuation Relationships for Shallow Crustal
Earthquakes Based on California Strong Motion Data." Seismological Research Letters, 68(1):180189.
Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson. 1997. "Modification of Empirical Strong Ground
Motion Attenuation Relations To Include the Amplitude And Duration Effects of Rupture Directivity," Seismological
Research Letters, 68(1):199222.
Vamvatsikos, D., and C. A. Cornell. 2002. “Incremental Dynamic Analysis,” in Earthquake Engineering and Structural
Dynamics, 31(3):491514.
Page intentionally left blank.
Modification to Chapter 22, Seismic Ground Motion and
Longperiod Transition Maps
Replace existing Chapter 22 with the following:
Chapter 22
SEISMIC GROUND MOTION, LONGPERIOD TRANSITION,
RISK COEFFICIENT, AND MCE GEOMEAN PGA MAPS
Contained in this chapter are Figures 221 through 227, which provide the mapped uniformhazard ground motion
parameters (SSUH and S1UH), the mapped risk coefficients (CRS and CR1), the mapped deterministic ground motion
parameters (SSD and S1D), and the mapped longperiod transition period (TL), for use in applying the seismic
provisions of ASCE/SEI 7. Also contained in this chapter are Figures 228 through 2211, which provide the
mapped maximum considered earthquake geometric mean peak ground accelerations.
These maps were prepared by the United States Geological Survey (USGS) and have been updated for the 2009
edition of the NEHRP Recommended Seismic Provisions for New Buildings and Other Structures. Maps for Guam
and Tutuila (American Samoa) are not included because uniformhazard ground motion parameters, deterministic
ground motion parameters, and risk coefficients have not yet been developed for those islands. Therefore, like in the
2005 edition of ASCE/SEI 7, the parameters SS and S1 defined in Section 11.4.3 shall be, respectively, 1.5 and 0.6
for Guam and 1.0 and 0.4 for Tutuila. The mapped maximum considered earthquake geometric mean peak ground
accelerations shall be 0.6 for Guam and 0.4 for Tutuila.
The following is a list of figures contained in this chapter:
Figure 221 Uniformhazard (2% in 50year) ground motions of 0.2second spectral response acceleration (5%
of critical damping), Site Class B.
Figure 222 Uniformhazard (2% in 50year) ground motions of 1second spectral response acceleration (5%
of critical damping), Site Class B.
Figure 223 Risk coefficient at 0.2second spectral response period.
Figure 224 Risk coefficient at 1second spectral response period.
Figure 225 Deterministic ground motions of 0.2second spectral response acceleration (5% of critical
damping), Site Class B.
Figure 226 Deterministic ground motions of 1second spectral response acceleration (5% of critical damping),
Site Class B.
Figure 227 Longperiod transition period, TL (seconds).
Figure 228 MCE geometric mean PGA, %g, Site Class B for the coterminous United States.
Figure 229 MCE geometric mean PGA, %g, Site Class B for Alaska.
Figure 2210 MCE geometric mean PGA, %g, Site Class B for Hawaii.
Figure 2211 MCE geometric mean PGA, %g, Site Class B for Puerto Rico and the United States Virgin
Islands.
Figure221 Map of the US
Figure221 (cont) Map of the US
Figure 222 Map of the US
Figure 222 (cont) Map of the US
Figure 223 Map of the US
Figure 223 (cont) Map of the US
Figure 224 Map of the US
Figure 224 (cont) Map of the US
Figure 225 Map of the US
Figure 225 (cont) Map of the US
Figure 226 Map of the US
Figure 226 (cont) Map of the US
Figure 227 Map of the US
Figure 227 (cont) Map of the US
Figure 228 Map of the US
Figure 228 (cont) Map of the US
Figures 229 and 10 Map of the US
Figures 2211 showing a US Map
Commentary to New Chapter 22
Chapter 22 Commentary
SEISMIC GROUND MOTION, LONGPERIOD TRANSITION,
RISK COEFFICIENT, AND MCE GEOMEAN PGA MAPS
The USGS has prepared the four new sets of maps for Chapter 22 of the 2009 NEHRP Recommended Seismic Provisions:
1. Maps of uniformhazard (2 percent in 50year) ground motions,
2. Maps of the risk coefficients for converting 2 percent in 50year uniformhazard ground motions to 1 percent in 50year
risktargeted probabilistic ground motions,
3. Maps of deterministic ground motions (consistent with sitespecific criteria of Section 21.2.2), and maps of peak ground
accelerations for the evaluation of the potential for liquefaction and soil strength loss (according to Section 11.8.3).
Because this would have resulted in a substantial increase in the number of maps, the BSSC Provisions Update Committee
recommended that the separate maps for regions of the United States and its territories that appeared in ASCE/SEI 705 be
consolidated (for the uniformhazard ground motion, risk coefficient, and deterministic ground motion maps), into the single
figures in Chapter 22. Thus, the total number of map figures (11) in these Provisions (2009) is less than that in ASCE/SEI 7
05 (i.e., 20). Because the consolidated map figures are relatively small and difficult to read, the USGS website that
automates use of the maps and formulas will be especially useful (http://earthquake.usgs.gov.designmaps/usapp).
As described in the commentary to Chapter 21 and below, the uniformhazard and deterministic ground motion maps in
Chapter 22 of these Provisions (2009) represent response in the maximum direction. The USGS has developed these maps
based on "geomean" ground motions (the product of hazard assessment using modern ground motion attenuation functions),
adjusted using constant factors that transform geomean response to maximum direction response. The same factors (i.e., 1.1
at shortperiods and 1.3 at a period of 1 second) are used for all seismic regions (i.e., both the central and eastern United
States or CEUS and the western United States or WUS) and for both probabilistic and deterministic ground motions.
In contrast, the peak ground acceleration maps in Chapter 22 represent geomean ground motions, as described below.
Furthermore, the peak ground acceleration maps represent the lesser of uniformhazard (2 percent in 50year) and
deterministic peak ground accelerations, without consideration of corresponding risk coefficients.
UniformHazard (2 Percent in 50Year) Ground Motion Maps
The uniformhazard maps in Chapter 22 of these Provisions (2009) are based on the 2008 USGS National Seismic Hazard
Maps (http://earthquake.usgs.gov/hazmaps); however, since the ground motion values on the uniformhazard maps are for the
maximum direction of acceleration (as explained above), they are different from the “geomean” USGS maps. The 0.2
second and 1second spectral response acceleration uniformhazard maps are different by a factor of 1.1 and 1.3 from the
respective USGS maps. Development of the USGS maps is documented in Petersen et al. (2008).
Risk Coefficient Maps
Development of risk coefficients and related work by the USGS is documented by Luco et al. (2007). The risk coefficient
maps indicate that, in general, risktargeted probabilistic ground motions (based on 1 percent in 50year collapse risk) would
moderately decrease the uniformhazard ground motions (based on 2 percent in 50year hazard) in highhazard areas of the
CEUS and the coastal region of Oregon (by as much as 30 percent) and either slightly increase or decrease the uniformhazard
ground motions in the WUS and remaining areas of the maps (by less than 15 percent). These changes do not affect
calculation of deterministic ground motions, which often govern in high seismic areas.
Deterministic Ground Motion Maps
The deterministic maps in Chapter 22 of the Provisions represent the greater of 84th percentile (maximum direction)
response and the “water level” values described in the next paragraph. The USGS has developed these maps based on
median "geomean" ground motions (the product of hazard assessment using modern ground motion attenuation functions)
adjusted using factors that transform median geomeandirection response to 84th percentile maximumdirection response.
The same factors (i.e., 1.1 x 1.8 at shortperiods and 1.3 x 1.8 at a period of 1 second) are used for all seismic regions (i.e.,
both the CEUS and WUS regions).
As defined in ASCE/SEI 705 Section 21.2.2, the deterministic spectral response accelerations (for Site Class B) shall not be
taken as lower than 1.5g for the short periods and 0.6g for the 1second period; hence, the ground motions on the
deterministic maps (Figures 223 and 224) are no lower than these values. Otherwise the ground motions on the
deterministic maps are 180 percent (as opposed 150 percent in ASCE/SEI 705) of median spectral response accelerations,
for reasons explained above in the commentary to Chapter 21. Like the uniformhazard maps described above, the
deterministic maps represent the spectral response acceleration in the maximum direction.
Peak Ground Acceleration Maps
Unlike the uniformhazard and deterministic ground motion maps described above, the peak ground acceleration maps in
Chapter 22 of the Provisions represent geometric mean ground motions (not response in the maximum direction). Despite
representing geometric mean ground motions, the peak ground acceleration maps are different from the 2008 USGS National
Seismic Hazard Maps (http://earthquake.usgs.gov/hazmaps) upon which they are based. This is because they represent the
lesser of uniformhazard (2 percent in 50year hazard) and deterministic peak ground accelerations. Development of the
uniformhazard peak ground accelerations is documented in Petersen et al. (2008). The deterministic peak ground
accelerations are calculated as the greater of 180 percent of median ground motions and a water level of 0.6g, Note that risk
coefficients are not included in the development of the peak ground acceleration maps, which is why they are referred to as
“maximum considered earthquake geometric mean peak ground acceleration” maps without the “risktargeted” prefix.
REFERENCES
American Society of Civil Engineers. 2006. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 705.
ASCE, Reston, Virginia.
Luco, N., B. R. Ellingwood, R. O. Hamburger, J. D. Hooper, J. K. Kimball and C. A. Kircher. 2007. “RiskTargeted versus
Current Seismic Design Maps for the Conterminous United States,” in Proceedings of the SEAOC 76th Annual Convention.
Structural Engineers Association of California, Sacramento, California.
Petersen, M. D., A. D. Frankel, S. C. Harmsen, C. S. Mueller, K. M. Haller, R. L. Wheeler, R. L. Wesson, Y. Zeng, O. S.
Boyd, D. M. Perkins, N. Luco, E. H. Field, C. J. Wills, and K. S. Rukstales. 2008. Documentation for the 2008 Update of
the United States National Seismic Hazard Maps, USGS Open File Report 20081128. USGS, Golden, Colorado.
Page intentionally left blank.
Modifications to Chapter 23,
Seismic Design Reference Documents
SECTION 23.1, CONSENSUS STANDARDS AND OTHER REFERENCE DOCUMENTS
Add the following entries:
ASCE 41
Supplement 1, Section 3.3.3
Seismic Rehabilitation of Existing Buildings, 2007
ANSI/AISI S110
Sections 14.1.1, 14.1.2, 14.1.3, Table 12.21
Standard for Seismic Design of ColdFormed Steel Structural Systems – Special Bolted Moment Frames, 2007.
ANSI/RMI MH 16.1
Section 15.5.3
Specification for the Design, Testing, and Utilization of Industrial Steel Storage Racks, 2008
Revise the following entries to read as indicated:
ACI 318
Sections 14.2.2, 14.2.2.1, 14.2.2.2, 14.2.2.3, 14.2.2.4, 14.2.2.5, 14.2.2.6, 14.2.2.7, 14.2.2.8, 14.2.2.9, 14.2.3, 14.2.3.1.1,
14.2.3.2.1, 14.2.3.2.2, 14.2.3.2.3, 14.2.3.2.5, 14.2.3.2.
Building Code Requirements for Structural Concrete, 2008.
NFPA 13
Sections 13.6.5.1, 13.6.8, 13.6.8.2, 13.6.8.4
Standard for the Installation of Sprinkler Systems, 2007
Delete the following entry:
RMI
Rack Manufacturers Institute
8720 Red Oak Boulevard
Suite 201
Charlotte, NC 28217
RMI
Section 15.5.3
Specification for the Design, Testing, and Utilization of Industrial
Steel Storage Racks 1997, reaffirmed 2002
Page intentionally left blank.
New Chapter 23, Vertical Ground Motions for Seismic Design
Add the following new Chapter 23 and renumber the existing ASCE/SEI 705 Chapter 23 as
Chapter 24:
Chapter 23
VERTICAL GROUND MOTIONS FOR SEISMIC DESIGN
23.1 DESIGN VERTICAL RESPONSE SPECTRUM. Where a design vertical response spectrum is required by
these Provisions and sitespecific procedures are not used, the design vertical response spectral acceleration, Sav, (in g –
gravity unit) shall be developed as follows:
1. For vertical periods less than or equal to 0.025 second, Sav shall be determined in accordance with Equation 23.11
as follows:
Sav = 0.3CVSDS (23.11)
2. For vertical periods greater than 0.025 second and less than or equal to 0.05 second, Sav shall be determined in
accordance with Equation 23.12 as follows:
Sav = 20CVSDS(TV  0.025)+0.3CVSDS (23.12)
3. For vertical periods greater than 0.05 second and less than or equal to 0.15 second, Sav shall be determined in
accordance with Equation 23.13 as follows:
Sav = 0.8CVSDS (23.13)
4. For vertical periods greater than 0.15 second and less than or equal to 2.0 seconds, Sav shall be determined in
accordance with Equation 23.14 as follows:
(23.14)
where CV is defined in terms of SS in Table 23.11, SDS = the design spectral response acceleration parameter at short
periods, and TV = the vertical period of vibration.
Table 23.11 Values of Vertical Coefficient CV Equation
0.75 0.8 0.15 av V DS
V
S C S
T
. .
= . .
. .
MCER Spectral
Response Parameter at
Short Periods a
Site Class A, B
Site Class C
Site Class D, E, F
Ss = 2.0
0.9
1.3
1.5
SS = 1.0
0.9
1.1
1.3
SS = 0.6
0.9
1.0
1.1
SS = 0.3
0.8
0.8
0.9
SS = 0.2
0.7
0.7
0.7
a Use straightline interpolation for intermediate values of SS
.
Sav shall not be less than onehalf (1/2) of the corresponding Sa for horizontal components determined in accordance with
the general or sitespecific procedures of Section 11.4 or Chapter 21, respectively.
For vertical periods greater than 2.0 seconds, Sav shall be developed from a sitespecific procedure; however, the
resulting ordinate of Sav shall not be less than onehalf (1/2) of the corresponding Sa for horizontal components
determined in accordance with the general or sitespecific procedures of Section 11.4 or Chapter 21, respectively.
In lieu of using the above procedure, a sitespecific study may be performed to obtain Sav at vertical periods less than or
equal to 2.0 seconds, but the value so determined shall not be less than 80 percent of the Sav value determined from
Equations 23.11 through 23.14.
23.2 MCER VERTICAL RESPONSE SPECTRUM. The MCER vertical response spectral acceleration shall be 150
percent of the Sav determined in Section 23.1.
Commentary to New Chapter 23
Chapter 23 Commentary
VERTICAL GROUND MOTIONS FOR SEISMIC DESIGN
C23.1 DESIGN VERTICAL RESPONSE SPECTRUM
General. ASCE/SEI 705 and the earlier editions of the Provisions use the term 0.2SDSD to reflect the effects of vertical
ground motion. Where a more explicit consideration of vertical ground motion effects is advised—as for certain tanks,
materials storage facilities, and electric power generation facilities—the requirements of this chapter may be applied.
Historically, the amplitude of vertical ground motion has been inferred to be twothirds (2/3) the amplitude of the horizontal
ground motion. However, studies of horizontal and vertical ground motions over the past 25 years have shown that such a
simple approach is not valid in many situations (e.g., Bozorgnia and Campbell, 2004, and references therein) for the
following main reasons: (a) vertical ground motion has a larger proportion of shortperiod (highfrequency) spectral content
than horizontal ground motion and this difference increases with decreasing soil stiffness and (b) vertical ground motion
attenuates at a higher rate than horizontal ground motion and this difference increases with decreasing distance from the
earthquake.
The observed differences in the spectral content and attenuation rate of vertical and horizontal ground motion lead to the
following observations regarding the vertical/horizontal (V/H) spectral ratio (Bozorgnia and Campbell, 2004):
1. The V/H spectral ratio is relatively sensitive to spectral period, distance from the earthquake, local site conditions, and
earthquake magnitude (but only for relatively soft sites) and relatively insensitive to earthquake mechanism and sediment
depth;
2. The V/H spectral ratio has a distinct peak at short periods that generally exceeds 2/3 in the nearsource region of an
earthquake; and
3. The V/H spectral ratio is generally less than 2/3 at midtolong periods.
Therefore, depending on the period, the distance to the fault, and the local site conditions of interest, use of the traditional
2/3V/H spectral ratio can result in either an underestimation or an overestimation of the expected vertical ground motions.
The procedure for defining the design vertical response spectrum in the Provisions is based on the studies of horizontal and
vertical ground motions conducted by Campbell and Bozorgnia (2003) and Bozorgnia and Campbell (2004). These
procedures are also generally compatible with the general observations of Abrahamson and Silva (1997) and Silva (1997) and
the proposed design procedures of Elnashai (1997).
General Design Procedure. In order to be consistent with the shape of the horizontal design response spectrum, the vertical
design response spectrum has four regions defined by the vertical period of vibration (Tv). Based on the study of Bozorgnia
and Campbell (2004), the periods that define these regions are approximately constant with respect to the magnitude of the
earthquake, the distance from the earthquake, and the local site conditions. In this respect, the shape of the vertical response
spectrum is simpler than that of the horizontal response spectrum.
The equations that are used to define the design vertical response spectrum are based on three observations made by
Bozorgnia and Campbell (2004):
1. The shortperiod part of the 5 percent damped vertical response spectrum is controlled by the spectral acceleration at Tv =
0.1 second;
2. The midperiod part of the vertical response spectrum is controlled by a spectral acceleration that decays as the inverse
of the 0.75 power of the vertical period of vibration (Tv
0.75); and
3. The shortperiod part of the V/H spectral ratio is a function of the local site conditions, the distance from the earthquake
(for sites located within about 60 km of the fault), and the earthquake magnitude (for soft sites).
The Provisions do not include seismic design maps for the vertical spectral acceleration at Tv = 0.1 second and do not
preserve any information on the earthquake magnitudes or the sourcetosite distances that contribute to the horizontal
spectral accelerations that are mapped. Therefore, the general procedure recommended by Bozorgnia and Campbell (2004)
was modified to use only those horizontal spectral accelerations that are available from the seismic design maps, as follows:
1. Estimate the vertical spectral acceleration at Tv = 0.1 second from the ratio of this spectral acceleration to the horizontal
spectral acceleration at T = 0.2 second for the Site Class BC boundary (i.e., the boundary between Site Classes B and C (
m/sec), the reference site condition for the 2008 U.S. Geological Survey National Seismic Hazard Maps). For
earthquakes and distances for which the vertical spectrum might be of engineering interest (magnitudes greater than 6.5
and distances less than 60 km), this ratio is approximately 0.8 for all site conditions (Campbell and Bozorgnia, 2003). Equation
760 s v =
2. Estimate the horizontal spectral acceleration at T = 0.2 second from the Next Generation Attenuation (NGA) relationship
of Campbell and Bozorgnia (2008) for magnitudes greater than 6.5 and distances ranging between 1 and 60 km for the
Site Class BC boundary ( m/sec). The relationship of Campbell and Bozorgnia (2008), rather than that of
Campbell and Bozorgnia (2003), was used for this purpose in order to be consistent with the development of the 2008
U.S. Geological Survey National Seismic Hazard Maps, which use the NGA attenuation relationships to estimate
horizontal ground motions in the western United States. Similar results were found for the other two NGA relationships
that were used to develop the seismic hazard and design maps (Boore and Atkinson, 2008; Chiou and Youngs, 2008). Equation
760 s v =
3. Use the dependence between the horizontal spectral acceleration at T = 0.2 second and sourcesite distance estimated in
Item 2 and the relationship between the V/H spectral ratio, sourcesite distance, and local site conditions in Bozorgnia
and Campbell (2004) to derive a relationship between the vertical spectral acceleration and the mapped MCER spectral
response acceleration parameter at short periods, SS.
4. Use the dependence between the vertical spectral acceleration and the mapped MCER spectral response acceleration
parameter at short periods, SS, in Item 3 to derive a vertical coefficient, Cv, that when multiplied by 0.8 and the design
horizontal response acceleration at short periods, SDS, results in an estimate of the design vertical spectral acceleration at
Tv = 0.1 second.
Detailed Design Procedure. The following description of the detailed design procedure listed in Section 23.1 refers to the
illustrated design vertical response spectrum in Figure C23.11.
Vertical periods less than or equal to 0.025 second. Equation 23.11 defines that part of the design vertical response
spectrum that is controlled by the vertical peak ground acceleration. The 0.3 factor was approximated by dividing the 0.8
factor that represents the ratio between the vertical spectral acceleration at Tv = 0.1 second and the horizontal spectral
acceleration at T = 0.2 second by 2.5, the factor that represents the ratio between the design horizontal spectral acceleration at
T = 0.2 second, SDS, and the zeroperiod acceleration used in the development of the design horizontal response spectrum.
The vertical coefficient, Cv, in Table 23.11 accounts for the dependence of the vertical spectral acceleration on the amplitude
of the horizontal spectral acceleration and the site dependence of the V/H spectral ratio as determined in Items 3 and 4 above.
The factors are applied to SDS rather than to SS because SDS already includes the effects of local site conditions and the 2/3
factor that is required to reduce the horizontal spectral acceleration from its MCER value to its design value.
Vertical periods greater than 0.025 second and less than or equal to 0.05 second. Equation 23.12 defines that part of the
design vertical response spectrum that represents the linear transition from the part of the spectrum that is controlled by the
vertical peak ground acceleration and the part of the spectrum that is controlled by the dynamically amplified shortperiod
spectral plateau. The factor of 20 is the factor that is required to make this transition continuous and piecewise linear
between these two adjacent parts of the spectrum.
Vertical periods greater than 0.05 second and less than or equal to 0.15 second. Equation 23.13 defines that part of the
design vertical response spectrum that represents the dynamically amplified shortperiod spectral plateau.
Vertical periods greater than 0.15 second and less than or equal to 2.0 seconds. Equation 23.14 defines that part of the
design vertical response spectrum that decays with the inverse of the vertical period of vibration raised to the 0.75 power.
Limits Imposed on Sav. Two limits are imposed on the design vertical response spectrum defined by Equations 23.11
through 23.14 and illustrated in Figure 23.11. The first limit restricts the vertical period of vibration to be no larger than 2
seconds. This limit accounts for the fact that such large vertical periods are rare (structures are inherently stiff in the vertical
direction) and that the vertical spectrum might decay differently with period at longer periods. There is an allowance for
developing a sitespecific design vertical response spectrum if this limit is exceeded (see Section 11.4 or Chapter 21 for
guidance on applying sitespecific methods). The second limit restricts the design vertical response spectrum to be no less
than 50 percent of the design horizontal response spectrum. This limit accounts for the fact that a V/H spectral ratio of onehalf
(1/2) is a reasonable, but somewhat conservative, lower bound over the period range of interest, based on the results of
Campbell and Bozorgnia (2003) and Bozorgnia and Campbell (2004).
Figure C23.11 An Illustrative example of the design vertical response spectrum.
0.5 1.0 1.5 2.0
Vertical Period, Tv (sec)
Vertical Spectral Acceleration
0.15
0.05
0.3 CV SDS
0.8 CV SDS
0.8 CV SDS (0.15/TV )0.75
0.025
Figure C23.11 Illustrative example of the design vertical response spectrum.
REFERENCES
Abrahamson, N. A., and W. J. Silva. 1997. “Empirical Response Spectral Attenuation Relations for Shallow Crustal
Earthquakes,” Seismological Research Letters, 68:94–127.
Boore, D. M., and G. M. Atkinson. 2008. “GroundMotion Prediction Equations for the Average Horizontal Component of
PGA, PGV, and 5%Damped PSA at Spectral Periods Between 0.01 S and 10.0 s”, Earthquake Spectra, 24:99138.
Bozorgnia, Y., and K. W. Campbell. 2004. “The VerticaltoHorizontal Response Spectral Ratio and Tentative Procedures
for Developing Simplified V/H and Vertical Design Spectra,” Journal of Earthquake Engineering, 8:175207.
Campbell, K. W., and Y. Bozorgnia. 2008. “NGA Ground Motion Model for the Geometric Mean Horizontal Component of
PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s,” Earthquake
Spectra, 24:139171.
Campbell, K. W., and Y. Bozorgnia. 2003. “Updated Nearsource Ground Motion (Attenuation) Relations for the
Horizontal and Vertical Components of Peak Ground Acceleration and Acceleration Response Spectra,” Bulletin of the
Seismological Society of America, 93:314–331.
Chiou, B. S.J., and R. R. Youngs. 2008. “An NGA Model for the Average Horizontal Component of Peak Ground Motion
and Response Spectra,” Earthquake Spectra, 24:173215.
Elnashai, A. S. 1997. “Seismic Design with Vertical Earthquake Motion,” in Seismic Design for the Next Generation of
Codes, edited by P. Fajfar and H. Krawinkler. Balkema, Rotterdam, p. 91–100.
Silva, W. 1997. “Characteristics of Vertical Strong Ground Motions for Applications to Engineering Design,” in
FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway
Facilities, Technical Report NCEER970010. National Center for Earthquake Engineering Research, Buffalo, New York.
2009 NEHRP RECOMMENDED SEISMIC
PROVISIONS FOR NEW BUILDINGS AND
OTHER STRUCTURES:
PART 2, COMMENTARY
TO ASCE/SEI 705
This part of the 2009 NEHRP Recommended Seismic Provisions for New Buildings and Other Structures presents
commentary to ASCE/SEI 705 utilizing the chapter and section numbers of that standard. Commentary to the modifications
of the standard that appear in Part 1 of this Provisions volume is presented at the end of each chapter of modifications and
can be used to replace or add to this Part 2 Commentary (e.g., this Part 2 Commentary addresses the maps that appear in
ASCE/SEI 705, not the new risktargeted maps and procedures presented in Part 1 of this volume).
This commentary is intended primarily for design professionals and members of the codes and standardsdevelopment
community. However, an understanding of the basis for the seismic regulations contained in the nation’s building codes and
standards is important to many outside this technical community including elected officials and other decision makers
responsible for aspects of the built environment, the financial and insurance communities, and individual business owners
and other citizens. These individuals and others who do not have indepth technical knowledge may find a complementary
report that presents a brief overview of the 2009 Provisions of interest. This overview is published as FEMA P749,
Concepts of Earthquakeresistant Design: An Introduction to the NEHRP Recommended Seismic Provisions for New Buildings and Other
Structures.
Page intentionally left blank.
COMMENTARY TO CHAPTER 11,
SEISMIC DESIGN CRITERIA
C11.1 GENERAL
C11.1.1 Purpose. When prescribed wind loading governs the stress or drift design, the resisting system still must conform
to the special requirements for seismicforceresisting systems. This is required in order to resist, in a ductile manner,
potential seismic loads in excess of the prescribed wind loads. A proper, continuous load path is an obvious design
requirement, but experience has shown that it often is overlooked and that significant damage and collapse can result. The
basis for this design requirement is twofold:
1. To ensure that the design has fully identified the seismicforceresisting system and its appropriate design level and
2. To ensure that the design basis is fully identified for the purpose of future modifications or changes in the structure.
Detailed requirements for analyzing and designing this load path are given in the appropriate design and materials chapters.
C11.1.2 Scope. The scope statement establishes in general terms the applicability of ASCE/SEI 705. Certain structures are
exempt for the following reasons:
Exemption 1 – Detached one and twofamily dwellings in Seismic Design Categories A, B, and C, along with those located
where Ss < 0.4g, are exempt because they represent low seismic risks.
Exemption 2 – Structures constructed using the conventional lightframe construction requirements in Section 12.5 are
deemed capable of resisting the anticipated seismic forces. While specific elements of conventional lightframe construction
may be calculated to be overstressed, typically there is a great deal of redundancy and uncounted resistance in such
structures. Detached one and twostory woodframe dwellings generally have performed well even in regions of higher
seismicity. Section 12.5 adequately provides the level of safety required for such dwellings without imposing any additional
requirements.
Exemption 3 – Agricultural storage structures generally are exempt from most code requirements because of the
exceptionally low risk to human life involved.
Exemption 4 – Bridges, transmission towers, nuclear reactors, and other structures with special configuration and uses are not
covered. The regulations for buildings and buildinglike structures presented in this document do not adequately address the
design and performance of such special structures.
ASCE/SEI 705 is not retroactive and usually applies to existing structures only when there is an addition, change of use, or
alteration. Minimum acceptable seismic resistance of existing buildings is a policy issue normally set by the authority having
jurisdiction. Appendix 11B of the standard contains rules of application for basic conditions. ASCE/SEI 31, Seismic
Evaluation of Buildings, and ASCE/SEI 41, Seismic Rehabilitation of Existing Buildings, provide technical guidance but do
not contain policy recommendations. A chapter in the International Building Code (IBC) applies to alteration, repair,
addition, and change of occupancy of existing buildings, and the International Code Council maintains the International
Existing Building Code (IEBC) and an associated commentary.
C11.1.4 Alternate Materials and Alternate Means and Methods of Construction. It is not possible for a design standard
to provide criteria for the use of all possible materials and their combinations and methods of construction, either existing or
anticipated. While not citing specific materials or methods of construction currently available that require approval, this
section serves to emphasize that the evaluation and approval of alternate materials and methods require a recognized and
accepted approval system. The requirements for materials and methods of construction contained within the document
represent the judgment of the best use of the materials and methods based on wellestablished expertise and historical seismic
performance. It is important that any replacement or substitute be evaluated with an understanding of all the ramifications of
performance, strength, and durability implied by the standard.
It also is recognized that until needed standards and agencies are created, authorities having jurisdiction need to operate on
the basis of the best evidence available to substantiate any application for alternates. If accepted standards are lacking, it is
strongly recommended that applications be supported by extensive reliable data obtained from tests simulating, as closely as
is practically feasible, the actual load and deformation conditions to which the material is expected to be subjected during the
service life of the structure. These conditions, when applicable, should include several cycles of full reversals of loads and
deformations in the inelastic range.
C11.4 SEISMIC GROUND MOTION VALUES1
The approach adopted in Section 11.4 is intended to provide for a uniform margin against collapse at the design ground
motion. In order to accomplish this objective, ground motion hazards are defined in terms of maximum considered
earthquake (MCE) ground motions, which are based on a set of rules that depend on the seismic hazard of a region. Design
ground motions are based on a lower bound estimate of the margin against collapse inherent in structures designed to the
seismic provisions in the standard. This lower bound was judged, based on experience, to correspond to a factor of about 1.5
in ground motion. Consequently, the design earthquake ground motion was selected at a ground shaking level that is 1/1.5
(or 2/3) of the MCE ground motion.
For most regions of the nation, the MCE ground motion is defined with a uniform probability of exceedance of 2 percent in
50 years (return period of about 2500 years). While stronger shaking than this could occur, it was judged that it would be
economically impractical to design for such very rare ground motions and that the selection of the 2 percent probability of
exceedance in 50 years as the MCE ground motion would result in acceptable levels of seismic safety.
In regions of high seismicity, such as in many areas of California, the seismic hazard is typically controlled by largemagnitude
events occurring on a limited number of welldefined fault systems. Probabilistic ground motions calculated at a
2 percent probability of exceedance in 50 years can be much larger than deterministic ground motions computed based on the
characteristic magnitudes of earthquakes on these known active faults. These probabilistic motions are greater if these major
active faults produce characteristic earthquakes every few hundred years. For these regions, it is considered more appropriate
to determine MCE ground motions directly by deterministic methods based on the characteristic earthquakes of these defined
faults. In order to provide an appropriate level of conservatism in the design process when the deterministic approach is used
to calculate MCE ground motion, the median ground motion estimated for the characteristic event is multiplied by 1.5.
1 Note that this section focuses on the methods and design procedures of ASCE/SEI 705 and the 2003 edition of the Provisions;
commentary on the new risktargeted maps and design procedures is presented in Part 1 of this volume following the modifications to
ASCE 7 Section 11.4 and Chapter 22.
C11.4.1 Mapped Acceleration Parameters. In the general procedure, these motions are computed from mapped values of
the spectral response acceleration at short periods, S
http://earthquake.usgs.gov/designmaps.
S
S , and at 1 second, S1 , for Class B sites. These Ss and S1 values may be
obtained directly from Figures 221 through 2214 (in Chapter 22). Development of these maps is explained in detail in
Appendix A of the Part 2 – Commentary volume of the 2003 NEHRP Recommended Provisions. The 2003 Ss and S1 values
also can be obtained from the U.S. Geological Survey (USGS) website:
S is the mapped value of the 5percentdamped MCE spectral response acceleration for shortperiod structures founded on
Site Class B (firm rock) sites. The shortperiod acceleration has been determined at a period of 0.2 second because it was
concluded that 0.2 second was reasonably representative of the shortest effective period of buildings and structures that are
designed using the standard, considering the effects of soil compliance, foundation rocking, and other factors typically
neglected in structural analysis.
Similarly, S1 is the mapped value of the 5percentdamped MCE spectral response acceleration at a period of 1 second on
Site Class B. The spectral response acceleration at periods other than 1 second typically can be derived from the acceleration
at 1 second. Consequently, for MCE ground shaking on Site Class B sites, these two response acceleration parameters, SS
and S1, are sufficient to define an entire response spectrum for the period range of importance for most buildings and
structures.
C11.4.3 and C11.4.4 Site Coefficients and Adjusted Acceleration Parameters. Using the general procedure to obtain
acceleration response parameters that are appropriate for sites with a classification other than Site Class B, the SS and S1
values must be modified as indicated in Section 11.4.3. This modification is performed using two coefficients, Fa and Fv,
that respectively scale the SS and S1 values determined for Site Class B to values appropriate for other site classes. The MCE
spectral response accelerations adjusted for site class are designated SMS and SM1, respectively, for shortperiod and 1secondperiod
response. As described above, structural design in ASCE/SEI 705 is performed for earthquake demands that are 2/3
of the MCE response spectra. As set forth in Section 11.4.4, two additional parameters, SDS and SD1, are used to define the
acceleration response spectrum for this design level event. These parameters are 2/3 of the respective SMS and SM1 values and
define a design response spectrum for sites of any characteristics and for natural periods of vibration less than the transition
period, TL. Values of SMS, SM1, SDS, and SD1 can also be obtained from the USGS website cited above.
The site coefficients, Fa and Fv, presented respectively in Tables 11.41 and 11.42 for the various site classes are based on
the results of empirical analyses of strongmotion data and analytical studies of site response.
The amount of groundmotion amplification by a soil deposit relative to bedrock depends on the wavepropagation
characteristics of the soil, which can be estimated from measurements or inferences of shearwave velocity and in turn the
shear modulus for the materials as a function of the level of shaking. In general, softer soils with lower shearwave velocities
exhibit greater amplifications than stiffer soils with higher shearwave velocities. Increased levels of ground shaking result in
increased soil stressstrain nonlinearity and increased soil damping which, in general, reduces the amplification, especially
for shorter periods. Furthermore, for soil deposits of sufficient thickness, soil amplification is generally greater at longer
periods than at shorter periods.
An extensive discussion of the development of the Fa and Fv site coefficients is presented by Dobry, et al. (2000). Since the
development of these coefficients and the development of a community consensus regarding their values in 1992, earthquake
events have provided additional strongmotion data from which to infer site amplifications. Analyses conducted on the basis
of these more recent data are reported by a number of researchers including Crouse and McGuire (1996), Dobry et al. (1999),
Silva et al. (2000), Joyner and Boore (2000), Field (2000), Steidl (2000), RodriquezMarek et al. (2001), Borcherdt (2002),
and Stewart et al. (2003). Although the results of these studies vary, the site amplification factors are generally consistent
with those in Tables 11.41 and 11.42.
C11.4.5 Design Response Spectrum. The design response spectrum (Figure 11.41) consists of several segments. The
constantacceleration segment covers the period band from To to Ts; response accelerations in this band are constant and
equal to SDS . The constantvelocity segment covers the period band from Ts to TL, and the response accelerations in this
band are proportional to 1/T with the response acceleration at 1sec period equal to SD1. The longperiod portion of the
design response spectrum is defined on the basis of the parameter, TL, the period that marks the transition from the constantvelocity
segment to the constantdisplacement segment of the design response spectrum. Response accelerations in the
constantdisplacement segment, where T = TL, are proportional to 1/T 2. Values of TL are provided on maps in Figures 2215
through 2220.
The TL maps were prepared following a twostep procedure. First, a correlation between earthquake magnitude and TL was
established. Then, the modal magnitude from deaggregation of the groundmotion seismic hazard at a 2second period (1
second period for Hawaii) was mapped. Details of the procedure and the rational for it are found in Crouse et al. (2006).
C11.4.7 SiteSpecific Ground Motion Procedures. The objective of a sitespecific groundmotion analysis is to determine
ground motions for local seismic and site conditions with higher confidence than is possible using the general procedure of
Sections 11.4.
Nearsource effects on horizontal response spectra for periods of vibration greater than approximately 0.5 second include
directivity, which increases ground motions for fault rupture propagating toward the site, and directionality, which increases
ground motions normal (perpendicular) to the strike of the fault. These effects are discussed in Somerville et al. (1997) and
Abrahamson (2000).
C11.5 IMPORTANCE FACTOR AND OCCUPANCY CATEGORY
Large earthquakes are rare events that will include severe ground motions. Such events are expected to result in damage to
structures even if they were designed and built in accordance with the minimum requirements of the standard. The
consequence of structural damage or failure is not the same for the various types of structures located within a given
community. Serious damage to certain classes of structures, such as critical facilities (e.g., hospitals), will disproportionally
affect a community. The fundamental purpose of this section and subsequent requirements that depend on this section is to
improve the ability of a community to recover from a damaging earthquake by tailoring the seismic protection requirements
to the relative importance of that structure. That purpose is achieved by requiring better performance of those structures that:
1. Are necessary to response and recovery efforts immediately following an earthquake,
2. Present the potential for catastrophic loss in the event of an earthquake, or
3. House a very large number of occupants or occupants less able to care for themselves than the average.
The first basis for seismic design in the standard is that structures will have a suitably low likelihood of collapse in the very
rare event defined as the maximum considered earthquake (MCE) ground motion. A second basis is that life threatening
damage, primarily from failure of nonstructural elements in and on structures, will be unlikely in an unusual but less rare
earthquake ground motion, which is given as the design earthquake ground motion (defined as twothirds of the MCE).
Given the occurrence of ground motion equivalent to the MCE, a population of structures built to meet these design
objectives will probably still experience substantial damage in many structures, rendering these structures unfit for occupancy
or use. Experience in past earthquakes around the world has demonstrated that there will be an immediate need to treat
injured people, to extinguish fires and prevent conflagration, to rescue people from severely damaged or collapsed structures,
and to provide sustenance to a population deprived of its normal means. Experience also has shown that these needs are best
met when structures essential to response and recovery activities remain functional.
The standard addresses these objectives by requiring that each structure be assigned to one of the four occupancy categories
presented in Chapter 1 and by assigning an importance factor to the structure based upon that occupancy category. (The two
lowest categories, Ordinary and Low Hazard, are combined for all purposes within the seismic provisions). The occupancy
category is then used as one of two components in determining the Seismic Design Category (see Section C11.6) and is a
primary factor in setting drift limits for building structures under the design earthquake ground motion (see Section C12.12).
Figure C11.51 shows the combined intent of these requirements for design. The vertical scale is the likelihood of the ground
motion with the MCE being the rarest considered. The horizontal scale is the level of performance of the structure and
attached nonstructural components from collapse prevention at the low end to operational at the high end. (These
performance levels are discussed further at other locations in the commentary.) The basic objective of collapse prevention at
the MCE for ordinary structures (Occupancy Category II) is shown at the lower right by the solid triangle; protection from
lifethreatening damage at the design ground motion (defined by the standard as twothirds of the MCE) is shown by the open
triangle. The performance implied for higher occupancy categories is shown by square and circles. The performance
anticipated for less severe ground motion is shown by dotted symbols. The three (net) classes and the numerical values
assigned are far too coarse to assure the portrayed outcome for all structures, but it is judged to be adequate for the purpose
given present limitations of knowledge and tools.
Figure C11.51 Expected performance as related to occupancy category (OC)
and level of ground motion.
C11.5.1 Importance Factor. The importance factor is used throughout the standard in quantitative criteria for strength. In
most of those quantitative criteria, the importance factor is shown as a divisor on the factor R or Rp in order to send a
message to designers that the objective is to reduce damage for important structures in addition to preventing collapse in
larger ground motions. The R and Rp factors adjust the computed linear elastic response to a value appropriate for design; in
many structures, the largest component of that adjustment is ductility (the ability of the structure to undergo repeated cycles
of inelastic strain in opposing directions). Inelastic strain damages a structure so, for a given strength demand, reducing the
effective R factor (by means of the importance factor) increases the required yield strength, thus reducing ductility demand
and related damage.
C11.5.2 Protected Access for Category IV Structures. Those structures considered essential facilities for response and
recovery efforts must be accessible to carry out their purpose. For example, if the collapse of a simple canopy at a hospital
could block ambulances from the emergency room admittance area, the canopy must meet the same structural standard as the
hospital. This requirement must be considered in the siting of essential facilities in densely built urban areas.
Equation
PERFORMANCE LEVEL
Immediate
Occupancy
Collapse
Prevention
Frequent
MCE
Design
GROUND
MOTION
Operational
Life Safety
OC IV: Essential
OC III: High
Occupancy
OCII: Ordinary
C11.6 SEISMIC DESIGN CATEGORIES
Seismic design categories (SDCs) provide a means to step progressively from simple, easily performed design and
construction procedures and minimums to more sophisticated, detailed, and costly requirements as both the level of seismic
hazard and the consequence of failure escalate. The SDCs are used to trigger requirements that are not scalable; such
requirements are either on or off. For example, the basic amplitude of ground motion for design is scalable – the quantity
simply increases in a continuous fashion as one moves from a low hazard area to a high hazard area. However, a requirement
to avoid weak stories is not particularly scalable. Requirements such as this create step functions. There are many such
requirements in the standard, and the SDCs are used systematically to group these step functions. (Further examples include
whether seismic anchorage of nonstructural items is required or not, whether particular inspections will be required or not,
and height limits applied to various structural systems.)
In this regard, SDCs perform one of the functions of the seismic zones used in earlier U.S. building codes and still in use
throughout much of the world. However, SDCs also are dependent on a building’s occupancy and, therefore, its desired
performance. Further, unlike the traditional implementation of seismic zones, the ground motions used to define the SDCs
include the effects of individual site conditions on probable groundshaking intensity.
In developing the groundshaking limits for the various Seismic Design Categories and the design requirements for each, the
equivalent modified Mercalli intensity (MMI) of various shaking spectra were considered. There are now various
correlations of the qualitative MMI with quantitative characterizations of ground. The reader is encouraged to consult any of
a great many sources that describe the MMIs. The following list is a very coarse generalization:
MMI V No real damage
MMI VI Light nonstructural damage
MMI VII Hazardous nonstructural damage
MMI VIII Hazardous damage to susceptible structures
MMI IX Hazardous damage to robust structures
When the current design philosophy was adopted (the 1997 edition of the NEHRP Recommended Provisions, FEMA 302,
and Commentary, FEMA 303), the upper limit for SDC A was set at roughly onehalf of the lower threshold for MMI VII
and the lower limit for SDC D was set at roughly the lower threshold for MMI VIII. However, the lower limit for SDC D
was more consciously established by equating that design value (twothirds of the MCE) to onehalf of what had been the
maximum design value in building codes over the period of 1975 to 1995. As more correlations between MMI and
numerical representations of ground motion have been created, it is reasonable to make the following correlation between the
MMI at MCE ground motion and the Seismic Design Category (all this discussion is for ordinary occupancies):
MMI V SDC A
MMI VI SDC B
MMI VII SDC C
MMI VIII SDC D
MMI IX SDC E
An important change was made to the determination of SDC when the current design philosophy was adopted.
Earlier editions of the Provisions utilized the peak velocityrelated acceleration, Av, to determine a building’s
Seismic Performance Category. However, this coefficient does not adequately represent the damage potential of
earthquakes on sites with soil conditions other than rock. Consequently, the 1997 Provisions adopted the use of
response spectral acceleration parameters SDS and SD1, which include site soil effects for this purpose.
Except for the lowest level of hazard (SDC A), the SDC also depends on the occupancy categories. For a given
level of ground motion, the SDC is one category higher for Occupancy Category IV structures than for lowerrisk
structures. This has the effect of increasing the confidence that the design and construction requirements will
deliver the intended performance in the extreme event.
Note that the tables in the standard are at the design level, defined as twothirds of the MCE level. Also recall that
the MMIs are qualitative by their nature and that the above correlation will be more or less valid depending on
which numerical correlation for MMI is used. The numerical correlations for MMI roughly double with each step so
correlation between design earthquake ground motion and MMI is not as simple or convenient.
In sum, at the MCE level, SDC A structures should not see motions that are normally destructive to structural systems,
whereas the MCE level motions for SDC D structures can destroy vulnerable structures. The grouping of step function
requirements by SDC is such that there are a few basic structural integrity requirements imposed at SDC A graduating to a
suite of requirements at SDC D based upon observed performance in past earthquakes, analysis, and laboratory research.
The nature of ground motions within a few kilometers of a fault can be very different from more distant motions. For
example, some near fault motions will have strong velocity pulses, associated with forward rupture directivity, that tend to be
highly destructive to irregular structures even if they are well detailed. For ordinary occupancies, the boundary between
SDCs D and E is set to define sites likely to be close enough to a fault that these unusual ground motions may be present.
Note that this boundary is defined in terms of mapped bedrock outcrop motions affecting response at 1 second, not site
adjusted values, in order to better discriminate between sites near and far from faults. Shortperiod response is not normally
as affected as the longer period response. The additional design criteria imposed on structures in SDCs E and F specifically
are intended to provide acceptable performance under these very intense nearfault ground motions.
For most buildings, the SDC is determined without consideration of the building’s period. Structures are assigned to a SDC
based on the more severe condition determined from 1second acceleration and shortperiod acceleration. This is done for
several reasons. Perhaps the most important of these is that it is often difficult to estimate precisely the period of a structure
using default procedures contained in the standard. Consider, for example, the case of rigid wall/flexible diaphragm
buildings including lowrise reinforced masonry and concrete tiltup buildings with either untopped metal deck or wood
diaphragms. The formula in the standard for determining the period of vibration of such buildings is based solely on the
height of the structure and the length of wall present. These formulas typically indicate very short periods for such structures,
often on the order of 0.2 second or less. However, the actual dynamic behavior of these buildings often is dominated by the
flexibility of the diaphragm – a factor neglected by the approximate period formula. Large buildings of this type can have
actual periods on the order of 1 second or more. In order to avoid misclassifying a building’s SDC by inaccurately estimating
the structural period, the standard generally requires that the more severe SDC determined on the basis of short and longperiod
shaking be used.
Another reason for this requirement is a desire to simplify building regulation by requiring all buildings on a given soil
profile in a particular region to be assigned to the same SDC regardless of the structural type. This has the advantage of
permitting uniform regulation of structural system selection, inspection and testing requirements, seismic design
requirements for nonstructural components, and similar aspects of the design process regulated on the basis of SDC, within a
community.
Notwithstanding the above, it is recognized that classification of a building as SDC C instead of B or D can have significant
impact on the cost of construction. Therefore, the 2005 edition of the standard includes an exception permitting the
classification of buildings that can reliably be classified as having short structural periods on the basis of shortperiod shaking
alone.
Local or regional jurisdictions enforcing building regulations may desire to consider the effect of the maps, typical soil
conditions, and Seismic Design Categories on the practices in their jurisdictional areas. For reasons of uniformity of practice
or reduction of potential errors, adopting ordinances could stipulate particular values of ground motion, particular site classes,
or particular Seismic Design Categories for all or part of the area of their jurisdiction. For example:
1. An area with a historical practice of high seismic zone detailing might mandate a minimum SDC of D regardless of
ground motion or site class.
2. A jurisdiction with low variation in ground motion across the area might stipulate particular values of ground motion
rather than requiring use of the maps.
3. An area with unusual soils might require use of a particular Site Class unless a geotechnical investigation proves a better
Site Class.
C11.7 DESIGN REQUIREMENTS FOR SEISMIC DESIGN CATEGORY A
Seismic Design Category A is assigned when the MCE ground motions are well known to be below those normally
associated with hazardous damage. Damaging earthquakes are not unknown or impossible in such regions, however, and
ground motions close to such events may be large enough to produce serious damage. Providing a minimum level of
resistance reduces both the radius over which the ground motion exceeds structural capacities and resulting damage in such
rare events. There are reasons beyond seismic risk for minimum levels of structural integrity.
The requirements for SDC A are all minimum strengths for structural elements stated as forces at the level appropriate for
direct use in the strength design load combinations. The two fundamental requirements are a minimum strength for a
structural system to resist lateral forces and a minimum strength for connections of structural members.
For many buildings the wind force will control the strength of the lateralforceresisting system but, for lowrise buildings of
heavy construction with large plan aspect ratio, the minimum lateral force specified here may control. Note that the
requirement is for strength and not for toughness, energy dissipation capacity, or some measure of ductility. The force level
is not tied to any postulated seismic ground motion. The boundary between SDCs A and B is based on a spectral response
acceleration of 25 percent of gravity (MCE level) for shortperiod structures; clearly the 1 percent acceleration level
(Equation 11.71) is far smaller. For ground motions below the A/B boundary, the spectral displacements generally are on
the order of a few inches or less depending on period. Experience has shown that even a minimal strength is beneficial in
providing resistance to small ground motions, and it is an easy provision to implement in design. The low probability of
motions greater than the MCE is a factor in taking the simple approach without requiring details that would produce a ductile
response. Another factor is that larger design forces are specified for connections between main elements of the lateral force
load path.
The minimum connection force is specified in three ways: a general minimum horizontal capacity for all connections; a
special minimum for horizontal restraint of beams and trusses in line, which also includes the live load on the member; and a
special minimum for horizontal restraint of concrete and masonry walls perpendicular to their plane. The 5 percent
coefficient used for the first two is a simple and convenient value that provides some margin over the minimum strength of
the system as a whole. The value for anchorage of concrete and masonry walls is simply scaled upward from the value of
200 pounds per linear foot traditionally used in past building codes for allowable stress design.
C11.8 GEOLOGIC HAZARDS AND GEOTECHNICAL INVESTIGATION
In addition to this commentary, Part 3 of the 2009 NEHRP Recommend Provisions includes additional and more detailed
discussion and guidance on evaluation of geologic hazards and determination of seismic lateral pressures.
C11.8.1 Site Limitation for Seismic Design Categories E and F. Because of the difficulty of designing a structure for the
direct shearing displacement of fault rupture and the relatively high seismic activity of SDCs E and F, locating a structure on
an active fault having the potential to cause rupture of the ground surface at the structure is prohibited.
C11.8.3 Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F. The
dynamic lateral earth pressure on basement and retaining walls during earthquake ground shaking is considered to be an
earthquake load, E, for use in design load combinations. This dynamic earth pressure is superimposed on the preexisting
static lateral earth pressure during ground shaking. The preexisting static lateral earth pressure is considered to be an H load.
Liquefaction potential should be evaluated for design earthquake ground motions consistent with peak ground accelerations
of SDS/2.5. The occurrence and consequences of geologic hazards for MCE ground motions also should be considered when
evaluating structural stability and other pertinent performance criteria.
REFERENCES
Abrahamson, N.A. 2000. “Effects of Rupture Directivity on Probabilistic Seismic Hazard Analysis” in Proceedings of the
6th International Conference on Seismic Zonation, Palm Springs, California.
Borcherdt, R. D. 2002. “Empirical Evidence for Site Coefficients in Buildingcode Provisions,” Earthquake Spectra,
18(2):189217.
Crouse, C. B., and J. W. McGuire. 1996. “Site Response Studies for Purposes of Revising NEHRP Seismic Provisions,”
Earthquake Spectra, 12(3).
Crouse, C. B., E. V. Leyendecker, P. G. Somerville, M. Power, and W. J. Silva. 2006. “Development of Seismic Ground
Motion Criteria for the ASCE/SEI 7 Standard,” Paper 533 in Proceedings 8th U.S. National Conference on Earthquake
Engineering, April 1822, 2006, San Francisco, California.
Dobry, R., R. Ramos, and M. S. Power. 1999. Site Factors and Site Categories in Seismic Codes, Technical Report
MCEER990010. Multidisciplinary Center for Earthquake Engineering Research.
Dobry, R., R. Borcherdt, C. B. Crouse, I. M. Idriss, W. B. Joyner, G. R. Martin, M. S. Power, E. E. Rinne, and R. B. Seed.
2000. “New Site Coefficients and Site Classifications System Used in Recent Building Seismic Code Provisions,”
Earthquake Spectra, 16(1):4167.
Field, E. H. 2000. “A Modified Ground Motion Attenuation Relationship for Southern California that Accounts for Detailed
Site Classification and a Basin Depth Effect,” Bulletin of the Seismological Society of America, 90:S209S221.
Joyner, W. B., and D. M. Boore. 2000, “Recent Developments in Earthquake Ground Motion Estimation in Proceeding of
the 6th International Conference on Seismic Zonation, Palm Springs, California.
RodriguezMarek, A., J. D. Bray, and N. Abrahamson. 2001. “An Empirical Geotechnical Site Response Procedure,”
Earthquake Spectra, 17(1):6587.
Silva, W., R. Darragh, N. Gregor, G. Martin, N. Abrahamson, and C. Kircher. 2000. Reassessment of Site Coefficients and
Nearfault Factors for Building Code Provisions, Program Element II, Report 98HQGR1010 to the U.S. Geological
Survey.
Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson. 1997. “Modification of Empirical Strong Ground
Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity,” Seismological
Research Letters, 68:199222.
Stewart, J. P, A. H. Liu, and Y. Choi. 2003. “Amplification Factors for Spectral Acceleration in Tectonically Active
Regions,” Bulletin of the Seismological Society of America, 93(1):332352.
Steidl, J. H. 2000. “Site Response in Southern California for Probabilistic Seismic Hazard Analysis, Bulletin of the
Seismological Society of America, 90:S149S169.
COMMENTARY TO CHAPTER 12,
SEISMIC DESIGN REQUIREMENTS
FOR BUILDING STRUCTURES
C12.1 STRUCTURAL DESIGN BASIS
The performance expectations for structures designed in accordance with ASCE/SEI 705 are described in Sections C11.1
and C11.5. Structures designed in accordance with the standard are likely to have a low probability of collapse but suffer
serious damage if subjected to the maximum considered earthquake (MCE) or stronger ground motion. The uncertainty in
performance results from variability of both ground motion and structural characteristics.
Earthquakes load structures indirectly. As the ground displaces, a structure follows and vibrates. The vibration produces
structural deformations with associated strains and stresses. Computation of dynamic response to earthquake ground shaking
is complex. The basic methods of analysis in the standard employ the common simplification of a response spectrum. A
response spectrum for a specific earthquake ground motion approximates the maximum value of response to that ground
motion for simple structures without reflecting the total time history of response. The design response spectrum specified in
Section 11.4 and used in the basic methods of analysis in Chapter 12 is a smoothed and normalized approximation for many
different ground motions.
Although the seismic requirements of the standard are stated in terms of forces and loads, there are no external forces applied
to the aboveground portion of a structure during an earthquake. The design forces are intended only as approximations to
generate internal forces suitable for proportioning the strength of structural elements and for estimating the deformations
(when multiplied by the deflection amplification factor, Cd) that would occur in the same structure in the event of designlevel
(not MCE) ground motion.
C12.1.1 Basic Requirements. Chapter 12 of the standard sets forth a set of coordinated requirements that must be used
together. The basic steps in structural design for acceptable seismic resistance are as follows:
1. Select gravity and seismicforceresisting systems appropriate to the anticipated intensity of ground shaking. Section
12.2 sets forth limitations depending on the Seismic Design Category.
2. Lay out these systems to produce a continuous, regular, and redundant load path so that the structures act as integral units
in responding to ground shaking. Section 12.3 addresses configuration and redundancy issues.
3. Analyze a mathematical model of the structure subjected to lateral seismic motions and gravity forces. Sections 12.6 and
12.7 set forth requirements for the method of analysis and for construction of the mathematical model.
4. Proportion members and connections to have adequate lateral and vertical strength and stiffness. Section 12.4 specifies
how the effects of gravity and seismic loads are to be combined to establish required strengths, and Section 12.12
specifies deformation limits for buildings.
One to threestory structures with shear wall or braced frame systems of simple configuration may be eligible for design
under the simplified alternative contained in Section 12.14. Any other deviations from the requirements of Chapter 12 are
subject to approval and must be rigorously consistent as specified in Section 11.1.4.
The baseline seismic forces for proportioning structural elements (individual members, connections, and supports) are static
horizontal forces derived from a linear elastic response spectrum procedure. A basic requirement is that horizontal motion
can come from any direction, with detailed requirements being provided in Section 12.5. For most structures, the effect of
vertical ground motions is not analyzed specifically; it is included in an approximate fashion by adjusting the load factors for
dead load up and down, as described in Section 12.4. Certain conditions requiring more detailed analysis of vertical response
are defined in Chapters 13 and 15 for nonstructural components and nonbuilding structures, respectively.
Higher levels of seismic analysis are permitted (and encouraged) for any structure and are required for some structures (see
Section 12.6), but lower limits based on the equivalent lateral force procedures apply. The basic procedure uses response
spectra that are representative of, but substantially reduced from, the anticipated ground motions. As a result, at the MCE
level of ground shaking, structural elements are expected to yield, buckle, or otherwise behave inelastically.
This approach has substantial historical precedent. In past earthquakes, structures with appropriately ductile, regular,
continuous systems designed for reduced forces have performed acceptably. In the standard, such design forces are
computed by dividing the forces that would be generated in a structure behaving linearly when subjected to the design ground
motion by the response modification coefficient, R, and the design ground motion is taken as twothirds of the MCE ground
motion.
The elastic deformations calculated under these reduced design forces are multiplied by the deflection amplification factor,
Cd, to estimate the deformations likely to result from the design ground motion. As set forth in Sections 12.12 and 13, the
amplified deformations are used to assess story drifts and to determine seismic demands on elements of the structure that are
not part of the seismicforceresisting system and on nonstructural components within structures. Where Cd is substantially
less than R, the system is considered to have damping greater than the nominal 5 percent of critical damping.
The seismicforceresisting system is expected to reach significant yield for forces in excess of the design forces. Significant
yield is the point where complete plastification of the most critical region of the structure (e.g., formation of a first plastic
hinge in the structure) occurs, not the point where first yield occurs in any member. Figure C12.11 shows the lateral force
versus deformation relation for a typical structure. Significant yield is shown as the lowest yield hinge on the forcedeformation
diagram. With increased lateral loading, additional plastic hinges form and the resistance increases (following
the solid curve) until a maximum is reached. The maximum resistance developed along the curve is substantially higher than
that at first significant yield, and the margin is referred to as the overstrength capacity.
The provisions of the standard contemplate a seismicforceresisting system with redundant characteristics wherein
significant structural overstrength above the level of significant yield can be obtained by plastification at other points in the
structure prior to the formation of a complete mechanism. The overstrength obtained by this continued inelastic action
provides the reserve strength necessary for the structure to resist the extreme motions of the actual seismic forces that may be
generated by the design ground motion.
The structural overstrength described above results from the development of sequential plastic hinging in a properly
designed, redundant structure. Several other sources will further increase structural overstrength. First, material overstrength
(i.e., actual material strengths higher than the nominal material strengths specified in the design) may increase the structural
overstrength significantly. For example, a recent survey shows that the mean yield strength of A36 steel is about 30 to 40
percent higher than the minimum specified strength used in design calculations. Second, member design strengths usually
incorporate a strength reduction (or resistance) factor, F, to produce a low probability of failure under design loading. Third,
designers themselves introduce additional overstrength by selecting sections or specifying reinforcing patterns that exceed
those required by the computations. Similar situations occur where prescriptive minimums of the standard, or of the design
standards referenced from it, control the design. Finally, the design of many flexible structural systems (e.g., moment
resisting frames) often is controlled by the drift rather than strength limitations of the standard with sections selected to
control lateral deformations rather than to provide the specified strength.
The result is that structures typically have a much higher lateral resistance than that specified as a minimum by the standard,
and first significant yielding of structures may occur at lateral load levels that are 30 to 100 percent higher than the prescribed
design seismic forces. If provided with adequate ductile detailing, redundancy and regularity, full yielding of structures may
occur at load levels that are two to four times the prescribed design force levels.
Most structural systems have some components or limit states that cannot provide reliable inelastic response or energy
dissipation. Such components or limit states must be designed considering that the actual forces in the structure will be larger
than those at first significant yield. The standard specifies an overstrength factor, O0, to amplify the prescribed forces for
use in design of such components or limit states. This specified overstrength factor is neither an upper nor a lower bound; it
is simply an approximation specified to provide a nominal degree of protection against undesirable behavior.
Figure C12.11 illustrates the significance of design parameters contained in the standard including the response modification
coefficient, R; the deflection amplification factor, Cd; and the system overstrength factor, O0. These design values, provided
in Table 12.21, as well as the criteria for story drift and Pdelta effects, have been established considering the characteristics
of typical properly designed structures. The actual structural overstrength, O, often will be less than the tabulated factor, O0.
This means that the required ductility, Rd, usually will exceed R/O0. If excessive “optimization” of a structural design is
performed with lateral resistance provided by only a few elements, the successive yield hinge behavior depicted in Figure
C12.11 will not be able to form, the actual overstrength (O) will be small, and use of the design parameters in the standard
may not provide the intended seismic performance.
The response modification coefficient, R, represents the ratio of the forces that would develop under the specified ground
motion if the structure had entirely linearelastic response to the prescribed design forces (see Figure C12.11). The structure
must be designed so that the level of significant yield exceeds the prescribed design force. The ratio R, expressed as R = VE
/VS, is always larger than 1.0; thus, all structures are designed for forces smaller than those the design ground motion would
produce in a structure with completely linearelastic response. This reduction is possible for a number of reasons. As the
structure begins to yield and deform inelastically, the effective period of response of the structure lengthens which, for most
structures, results in a reduction in strength demand. Furthermore, the inelastic action results in a significant amount of
energy dissipation (hysteretic damping) in addition to other sources of damping present below significant yield. The
combined effect, which is also known as the ductility reduction, explains why a properly designed structure with a fully
Figure C12.11 Inelastic forcedeformation curve.
Lateral
seismic
force, V
VE
Lateral deformation
(drift),
Fully yielded strength
.
Design force level
E
Successive yield
hinges
Elastic response
of structure
.
. , S
drift
under
design
forces
Vy
VS
E
S
R V
V
=
E
d
y
R V
V
=
y
S
V
V
O =
D
d
S
C
= .
.
. , D
design
drift
yielded strength (Vy in Figure C12.11) that is significantly lower than the elastic seismic force demand (VE in Figure C12.1
1) can be capable of providing satisfactory performance under the design ground motion excitations.
Figure C12.11 Inelastic forcedeformation curve.
The energy dissipation resulting from hysteretic behavior can be measured as the area enclosed by the forcedeformation
curve of the structure as it experiences several cycles of excitation. Some structures have far more energy dissipation
capacity than others. The extent of energy dissipation capacity available depends largely on the amount of stiffness and
strength degradation the structure undergoes as it experiences repeated cycles of inelastic deformation. Figure C12.12
shows representative load deformation curves for two simple substructures such as a beamcolumn assembly in a frame.
Hysteretic curve (a) in the figure is representative of the behavior of substructures that have been detailed for ductile
behavior. The substructure can maintain nearly all of its strength and stiffness over several large cycles of inelastic
deformation. The resulting forcedeformation “loops” are quite wide and open, resulting in a large amount of energy
dissipation. Hysteretic curve (b) represents the behavior of a substructure that has not been detailed for ductile behavior. It
loses stiffness rapidly under inelastic deformation, and the resulting hysteretic loops are quite pinched. Such a substructure
has much less energy dissipation than that for the substructure (a) but has a greater change in response period. The structural
response is determined by a combination of energy dissipation and period modification.
The R values in the standard are based largely on engineering judgment of the performance of the various materials and
systems in past earthquakes. The R factor for a specific project should be chosen and used with care. For example, lower
values should be used for structures possessing a low degree of redundancy wherein all the plastic hinges required for the
formation of a mechanism may be formed essentially simultaneously and at a force level close to the specified design
strength. This situation can result in considerably more detrimental Pdelta effects. Since it is difficult for individual
designers to judge the extent to which R factors should be adjusted based on the inherent redundancy of their designs, Section
12.3.4 provides a coefficient, ., that is calculated based on the removal of individual seismicforceresisting elements.
C12.1.2 Member Design, Connection Design, and Deformation Limit. Given that key elements of the seismicforceresisting
system will likely yield in response to ground motions as discussed in Section C12.1.1, it might be expected that
structural connections would be required to develop the strength of connected members. Although that is a logical procedure,
it is not a general requirement. The actual requirement varies by system and generally is specified in the standards for design
of the various structural materials cited by reference in Section 14. Good seismic design requires careful consideration of this
issue.
Figure C12.12 Typical hysteretic curves.
Force Force
Displacement Displacement
a. Ductile hysteresis loops b. Pinched hysteresis loops
Figure C12.12 Typical hysteretic curves.
C12.1.3 Continuous Load Path and Interconnection. In effect, Section 12.1.3 calls for the seismic design to be complete
and in accordance with the principles of structural mechanics. The loads must be transferred rationally from their point of
origin to the final point of resistance. This should be obvious, but it often is overlooked by those inexperienced in earthquake
engineering. Design consideration should be given to potentially adverse effects where there is a lack of redundancy. Given
the many unknowns and uncertainties in the magnitude and characteristics of earthquake loading, in the materials and
systems of construction for resisting earthquake loadings and in the methods of analysis, good earthquake engineering
practice has been to provide as much redundancy as possible in the seismicforceresisting system of buildings. Redundancy
plays an important role in determining the ability of the building to resist earthquake forces. In a structural system without
redundant components, every component must remain operative to preserve the integrity of the building structure. On the
other hand, in a highly redundant system, one or more redundant components may fail and still leave a structural system that
retains its integrity and can continue to resist lateral forces, albeit with diminished effectiveness.
While a redundancy requirement is included in Section 12.3.4, overall system redundancy can be improved by making all
joints of the vertical loadcarrying frame moment resisting and incorporating them into the seismicforceresisting system.
These multiple points of resistance can prevent a catastrophic collapse due to distress or failure of a member or joint. (The
overstrength characteristics of this type of frame are discussed in Section C12.1.1.) The designer should be particularly
aware of the proper selection of R when using only one or twobay rigid frames in one direction for resisting seismic loads.
A single, onebay frame or a pair of such frames provides little redundancy so the designer may wish to consider a reduced R
to account for a lack of redundancy if the calculated redundancy is considered to be too low. As more onebay frames are
added to the system, however, overall system redundancy increases. The increase in redundancy is a function of frame
placement and total number of frames.
The minimum connection forces are not intended to be applied simultaneously to the entire seismicforceresisting system.
C12.1.4 Connection to Supports. The requirement is the same as given in Section 11.7.4 for Seismic Design Category A.
See Section C11.7.
C12.1.5 Foundation Design. Most foundation design criteria are still stated in terms of allowable stresses, and the forces
computed in the standard are all based on the strength level of response. When developing strengthbased criteria for
foundations, all the factors cited in Section 12.1.5 require careful consideration. Section C12.13 provides specific guidance.
C12.1.6 Material Design and Detailing Requirements. The design limit state for resistance to an earthquake is unlike that
for any other load within the scope of the standard. The earthquake limit state is based on overall system performance, not
member performance, where repeated cycles of inelastic straining are accepted as an energy dissipating mechanism.
Provisions that modify customary requirements for proportioning and detailing structural members and systems are provided
to produce the desired performance.
C12.2 STRUCTURAL SYSTEM SELECTION
C12.2.1 Selection and Limitations. For purposes of these seismic analyses and design requirements, seismicforceresisting
systems are grouped into categories as shown in Table 12.21. These categories are subdivided further for various
types of vertical elements used to resist seismic forces. In addition, the sections for detailing requirements are specified.
Specification of R factors requires considerable judgment based on knowledge of actual earthquake performance as well as
research studies. The factors in Table 12.21 continue to be reviewed in light of recent research results. R values for the
various systems were selected considering observed performance during past earthquakes, the toughness (ability to dissipate
energy without serious degradation) of the system, and the amount of damping typically present in the system when it
undergoes inelastic response. FEMA P695, Quantification of Building Seismic Performance Factors (Applied Technology
Council, 2009) has been developed with the purpose of establishing and documenting a methodology for quantifying building
system performance and response parameters for use in seismic design. While the response modification coefficient (R
factor) is a key parameter being addressed, related design parameters such as the system overstrength factor (O0) and
deflection amplification factor (Cd) also are addressed. Collectively, these terms are referred to as “Seismic Performance
Factors” (SPFs). Future systems will likely derive their SPFs using this methodology and existing system SPFs also may be
reviewed in light of this new procedure.
Building height limits have been specified in codes and standards for over 50 years. The structural system limitations and
building height limits specified in Table 12.21 evolved from these initial limitations and were further modified by the
collective expert judgment of the PUC and the ATC3 project team (the forerunners of the PUC). They have continued to
evolve over the past 30 years based on observations and testing, but the specific values are based on subjective judgment.
In a bearing wall system, major loadcarrying columns are omitted and the walls carry a major portion of the gravity (dead
and live) loads. The walls supply inplane lateral stiffness and strength to resist wind and earthquake loads as well as other
lateral loads. In some cases, vertical trusses are employed to augment lateral stiffness. In general, this system has
comparably lower values of R than other systems due to the frequent lack of redundancy for support of vertical and horizontal
loads.
In a building frame system, gravity loads are carried primarily by a frame supported on columns rather than by bearing walls.
Some portions of the gravity load may be carried on bearing walls, but the amount carried should represent a relatively small
percentage of the floor or roof area. Lateral resistance is provided by shear walls or braced frames. Lightframed walls with
shear panels are intended for use only with wood and steel building frames. Although gravityloadresisting systems are not
required to provide lateral resistance, most of them do. To the extent that the gravityloadresisting system provides
additional lateral resistance, it will enhance the building’s seismic performance capability, so long as it is capable of resisting
the resulting stresses and undergoing the associated deformations.
In a momentresisting frame system, momentresisting connections between the columns and beams provide lateral
resistance. In Table 12.21, such frames are classified as ordinary, intermediate, or special. In high Seismic Design
Categories, the anticipated ground motions are expected to produce large inelastic demands so special moment frames
designed and detailed for ductile response in accordance with Chapter 14 are required. In low Seismic Design Categories, the
inherent overstrength in typical structural designs is such that the anticipated inelastic demands are reduced somewhat, and
less ductile systems may be employed safely. Since these less ductile ordinary framing systems do not possess as much
toughness, lower R values are specified.
The R, O0, and Cd values for the composite systems in Table 12.21 are similar to those for comparable systems of structural
steel and reinforced concrete. Use of the tabulated values is allowed only when the design and detailing requirements in
Section 14.3 are followed.
In a dual system, a threedimensional space frame made up of columns and beams provides primary support for gravity loads.
Primary lateral resistance is supplied by shear walls or braced frames, and secondary lateral resistance is provided by a
moment frame complying with the requirements of Chapter 14.
Where a beamcolumn frame or slabcolumn frame lacks special detailing, it cannot act as an effective backup to a shear wall
subsystem so there are no dual systems with ordinary moment frames. Instead, Table 12.21 permits the use of a shear wallframe
interactive system with ordinary reinforced concrete moment frames and ordinary reinforced concrete shear walls. Use
of this defined system, which requires compliance with Section 12.2.5.10, offers a significant advantage over a simple
combination of the two constituent ordinary reinforced concrete systems. Where those systems are simply combined, Section
12.2.3.2 would require use of design parameters for an ordinary reinforced concrete moment frame.
In a cantilevered column system, stability of mass at the top is provided by one or more columns with base fixity acting as a
singledegreeoffreedom system.
Cantilever column systems are essentially a special class of momentresisting frame except that they do not possess the
redundancy and overstrength that most momentresisting frames derive from sequential formation of yield or plastic hinges.
Where a typical momentresisting frame must form multiple plastic hinges in members in order to develop a yield
mechanism, a cantilever column system develops hinges only at the base of the columns to form a mechanism. As a result,
their overstrength is limited to that provided by material overstrength and by design conservatism.
It is permitted to construct cantilever column structures using any of the systems that can be used to develop moment frames
including ordinary, intermediate, and special steel and concrete detailing systems as well as timber frames. The system
limitations for cantilever column systems reflect the type of moment frame detailing provided but with a height limit of 35
feet.
The R factor for cantilever column systems is derived from momentresisting frame values where R is divided by O0 but is
not taken as less than 1 or greater than 3. This accounts for the lack of sequential yielding in such systems. Cd is taken as
equal to R, recognizing that damping is quite low in these systems and inelastic displacement of these systems will not be less
than the elastic displacement.
C12.2.2 Combinations of Framing Systems in Different Directions. Different systems can be utilized along each of the
two orthogonal directions as long as the respective R, O0, and Cd values are used. Depending on the combination selected, it
is possible that one of the two systems will limit the extent of the overall system with regard to use and height. The more
restrictive of the limitation systems governs.
C12.2.3 Combinations of Framing Systems in the Same Direction.
C12.2.3.1 R, O0, and Cd Values for Vertical Combinations. The intent of the provision requiring us of the more stringent
seismic design parameters (R, O0, and Cd) is to prevent mixed systems that could concentrate inelastic behavior in the lower
stories. Exceptions to these requirements exist for conditions that do not affect the dynamic characteristics of the structure or
that will not result in concentration of inelastic demand in critical areas.
For the past several decades, building codes have allowed twostage static analysis for certain structures with a vertical
combination of dynamically uncoupled systems. While this approach may be used for any structure that meets the
requirements, it is most often used for the design of lightframed construction built on a rigid concrete base. The design
process requires that the “flexible” upper structure and “rigid” lower structure be designed separately with the reactions from
the upper portion amplified by the ratio of respective R/. values. This ratio, which must be taken as no less than 1, produces
demands for the “rigid” lower portion that are commensurate with its inelastic capability.
C12.2.3.2 R, O0, and Cd Values for Horizontal Combinations. For nearly all conditions, the least value of R of different
structural systems in the same direction must be used in design. This requirement reflects the expectation that the entire
system will undergo the same deformation with its behavior controlled by the least ductile system. However, where the listed
conditions are met, the R value for each independent line of resistance can be used. This exceptional condition is consistent
with lightframe construction that utilizes the ground for parking with residential use above.
C12.2.4 Combination of Framing Detailing Requirements. This requirement is provided so that the higher R value
system has the necessary ductile detailing throughout. The intent is that details common to both systems be designed to
remain functional throughout the response in order to preserve the integrity of the seismicforceresisting system.
C12.2.5 System Specific Requirements.
C12.2.5.1 Dual System. The moment frame of a dual system must be capable of resisting at least 25 percent of the design
seismic forces; this percentage is based on judgment. The purpose of the 25 percent frame is to provide a secondary lateral
system with higher degrees of redundancy and ductility in order to improve the ability of the building to support the service
loads (or at least the effect of gravity loads) after strong earthquake shaking. The primary system (walls or bracing) acting
together with the moment frame must be capable of resisting all of the design seismic forces. The following analyses are
required for dual systems:
1. The moment frame and shear walls or braced frames must resist the design seismic forces considering fully the force and
deformation interaction of the walls or braced frames and the moment frames as a single system. This analysis must be
made in accordance with the principles of structural mechanics considering the relative rigidities of the elements and
torsion in the system. Deformations imposed upon members of the moment frame by their interaction with the shear
walls or braced frames must be considered in this analysis.
2. The moment frame must be designed with sufficient strength to resist at least 25 percent of the design seismic forces
including torsional effects.
C12.2.5.2 Cantilever Column Systems. Cantilever column systems are singled out for special consideration because of
their unique characteristics. These structures often have limited redundancy and overstrength and concentrate inelastic
behavior at their bases. As a result, they have substantially less energy dissipation capacity than other systems. A number of
apartment buildings incorporating this system experienced very severe damage and, in some cases, collapse in the 1994
Northridge earthquake. Because the ductility of columns having large axial stress is limited, cantilever column systems may
not be used where column axial demands exceed 15 percent of their axial strength.
Elements providing restraint at the base of cantilever columns must be designed with overstrength so that the strength of the
cantilever columns is developed.
C12.2.5.3 Inverted PendulumType Structures. Inverted pendulumtype structures do not have unique entry in Table
12.21 since they can be formed from many structural systems. Inverted pendulumtype structures have more than half of
their mass concentrated near the top (producing one degree of freedom in horizontal translation) and rotational compatibility
of the mass with the column (producing vertical accelerations acting in opposite directions). Dynamic response amplifies this
rotation; hence, the bending moment induced at the top of the column can exceed that computed using the procedures of
Section 12.8. The requirement to design for a top moment that is onehalf of the base moment calculated in accordance with
Section 12.8 is based on analyses of inverted pendulums covering a wide range of practical conditions.
C12.2.5.4 Increased Building Height Limit for Steel Braced Frames and Special Reinforced Concrete Shear Walls.
The first criterion for an increased building height limit precludes extreme torsional irregularity since premature failure of
one of the single walls or frames could lead to excessive inelastic torsional response. The second criterion, which is similar
to the redundancy requirements, is to limit the height of systems that are too strongly dependent on any single line of walls or
braced frames. The inherent torsion resulting from the distance between the center or mass and center of stiffness must be
included, but accidental torsional effects are neglected for ease of implementation.
C12.2.5.5 Special Moment Frames in Structures Assigned to Seismic Design Categories D through F. Special moment
frames, either alone or as part of a dual system, are required to be used in Seismic Design Categories D through F where the
building height exceeds 160 feet (or 240 feet for buildings that meet the provisions of Section 12.2.5.4) as indicated in Table
12.21. In shorter buildings where special moment frames are not required to be used, the special moment frames may be
discontinued and supported on less ductile systems as long as the requirements for system combinations are followed.
For the situation where special moment frames are required, they should be continuous to the foundation. In cases where the
foundation is located below the building’s base, provisions for discontinuing the moment frames can be made as long as the
seismic forces are properly accounted for and transferred to the supporting structure.
C12.2.5.6 SingleStory Steel Ordinary and Intermediate Moment Frames in Structures Assigned to Seismic Design
Category D or E. Ordinary and intermediate moment frames are less ductile than special moment frames; consequently,
restrictions are placed on their use in higher Seismic Design Categories. The height limit of 65 feet and the limitations on
roof and wall dead load are intended to restrict the use of such systems to metal buildings and similar onestory structures, the
design of which is often controlled by wind forces, and which have generally evidenced acceptable performance in past
seismic events.
C12.2.5.7 Other Steel Ordinary and Intermediate Moment Frames in Structures Assigned to Seismic Design
Category D or E. Compared to the limits in Section 12.2.5.6, this section imposes a stricter height limit because higher
loads and additional stories are permitted. Lowrise lightframe structures that are commonly used in residential construction
generally have evidenced adequate performance in past seismic events due to their light weight, abundance of lateral forceresisting
elements, and general resilience.
C12.2.5.8 SingleStory Steel Ordinary and Intermediate Moment Frames in Structures Assigned to Seismic Design
Category F. See Section C12.2.5.6.
C12.2.5.9 Other Steel Intermediate Moment Frame Limitations in Structures Assigned to Seismic Design Category F.
The intent of this section is to prohibit the use of steel ordinary moment frames in lightframe construction that does not
comply with Section 12.2.5.8.
C12.2.5.10 Shear WallFrame Interactive Systems. For structures assigned to Seismic Design Category A or B (where
seismic hazard is low), it is usual practice to design shear walls and frames of a shear wallframe structure to resist lateral
forces in proportion to their relative rigidities, considering interaction between the two subsystems at all levels. As discussed
in Section C12.2.1, this typical approach would require use of a lower R factor than that defined for shear wallframe
interactive systems. Where the special requirements of this section are satisfied, more reliable performance is expected,
justifying a higher R factor.
C12.3 DIAPHRAGM FLEXIBILITY, CONFIGURATION IRREGULARITIES, AND REDUNDANCY
C12.3.1 Diaphragm Flexibility. Most seismicforceresisting systems have two distinct parts: the horizontal system that
distributes lateral forces to the vertical elements and the vertical system that transmits lateral forces between the floor levels
and the base of the structure.
The horizontal system may consist of diaphragms or a horizontal bracing system. For the majority of buildings, diaphragms
offer the most economical and positive method of resisting and distributing seismic forces in the horizontal plane. Typically,
diaphragms consist of metal deck (with or without concrete), concrete slabs, and wood sheathing/decking. While most
diaphragms are flat, consisting of the floors of buildings, they also may be inclined, curved, warped, or folded configurations,
and most diaphragms have openings.
The diaphragm stiffness relative to the stiffness of the supporting vertical seismicforceresisting system ranges from flexible
to rigid and is important to define. Provisions defining diaphragm flexibility are given in Sections 12.3.1.1 through 12.3.1.3.
If a diaphragm cannot be idealized as either flexible or rigid, explicit consideration of its stiffness must be included in the
analysis.
The diaphragms in most buildings braced by wood lightframe shear walls are semirigid. Because semirigid diaphragm
modeling is beyond the capability of available software for wood lightframe buildings, it is anticipated that this requirement
will be met by evaluating force distribution using both rigid and flexible diaphragm models and taking the worst case of the
two. While this is in conflict with common design practice, which typically includes only flexible diaphragm force
distribution for wood lightframe buildings, it is one method of capturing the effect of the diaphragm stiffness.
Further detailed discussion of diaphragms can be found in Delebi, et al. (1980) and in an Applied Technology Council report
on diaphragms (1981).
C12.3.1.2 Rigid Diaphragm Condition. Span length is included in the deemedtocomply condition as an indirect measure
of the flexural contribution to diaphragm stiffness.
C12.3.2 Irregular and Regular Classification. The configuration of a structure can significantly affect its performance
during a strong earthquake producing the ground motion contemplated in the standard. Configuration can be divided into
two aspects: horizontal and vertical. Most seismic design provisions were derived for buildings having regular
configurations, but earthquakes have shown repeatedly that buildings having irregular configurations suffer greater damage.
This situation prevails even with good design and construction. There are several reasons for this poor behavior of irregular
structures. In a regular structure, the inelastic response produced by strong ground shaking, including energy dissipation and
damage, tends to be well distributed throughout the structure. However, in irregular structures, inelastic behavior can be
concentrated by irregularities and result in rapid failure of structural elements in these areas. In addition, some irregularities
introduce unanticipated demands into the structure, which designers frequently overlook when detailing the structural system.
Finally, the elastic analysis methods typically employed in the design of structures often cannot predict the distribution of
earthquake demands in an irregular structure very well, leading to inadequate design in the areas associated with the
irregularity. For these reasons, the standard encourages regular configurations and prohibits gross irregularity in buildings
located on sites close to major active faults where very strong ground motion and extreme inelastic demands are anticipated.
C12.3.2.1 Horizontal Irregularity. A building may have a symmetric geometric shape without reentrant corners or wings
but still be classified as irregular in plan because of its distribution of mass or vertical seismicforceresisting elements.
Torsional effects in earthquakes can occur even where the centers of mass and resistance coincide. For example, ground
motion waves acting on a skew with respect to the building axis can cause torsion. Cracking or yielding in an asymmetric
fashion also can cause torsion. These effects also can magnify the torsion due to eccentricity between the centers of mass and
resistance. Torsional irregularities are defined to address this concern.
A square or rectangular building with minor reentrant corners would still be considered regular, but large reentrant corners
creating a crucifix form would produce an irregular configuration. The response of the wings of this type of building
generally differs from the response of the building as a whole, and this produces higher local forces than would be
determined by application of the standard without modification. Other winged plan configurations (e.g., Hshapes) are
classified as irregular even if symmetric due to the response of the wings.
Significant differences in stiffness between portions of a diaphragm at a level are classified as irregularities since they may
cause a change in the distribution of seismic forces to the vertical components and create torsional forces not accounted for in
the distribution normally considered for a regular building. Figure C12.31 illustrates plan irregularities.
Where there are discontinuities in the path of lateral force resistance, the structure cannot be considered to be regular. The
most critical discontinuity defined is the outofplane offset of vertical elements of the seismicforceresisting system. Such
offsets impose vertical and lateral load effects on horizontal elements that are difficult to provide for adequately.
Where vertical elements of the lateralforceresisting system are not parallel to or symmetric about major orthogonal axes, the
equivalent lateral force procedure of the standard cannot be applied appropriately so the structure is considered to be
irregular.
Figure C12.31 Building plan irregularities.
Rigid Flexible Open
1. Torsional 2. Reentrant corner
3. Diaphragm discontinuity
4. Outofplane offset 5. Nonparallel system
X
Xp
Yp
Y
Irregular:
X
X
p > 0.15
and
Y
Y
p > 0.15
Wall below
Wall above
Irregular:
1
A > 2 XY
max avg
Seismic
force
min
X
Y
Irregular:
>1.4
Extreme:
max
avg
>1.2
= max
avg 2 max
avg
+ min
open
Figure C12.31 Building plan irregularities.
C12.3.2.2 Vertical Irregularity. Vertical configuration irregularities affect the responses at the various levels and induce
loads at these levels that differ significantly from the distribution assumed in the equivalent lateral force procedure given in
Section 12.8. A momentresisting frame building might be classified as having a vertical irregularity if one story is much
taller than the adjoining stories and the design did not compensate for the resulting decrease in stiffness that normally would
occur. Figure C12.32 illustrates vertical irregularities.
A building is classified as irregular where the ratio of mass to stiffness in adjacent stories differs significantly. This might
occur where a heavy mass (e.g., an interstitial mechanical floor) is placed at one level. Irregularity Type 3 in Table 12.32
applies regardless of whether the larger dimension is above or below the smaller one. Buildings with a weakstory
irregularity tend to develop all of their inelastic behavior and consequent damage at the weak story, possibly leading to
collapse. Section 12.3.3.2 provides an exception for Seismic Design Category B or C structures where essentially elastic
response of the weak story is expected.
C12.3.3 Limitations and Additional Requirements for Systems with Structural Irregularities.
C12.3.3.1 Prohibited Horizontal and Vertical Irregularities in Seismic Design Categories D through F. The
irregularity prohibitions of this section stem from poor performance in past earthquakes and the potential to concentrate large
inelastic demands in certain portions of the structure. Even when such irregularities are permitted, they should be avoided
whenever possible in all structures.
Figure C12.32 Building vertical irregularities.
K i+3
K i+2
K i+1
K i
K i+3
K i+2
K i+1
K i
K i+3
K i+2
K i+1
K i
Mi+1
Mi
Mi1
Li+1
Li
2. Weight (Mass) 3. Geometric
4. InPlane Discontinuity 5. Lateral Strength  Weak Story
Irregular:
< 0.7K
or
i+1 Ki
K < i (K + K + K ) 3 i+1
0.8
i+2 i+3
Extreme:
< 0.6K
or
i+1 Ki
K < i (K + K + K ) 3 i+1
0.7
i+2 i+3
1. Stiffness  Soft Story
Stri+1
Stri
Labove
Lbelow
offset
Irregular:
offset > L
or
below
offset > Labove
Irregular:
Str < 0.8Str
Str < 0.65Str
i
i
i+1
i+1
Extreme:
Irregular:
L > 1.3L i i+1
Irregular:
M > 1.5M
or
i i+1
M i > 1.5Mi1
Figure C12.32 Building vertical irregularities.
C12.3.3.2 Extreme Weak Stories. Since extreme weak story irregularities are prohibited for buildings located in Seismic
Design Categories D, E and F, the limitations and exceptions in this section apply only to buildings assigned to Seismic
Design Category B or C.
C12.3.3.3 Elements Supporting Discontinuous Walls or Frames. The purpose of this requirement is to protect the
supporting elements from overload caused by overstrength of a discontinued seismicforceresisting element. Columns,
beams, slabs, or trusses may be subject to such failure so all are included in the design requirement. Overload may result
from forces in either the downward or upward direction; therefore, both possibilities must be considered. Such load reversals
may be especially problematic for reinforced concrete beams, weaker top laminations of glulam beams, unbraced flanges of
steel beams, and steel trusses.
The connection between the discontinuous element and the supporting member must be adequate to transmit the forces for
which the discontinuous element is designed. For example, where the discontinuous element must be designed using the load
combinations of Section 12.4.3, as is the case for a steel column in a braced frame or moment frame, its connection to the
supporting member must be designed using the same load combinations. Since concrete shear walls are not required to be
designed using the load combinations of Section 12.4.3, the connection between a discontinuous shear wall and the
supporting member may be designed using the loads associated with the shear wall and not the load combinations with
overstrength factor.
C12.3.3.4 Increase in Forces Due to Irregularities for Seismic Design Categories D through F. The irregularities listed
may result in loads that are distributed differently than assumed in the equivalent lateral force procedure of Section 12.8,
especially as related to the interconnection of the diaphragm with vertical elements of the seismicforceresisting system.
The 25 percent increase in force is intended to account for this difference. Where the load combinations with overstrength
apply, no further increase is warranted.
C12.3.4 Redundancy. The desirability of redundancy, or multiple lateralforceresisting load paths, has long been
recognized. The redundancy provisions of this section reflect the belief that an excessive loss of story shear strength or
development of an extreme torsional irregularity may lead to structural failure. The redundancy factor determined for each
direction may differ.
C12.3.4.1 Conditions Where Value of . is 1.0. This section provides a convenient list of conditions where . is 1.0.
C12.3.4.2 Redundancy Factor, ., for Seismic Design Category D through F. There are two approaches to establishing a
redundancy factor of 1.0. Where neither condition is satisfied, . is taken equal to 1.3. It is permitted to take . equal to 1.3
without checking either condition.
The first approach is a check of the elements outlined in Table 12.33 for cases where the story shear exceeds 35 percent of
the base shear. Parametric studies (conducted by Building Seismic Safety Council Technical Subcommittee 2 but
unpublished) were used to select the 35 percent value. Those studies indicated that stories with at least 35 percent of the base
shear include all stories of lowrise buildings (buildings up to 5 to 6 stories) and about 87 percent of the stories of tall
buildings. The intent of this limit is to exclude penthouses and the uppermost stories from the redundancy requirements.
This approach requires the removal (or loss of moment resistance) of an individual lateralforceresisting element to
determine its effect on the remaining structure. If the removal of elements, onebyone, does not result in more than a 33
percent reduction in story strength or an extreme torsional irregularity, . may be taken as 1.0. For this evaluation, the
determination of story strength requires an indepth calculation. The intent of the check is to use a simple measure (elastic or
plastic) to determine whether an individual member has a significant effect on the overall system. If the original structure
has an extreme torsional irregularity to begin with, the resulting . is 1.3. Figure C12.33 presents a flowchart for
implementing the redundancy requirements.
As indicated in the table, braced frame, moment frame, shear wall, and cantilever column systems must conform to
redundancy requirements. Dual systems also are included but, in most cases, are inherently redundant. Shear walls or wall
piers with a heighttolength aspect ratio greater than 1.0 within any story have been included; however, the required design
of collector elements and their connections for O0 times the design force may address the key issues. In order to satisfy the
collector force requirements, a reasonable number of shear walls usually is required. Regardless, shear wall systems are
addressed in this section so that either an adequate number of wall elements is included or the proper redundancy factor is
applied. For wall piers, the height is taken as the height of the adjacent opening and generally is less than the story height.
The second approach is a deemedtocomply condition wherein the structure is regular and has a specified arrangement of
seismicforceresisting elements to qualify for . of 1.0. As part of the parametric study, simplified braced frame and moment
frame systems were investigated to determine their sensitivity to the analytical redundancy criteria. This simple deemedtocomply
condition is consistent with the results of the study.
Figure C12.33 Calculation of the redundancy factor, ..
Perform linear analysis
with all elements
Define story X above
which no more than 35% of
base shear is resisted
Below X is item b of
Section 12.3.4.2 satisfied?
Extreme torsional
irregularity?
Does the seismic
forceresisting system
comprise only shear walls
or wall piers with a
heighttolength ratio not
greater than 1.0?
Prioritize elements
based on highest force or
force/story shear
Select an element (below X ) to
remove, and perform linear analysis
without that element
Does the demand in any
remaining element (below X )
increase by more than 50%?
Does plastic mechanism
analysis show that element
removal decreases story
strength by more than 33%?
Have all likely
elements been
considered?
Extreme torsional
irregularity?
. = 1.0 . = 1.3
No*
No
No
No
No
Yes*
Yes
No
Yes
No
Yes
Yes
Yes
* or not considered
Yes
p
p
p
p
Figure C12.33 Calculation of the redundancy factor, ..
Figure C12.34 Shear wall and wall pier heighttolength ratios.
hwall
Lwall
wp
hwp
L
Story level 2
Story level 1
Shear wall
heightto length ratio = wall h
Lwall
Wall pier
heightto length ratio = wp h
Lwp
= height of shear wall
= height of wall pier
= length of shear wall
= length of wall pier
wall h
Lwall
wp h
Lwp
Figure C12.34 Shear wall and wall pier heighttolength ratios.
C12.4 SEISMIC LOAD EFFECTS AND COMBINATIONS
C12.4.1 Applicability. Structural elements designated by the engineer as part of the seismicforceresisting system
typically are designed directly for seismic load effects. None of the seismic forces associated with the design base shear are
formally assigned to structural elements that are not designated as part of the seismicforceresisting system, but such
elements must be designed using the load conditions of Section 12.4 and must accommodate the deformations resulting from
application of seismic loads.
C12.4.2 Seismic Load Effect. Section 12.4 presents the required combinations of seismic forces with other loads. The
load combinations are taken from the basic load combinations of Chapter 2 of the standard with further elaboration of the
seismic load effect, E. The seismic load effect includes horizontal and vertical components. For strength design, the effect of
vertical seismic forces, Ev, is based on an assumed effective vertical acceleration of 0.2SDS times gravity.
It may be helpful to recognize that the quantities Eh and Ev are the effects of loads, not the loads themselves. They can be
tension or compression axial forces, shear, bending moments, or torsional moments. For a onestory shear wall, application
of the horizontal seismic forces from V causes overturning moment and shear in the wall, both of which are Eh effects. The
factor 0.2 SDS times gravity dead load corresponds to an Ev load effect that increases or decreases the axial force in the wall.
In this simple example, an Eh force or moment is never added directly to an Ev force or moment because the former affects
only moment and shear, while the latter affects only axial force.
While the shear and moment are independent of the axial force, the capacity check of the wall may need to include all three
terms (or certainly moment and axial force) simultaneously.
For a diagonal brace that carries earthquake and gravity load, application of the horizontal seismic forces from V causes a
brace force that has both horizontal and vertical components, and the factor 0.2 SDS times dead load produces a load effect
that also affects both the horizontal and vertical components of axial force. In this case the brace force is based on Eh ± Ev.
Section 12.4.2.3 presents the load combinations written using the separate horizontal and vertical load effects that constitute
E.
The 0.2SDS vertical acceleration effect is required to be considered in the design of all members of a structure—even those
that are not part of the seismicforceresisting system. For example, design of a gravity loadresisting prestressed concrete
girder may be governed by the dead and earthquake condition, where 0.2SDSD is subtracted from the dead load. This could be
the controlling condition for tension at the top of the girder.
C12.4.3 Seismic Load Effect Including Overstrength Factor. Certain structural elements or actions, such as collectors in
Seismic Design Categories C through F or columns supporting discontinuous walls, are required to be designed for seismic
load combinations with overstrength. In such cases the seismic load effect, Em, has its horizontal component multiplied by
the overstrength factor O0, as indicated in Section 12.4.3.
C12.4.4 Minimum Upward Force for Horizontal Cantilevers for Seismic Design Categories D through F. In Seismic
Design Categories D, E, and F, horizontal cantilevers are designed for an upward force that results from an effective vertical
acceleration of 1.2 times gravity. This is to provide some minimum strength in the upward direction and to account for
possible dynamic amplification of vertical ground motions resulting from the vertical flexibility of the cantilever. The
requirement is not applied to downward forces on cantilevers, for which the typical load combinations are used.
C12.5 DIRECTION OF LOADING
Seismic forces are delivered to a building through ground accelerations that may approach from any direction relative to the
orthogonal directions of the building; therefore, seismic effects are expected to develop in both directions simultaneously.
The standard requires structures to be designed for the most critical loading effects from seismic forces applied in any
direction, and the procedures outlined in this section are deemed to satisfy that requirement.
The orthogonal combination procedure combines the effects from 100 percent of the seismic load applied in one direction
with 30 percent of the seismic load applied in the perpendicular direction. Combining effects for seismic loads in each
direction and accidental torsion results in 16 load combinations as follows:
Orthogonal load combinations
where :
QE = +/ QE_X+AT +/ 0.3QE_Y
QE_Y = effect of Ydirection load at the center of mass
(Section 12.8.4.2)
QE = +/ QE_XAT +/ 0.3QE_Y
QE_X = effect of Xdirection load at the center of mass
(Section 12.8.4.2)
QE = +/ QE_Y+AT +/ 0.3QE_X
AT = accidental torsion computed in accordance with
Section 12.8.4.2
QE = +/ QE_YAT +/ 0.3QE_X
For horizontal structural elements such as beams and slabs, orthogonal effects may be minimal; however, for vertical
elements of the seismicforceresisting system that participate in both orthogonal directions, the design likely will be
governed by these combinations.
Orthogonal combinations should not be confused with modal combinations such as the square root of the sum of the squares
(SRSS) or complete quadratic combination (CQC) technique.
The maximum effect of seismic forces, QE, from orthogonal load combinations must be modified by the redundancy factor,
., or the overstrength factor, O0, and consider the effects of vertical seismic forces, EV, in accordance with Section 12.4, to
obtain the seismic load effect, E.
C12.6 ANALYSIS SELECTION PROCEDURE
Table 12.61 applies only to buildings without seismic isolation (Chapter 17) or passive energy devices (Chapter 18).
The procedures addressed in Table 12.61 are equivalent lateral force (ELF) analysis (Section 12.8), modal response
spectrum (MRS) analysis (Section 12.9), linear response history (LRH) analysis, and nonlinear response history (NRH)
analysis. Requirements for performing response history analysis are provided in Chapter 16. Nonlinear static (pushover)
analysis is not addressed in the standard.
The value of Ts (= SD1/SDS) depends on the site class because SDS and SD1 include such effects. Where ELF is not allowed,
analysis must be performed using modal response spectrum or response history analysis.
ELF is not allowed for buildings with the listed irregularities because it assumes a gradually varying distribution of mass and
stiffness along the height and negligible torsional response. The 3.5Ts limit recognizes that higher modes are more
significant in taller buildings (Lopez and Cruz, 1996; Chopra, 2007) such that the ELF method may underestimate the design
base shear and may not predict correctly the vertical distribution of seismic forces.
C12.7 MODELING CRITERIA
C12.7.1 Foundation Modeling. Structural systems consist of three interacting components: the structural framing (girders,
columns, walls, diaphragms), the foundation (footings, piles, caissons), and the supporting soil. The ground motion that a
structure experiences, as well as the response to that ground motion, depends on the complex interaction between these
components.
Those aspects of ground motion that are affected by site characteristics are assumed to be independent of the structurefoundation
system as these effects would occur in the freefield in the absence of the structure. Hence, site effects are
considered separately (Sections 11.4.2 through 11.4.4 and Chapters 20 and 21).
Given a sitespecific ground motion or response spectrum, the dynamic response of the structure will depend on the
foundation system and on the characteristics of the soil that support the system. The dependence of the response on the
structurefoundationsoil system is referred to as soilstructure interaction. Such interactions will usually, but not always,
result in a reduction of base shear. This reduction in shear is due to the flexibility of the foundationsoil system and an
associated lengthening of the period of vibration of the structure. In addition, the soil system may provide an additional
source of damping. However, that total displacement typically increases with soilstructure interaction.
If the foundation is considered to be rigid, the computed base shears usually will be conservative, and it is for this reason that
rigid foundation analysis is allowed. The designer may ignore soilstructure interaction or may consider it explicitly in
accordance with Section 12.13.3 or implicitly in accordance with Chapter 19.
C12.7.2 Effective Seismic Weight. During an earthquake, the structure accelerates laterally, and these accelerations of the
structural mass produce inertial forces. These inertial forces, accumulated over the height of the structure, produce the design
base shear.
When a building vibrates during an earthquake, only that portion of the mass or weight that is physically tied to the structure
needs to be considered as effective. Hence, live loads (e.g., loose furniture, loose equipment, and human occupants) need not
be included. However, certain types of live loads such as storage loads may develop inertial forces, particularly where they
are densely packed.
Also considered as effective weight is all permanently attached equipment (e.g., air conditioners, elevator equipment, and
mechanical systems), movable partitions (a minimum of 10 psf is required), and 20 percent of significant roof snow load.
The full snow load need not be considered because maximum snow load and maximum earthquake load are unlikely to occur
simultaneously and loose snow does not move with the roof.
C12.7.3 Structural Modeling. The development of a mathematical model of a structure is always required because the
story drifts and the design forces in the structure cannot be computed without such a model. In some cases, the mathematical
model can be as simple as a freebody diagram as long that model can appropriately capture the strength and stiffness of the
structure.
The most realistic analytical model is threedimensional, includes all sources of stiffness (and flexibility) of the structure and
the soilfoundation system as well as Pdelta effects, and allows for nonlinear inelastic behavior in all parts of the structurefoundation
soil system. Development of such an analytical model is very time consuming, and such analysis is rarely
warranted for typical building designs performed in accordance with the standard. Instead of performing a nonlinear
analysis, inelastic effects are accounted for indirectly in the linear analysis methods by means of the response modification
factor, R, and the deflection amplification factor, Cd.
Using modern software, it often is more difficult to decompose a structure into planar models than it is to develop a full
threedimensional model so threedimensional models now are commonplace. Increased computational efficiency has
reduced the motivation to model rigid diaphragms, allowing for easy and efficient modeling of diaphragm flexibility. Threedimensional
models are required where the structure has torsional irregularities, outofplane offset irregularities, or
nonparallel system irregularities.
In general, the same threedimensional model may be utilized for equivalent lateral force, modal response spectrum, and
linear response history analysis. The response spectrum and linear response history models require a realistic modeling of
structural mass, and the response history method also requires an explicit representation of inherent damping. Five percent
critical damping is automatically included in the modal response spectrum approach. See Chapter 16 and the related
commentary for additional information on linear and nonlinear response history analysis.
It is well known that deformations in the panel zones of the beamcolumn joints of steel moment frames are a significant
source of flexibility. Two different mechanical models for including such deformations are summarized in Charney and
Marshall (2006). These methods apply to both elastic and inelastic systems. For elastic structures, centerline analysis
provides reasonable, but not always conservative, estimates of frame flexibility. Fully rigid end zones should not be used, as
this will always result in an overestimation of lateral stiffness in steel momentresisting frames. Partially rigid end zones may
be justified in certain cases such as where doubler plates are used to reinforce the panel zone.
Including the effect of composite slabs on the stiffness of beams and girders may be warranted in some circumstances.
Where composite behavior is included, due consideration should be paid to the reduction in effective composite stiffness for
portions of the slab in tension (Schaffhausen and Wegmuller, 1977; Liew, et al., 2001)
Figure C12.71 Undesired interaction effects.
h
H
Expected plastic hinge capacity = M
Expected column shear = 2M /H
p
p
Actual column shear = 2M p /h
Expected
hinging
region
Unexpected
hinging
region
For reinforced concrete buildings, it is important to address the effects of axial, flexural, and shear cracking in modeling the
effective stiffness of the structural components. Determining appropriate effective stiffness of the structural components
should take into consideration the anticipated demands on the components, their geometry, and the complexity of the model.
Recommendations for computing cracked section properties may be found in Paulay and Priestley (1992) and similar texts.
C12.7.4 Interaction Effects. The interaction requirements are intended to prevent unexpected failures in members of
momentresisting frames. Figure C12.71 illustrates a typical situation where masonry infill is used, and this masonry is
fitted tightly against reinforced concrete columns. Since the masonry is much stiffer than the columns, column hinges form
at the top of column and at the top of the masonry rather than at the top and bottom of the column. If the column flexural
capacity is Mp, the shear in the columns increases by the factor H/h, and this may cause an unexpected nonductile shear
failure in the columns. Many building collapses have been attributed to this effect.
Figure C12.71 Undesired interaction effects.
C12.8 EQUIVALENT LATERAL FORCE PROCEDURE
The equivalent lateral force (ELF) procedure provides a simple way to incorporate the effects of inelastic dynamic response
into a linear static analysis. This procedure is useful in preliminary design of all structures and is allowed for final design of
the vast majority of structures. The procedure is valid only for structures without significant discontinuities in mass and
stiffness along the height, where the dominant response to ground motions is in the horizontal direction without significant
torsion.
The ELF procedure has three basic steps:
1. Determine the seismic base shear,
2. Distribute the shear vertically along the height of the structure, and
3. Distribute the shear horizontally across the width and breadth of the structure.
Each of these steps is based on a number of simplifying assumptions. A broader understanding of these assumptions may be
obtained from any structural dynamics textbook that emphasizes seismic applications.
C12.8.1 Seismic Base Shear
C12.8.1.1 Calculation of Seismic Response Coefficient. Equation 12.81 simply expresses the base shear as the product of
the effective seismic weight, W, and a response coefficient, Cs. The response coefficient is a spectral pseudoacceleration, in
g units, which has been modified by R and I to account for inelastic behavior and to provide for improved performance for
high occupancy or essential structures.
There are five equations for determining the response coefficient Cs; the first three are plotted in Figure C12.81.
Equation 12.82, representing the constant acceleration part of the spectrum, controls where 0.0 < T < Ts. As shown in Table
C12.61 (which provides values of 3.5Ts), Ts is a function of seismicity and site. It may be as low as 0.2 seconds for low
hazard regions on Site Class B or as high as 0.9 seconds in high hazard regions on Site Class E.
Figure C12.81 Seismic response coefficient versus period.
T0 TS TL
Seismic R esponse Coefficient, Cs
Period, T
Constant
acceleration
[Eq. 12.82]
Constant velocity
[Eq. 12.83]
Constant
displacement
[Eq. 12.84]
Transition to peak
ground acceleration
[not used for ELF]
The true pseudoacceleration response spectrum transitions to the peak ground acceleration as the period approaches zero.
This transition is not used in the ELF method. One reason is that simple reduction of the response spectrum by (1/R) in the
very short period region would exaggerate inelastic effects.
Figure C12.81 Seismic response coefficient versus period.
Equation 12.83, representing the constant velocity part of the spectrum, controls where Ts < T < TL. In this region, the
seismic response coefficient is inversely proportional to period, and the pseudovelocity (pseudoacceleration divided by
circular frequency, lower case omega, is constant. TL, the longperiod transition period, is provided in Figures 2215 through 2220. TL
ranges from 4 seconds in in the northcentral conterminous states and western Hawaii to 16 seconds in the Pacific Northwest
and in western Alaska.
Equation 12.84, representing the constant displacement part of the spectrum, controls where T > TL. Given the current
mapped values of TL, this equation only affects tall and flexible structures.
Equation 12.85 is the minimum base shear and provides a (working stress) strength of approximately 3 percent of the weight
of the structure (Seismology Committee, Structural Engineers Association of California, 1996). This minimum base shear
was originally enacted in 1933 by the state of California’s Riley Act.
Equation 12.86 applies to sites near major active faults (as reflected by values of S1) where pulse effects can increase longperiod
demands.
C12.8.1.2 SoilStructure Interaction Reduction. Soilstructure interaction, which can influence significantly the dynamic
response of structures to earthquakes, is addressed in Chapter 19.
C12.8.1.3 Maximum Ss Value in Determination of Cs. The maximum value of Ss was created as hazard maps were
revised in 1997. The cap on Ss reflects engineering judgment about performance of codecomplying buildings in past
earthquakes so the height, period, and regularity conditions required for use of the limit are very important qualifiers.
C12.8.2 Period Determination. The fundamental period of the structure, T, is used to determine the design base shear as
well as the exponent k that establishes the distribution of the shear along the height of the structure. Equation 12.87 is an
Figure C12.82 Variation of fundamental period with building height.
0
1
2
3
4
5
6
7
0 100 200 300 400 500 600
Fundamental period, T (s)
Building height, hn (ft)
measured
values
[mean minus one
standard deviation]
[mean]
0.028 0.80 a n T = h
0.035 0.80 a n T = h
empirical relationship determined through statistical analysis of the measured response of buildings in California. Figure
C12.82 illustrates such data for various structures with steel moment resisting frames.
Since the empirical expression is based on the lower bound of the data, it produces a lower bound for the period of a building
of given height. This lower bound period, used in Equations 12.83 and 12.84, provides a conservative estimate of base
shear.
The fundamental period determined from a rational analysis may be used in design unless it exceeds the approximate period
times the coefficient provided in Table 12.81. This period limit prevents the use of unusually low ELF base shear for design
of buildings (or computational models) that are overly flexible. The coefficients in the table have two effects. First, the
conservatism of lower bound empirical formulas for Ta is removed. Second, the period is increased in regions of lower
seismicity as buildings in such areas generally are more flexible (and, hence, have longer periods) than buildings in regions
of higher seismicity.
Figure C12.82 Variation of fundamental period with building height.
C12.8.3 Vertical Distribution of Seismic Force. Equation 12.812 is based on the simplified first mode shape shown in
Figure C12.83. In the figure, Fx is the inertial force at level x, which is simply the total acceleration at level x times the mass
at level x. The base shear is the sum of these inertial forces, and Equation 12.8 simply gives the ratio of the force at level x to
the total base shear.
The deformed shape of the structure of Figure C12.83 is a function of the exponent k, which is related to the fundamental
period of vibration of the structure. The variation of k with T is illustrated in Figure C12.84. The exponent k is intended to
approximate the effect of higher modes, which are generally more dominant in structures with a longer fundamental period of
vibration. Lopez and Cruz (1996) discuss the factors that influence higher modes of response. Although the actual first
mode shape for a structure is also a function of the type of seismicforceresisting system, that effect is not reflected in these
equations.
The horizontal forces computed using Equation 12.812 do not reflect the actual inertial forces imparted on a structure at any
particular time. Instead, they are intended to provide design story shears that are consistent with enveloped results from more
accurate analysis (Chopra and Newmark, 1980).
Building height, hn (ft)
Figure C12.83 Basis of Equation 12.812.
hx
k
x
wx
h Figure C12.83 Basis of Equation 12.812.
2
2
1
k x
x x
n
k i
b i
i
k
x x x
vx n
b k
i i
F h w
g
V h w
g
C F w h
V wh
. a
. a
=
=
=
= =
S
S Figure C12.84 Variation of exponent k with period T.
k
k = 0.75 + 0.5T
T (seconds)
1.0
2.0
0.5 2.5
Figure C12.83 Basis of Equation 12.812.
C12.8.4 Horizontal Distribution of Forces. Within the context of an elastic ELF analysis, the distribution of lateral forces
to various seismicforceresisting elements depends on the type, geometric arrangement, and vertical extents of the resisting
elements and on the shape and flexibility of the floor diaphragms. Because seismicforceresisting elements are expected to
respond inelastically to design ground motions, the distribution of forces to the various elements also depends on the strength
of the elements and their sequence of yielding. Clearly, such effects cannot be captured accurately by a linear elastic static
analysis (Paulay, 1997). Nonlinear dynamic analysis is too cumbersome to be applied to the design of most buildings so
other approximate methods are used.
Figure C12.84 Variation of exponent k with period T.
Of particular concern is the torsional response of the structure during the earthquake. This response has been observed in
structures that are designed to be nearly symmetric in plan and layout of seismicforceresisting systems (De La Liera and
Chopra, 1994). This torsional response is due to a variety of “accidental” eccentricities that exist due to uncertainties in
quantifying the mass and stiffness distribution of the structure, as well as torsional components of ground motion that are not
included explicitly in codebased designs (Newmark and Rosenbleuth, 1971).
C12.8.4.1 Inherent Torsion. When lateral forces in a particular direction are applied statically at each story of a building
with rigid diaphragms, torsional displacement (twisting about the vertical axis) occurs if the centers of stiffness and mass of
each story are not perfectly coincident in plan. When threedimensional analysis is used, this inherent torsion is included
automatically. When planar analysis is used, the centers of mass and rigidity for each story must be determined explicitly.
Unfortunately, it is difficult to determine the center of rigidity for a multistory building to compute the inherent torsion; the
center of rigidity for a particular story depends on the configuration of the seismicforceresisting elements above and below
that story and may be load dependent (Chopra and Goel, 1991).
For buildings with fully flexible diaphragms (as defined in Section 12.3), vertical elements are assumed to resist inertial
forces from the mass that is tributary to the elements, but with no explicitly computed torsion. No diaphragm is perfectly
flexible, so some torsional forces always develop even when they are ignored.
Figure C12.85 Amplification factor for symmetric rectangular buildings.
L/B = 4
L/B = 1
cap
floor
0
1
2
3
0.1 0.2 0.3 0.4
Torsional amplification factor, Ax
Dimensional coefficient, a
curves for L/B = 1, 1. , 2, 4
L
B
aL
aB
V
C12.8.4.2 Accidental Torsion. Even for perfectly symmetric buildings, the true locations of the centers of mass and rigidity
are uncertain. As discussed in Section C12.8.4, other effects also may produce torsion. The requirement to consider
accidental torsion is intended to address this concern.
Accidental and inherent torsions result in forces that must be combined with those obtained from the application of the lateral
story forces; all components must be designed for the maximum effects determined considering positive accidental torsion,
negative accidental torsion, and no accidental torsion.
C12.8.4.3 Amplification of Accidental Torsion. Equation 12.814 was developed by the SEAOC “seismology committee
to encourage buildings with good torsional stiffness” (Structural Engineers Association of California, 1999).
In calculating the torsional amplification factor, Ax, the applied loads include inherent and accidental torsion, but with no
further amplification; the calculation is not iterative.
Figure C12.85 illustrates the effect of Equation 12.814 for a symmetric rectangular building with various aspect ratios (L/B)
where the seismicforceresisting elements are positioned at a variable distance (defined by a) from the center of mass in
each direction. Each element is assumed to have the same stiffness. The structure is loaded parallel to the short direction
with an eccentricity of 0.05L.
Figure C12.85 Amplification factor for symmetric rectangular buildings.
For a equal to 0.5, these elements are at the perimeter of the buildings, and for a equal to 0.0, they are at the center
(providing no torsional resistance). For a square building (L/B = 1.00), the torsional amplification factor is greater than 1.0
where a is less than 0.25 and increases to the maximum of 3.0 where a is equal to 0.11. For a rectangular building with L/B
equal to 4.00, the amplification factor is greater than 1.0 where a is less than 0.34 and increases to 3.0 where a is equal to
0.15. For the range of aspect ratios investigated, Ax is equal to 1.0 where a is greater than 0.34 and Ax reaches its maximum
value of 3.0 where (a < 0.11 to 0.15).
C12.8.6 Story Drift Determination. Equation 12.815 is used to estimate inelastic deflections, which are then used to
calculate design story drifts. These story drifts must be less than the allowable story drifts of Table 12.121. For buildings
without torsional irregularity, computations are performed using deflections at the centers of mass of adjacent stories. For
Seismic Design Category C, D, E, or F structures that are torsionally irregular, Section 12.12.1 requires that drifts be
computed along the edges of the structure.
Figure C12.86 Displacements used to compute drift.
Force,
V
Displacement,
Elastic
response
Actual inelastic
response
Idealized inelastic
response
VE
V=V /R
Analysis
domain
E
d d E d
The term Cd in Equation 12.815 amplifies the displacements from elastic analysis at design level forces, which are reduced
by R.
Figure C12.86 illustrates the relationships between elastic response; response to reduced designlevel forces; and the
expected inelastic response. If the structure remained elastic during an earthquake, the force would be VE, and the
corresponding displacement would be d E. Note that VE does not include the reduction factor, R, which accounts primarily
for ductility and overstrength. According to the equal displacement “rule” of seismic design, the maximum displacement of
an inelastic system is approximately equal to that of an elastic system with the same initial stiffness. This condition has been
observed for structures idealized with bilinear inelastic response and a fundamental period greater than Ts. For shorter period
structures, peak displacement of an inelastic system tends to exceed that of the corresponding elastic system. Since the forces
used for design include the response modification coefficient, R, the resulting displacements are too small and must be
amplified.
Figure C12.86 Displacements used to compute drift.
This analysis domain is shown in Figure C12.86. Because of overstrength and associated stiffness increases, the actual
inelastic response differs from the idealized inelastic response; the actual displacement of the system may be less than R
times d. The standard accounts for this difference by multiplying the fictitious (designlevel) elastic displacements d by the
factor Cd, which is usually less than R.
The design forces used to compute d xe include the importance factor, I, so Equation 12.815 includes I in the denominator.
This is appropriate since the allowable story drifts (except for masonry shear wall structures) in Table 12.121 are more
stringent for higher occupancy categories.
C12.8.6.1 Minimum Base Shear for Computing Drift. Except for period limits (as described in Section C12.8.6.2), all of
the requirements of Section 12.8 (including minimum base shears and force distributions) must be satisfied where computing
drift for ELF analysis.
C12.8.6.2 Period for Computing Drift. Where the response spectrum of Section 11.4.5 or the corresponding equations of
Section 12.8.1 are used and the structural period is less than TL, displacements increase with increasing period (even though
forces may decrease). Section 12.8.2 applies a period limit so that design forces are not too low, but if the lateral forces used
to compute drifts are inconsistent with the forces corresponding to the computed period, displacements will be overestimated.
Therefore, the standard allows the determination of drift using forces that are consistent with the computed period of
vibration of the structure.
Computed periods greater than CuTa are common, particularly for moment frames. In such cases the seismic design forces
used to proportion strength may produce displacements that violate drift limits, whereas displacements based on the
computed period will satisfy drift limits.
Equation
0
G 0y
0y
K P
K V h
d
. = = Equation
(1 ) 1y 0y V =V . Equation
0
1 1
d
d
.
=
 Figure C12.87 Pdelta effect on a simple structure.
Displacement,
Force,
V
d
y
(= d
0y = d
1y)
V0 y
V1 y
Slope = K0
Slope = K
1 = K
0 + K
G
Excluding Pdelta
Including Pdelta
Slope = KG
d
d
0
d
1
The more flexible the structure, the more likely it is that Pdelta effects will ultimately control the design. Computed periods
that are significantly greater than (perhaps more than 1.5 times) CuTa may indicate a modeling error.
C12.8.7 Pdelta Effects. Pdelta effects influence both the stiffness and strength of structures. Figure C12.87 shows
idealized static forcedisplacement responses for a simple, onestory structure (such as a cantilevered column). The stiffness
and strength of the structure without considering Pdelta effects (condition 0) are represented by K0 and V0. When Pdelta
effects are considered (condition 1), the related quantities are K1 and V1. Since the two model conditions are for the same
structure, inherent capacity of the structure is the same in either condition, the yield displacement is the same (d 0y = d 1y = d y).
The geometric stiffness of the structure, KG, is equal to P/h, where P is the total gravity load and h is the story height. KG is
negative where gravity loads cause compression in the story.
The stability coefficient, ., is defined as the absolute value of the geometric stiffness divided by the elastic stiffness. From
Figure C12.87, K0 = V0y / d 0y. Hence,
C12.81
Given the above, and the geometric relationships shown in Figure C12.87, it can be shown that the force producing yield in
condition 1 (with Pdelta effects) is
C12.82
and that for an applied force, V, less than or equal to V1y
C12.83
As . approaches 1.0, d 1 approaches infinity and V1 approaches zero, defining a state of static instability.
Figure C12.87 Pdelta effect on a simple structure.
The intent of Section 12.8.7 is to determine whether Pdelta effects are significant, and if so, to modify the strength and
stiffness of the structure to account for such effects. Also, maximum permitted values of . are established.
Equation 12.816 is used to determine the stability coefficient of each story of a structure. Where the stability coefficient
exceeds 0.1, Pdelta effects must be considered using one of two approaches. Displacements and member forces are either
multiplied by 1/(1. ) to reflect the conditions shown in Figure C12.87 in accordance with the equal displacement rule or
determined by rational analysis. Two types of rational analysis are envisioned. First, a nonlinear static (pushover) analysis
could be performed to show that the postyield slope of the pushover curve is continuously positive up to the target
displacement. Second, a nonlinear dynamic response history analysis could be repeated with and without Pdelta effects to
determine if the behavior including Pdelta meets all performance criteria.
Although the Pdelta procedures in the standard reflect the simple static idealization shown in Figure C12.87, the real issue
is one of dynamic stability. For that reason, nonlinear response history analysis is appealing. Such analysis should reflect
variability of ground motions and system properties, including initial stiffness, strain hardening stiffness, initial strength,
hysteretic behavior, and magnitude of gravity load. Unfortunately, the dynamic response of structures is highly sensitive to
such parameters, causing considerable dispersion to appear in the results (Vamvatsikos, 2002). This dispersion, which
increases dramatically with stability coefficient ., is due primarily to the incrementally increasing residual deformations
(ratcheting) that occur during the response. Residual deformations may be controlled by increasing either the initial strength
or the secondary stiffness. See Gupta and Krawinkler (2000) for additional information.
Equation 12.817 establishes the maximum stability coefficient permitted. The intent of this requirement is to protect
structures from the possibility of stability failures triggered by postearthquake residual deformation.
C12.9 MODAL RESPONSE SPECTRUM ANALYSIS
In the modal response spectrum analysis method, the structure is decomposed into a number of singledegreeoffreedom
systems, each having its own mode shape and natural period of vibration. The number of modes available is equal to the
number of mass degrees of freedom of the structure, so the number of modes can be reduced by eliminating mass degrees of
freedom. For example, rigid diaphragm constraints may be used to reduce the number of mass degrees of freedom to one per
story for planar models, and to three per story (two translations and rotation about the vertical axis) for threedimensional
structures. However, where the vertical elements of the seismicforceresisting system have significant differences in lateral
stiffness, rigid diaphragm models should be used with caution as relatively small inplane diaphragm deformations can have a
significant effect on the distribution of forces.
For a given direction of loading, the displacement in each mode is determined from the corresponding spectral acceleration,
modal participation, and mode shape. Because the sign (positive or negative) and the time of occurrence of the maximum
acceleration are lost in creating a response spectrum, there is no way to recombine modal responses exactly. However,
statistical combination of modal responses produces reasonably accurate estimates of displacements and component forces.
The loss of signs for computed quantities leads to problems in interpreting force results where seismic effects are combined
with gravity effects, produces forces that are not in equilibrium, and makes it impossible to plot deflected shapes of the
structure.
C12.9.1 Number of Modes. The key motivation to perform modal response spectrum analysis is to determine how the
actual distribution of mass and stiffness of a structure affects the elastic displacements and component forces. Where at least
90 percent of the model mass participates in the response, the distribution of forces and displacements is sufficient for design.
The scaling required by Section 12.9.4 controls the overall magnitude of design values so that incomplete mass participation
does not produce unconservative results.
The number of modes required to achieve 90 percent modal mass participation is usually a small fraction of the total number
of modes. See Lopez and Cruz (1996) for further discussion of the number of modes to use for modal response spectrum
analysis.
C12.9.2 Modal Response Parameters. The design response spectrum (whether the general spectrum from Section 11.4.5
or a sitespecific spectrum determined in accordance with Section 21.2) is representative of linear elastic structures. Division
of the spectral ordinates by R accounts for inelastic behavior, and multiplication of spectral ordinates by I provides the
additional strength needed to improve the performance of important structures. The displacements that are computed using
the response spectrum that has been modified by R and I (for strength) must be amplified by Cd and reduced by I to produce
the expected inelastic displacements. (See Section C12.8.6.)
C12.9.3 Combined Response Parameters. Most computer programs provide for either the SRSS or the CQC method
(Wilson, et al., 1981) of modal combination. The two methods are identical where applied to planar structures, or where zero
damping is specified for the computation of the crossmodal coefficients in the CQC method. The modal damping specified
in each mode for the CQC method should be equal to the damping level that was used in the development of the response
spectrum. For the spectrum in Section 11.4.5, the damping ratio is 0.05.
The SRSS or CQC method is applied to loading in one direction at a time. Where Section 12.5 requires explicit
consideration of orthogonal loading effects, the results from one direction of loading may be added to 30 percent of the
results from loading in an orthogonal direction. Wilson (2000) suggests that a more accurate approach is to use the SRSS
method to combine 100 percent of the results from each of two orthogonal directions where the individual directional results
have been combined by SRSS or CQC, as appropriate.
C12.9.4 Scaling Design Values of Combined Response. The modal base shear, Vt, may be less than the ELF base shear, V,
because: (a) the calculated fundamental period may be longer than that used in computing V, (b) the response is not
characterized by a single mode, and (c) the ELF base shear assumes 100 percent mass participation in the first mode, which is
always an overestimate. The scaling required by Section 12.9.4 provides, in effect, a minimum base shear for design. This
minimum base shear is provided because the computed period of vibration may be the result of an overly flexible (incorrect)
analytical model. The possible 15 percent reduction in design base shear may be considered as an incentive for using a
modal response spectrum analysis in lieu of the equivalent lateral force procedure.
Displacements from the modal response spectrum are not scaled because the use of an overly flexible model will result in
conservative estimates of displacement that need not be further scaled.
C12.9.5 Horizontal Shear Distribution. Accidental torsion must be included in the analysis as specified in Section 12.8.7.
For modal analysis there are two basic approaches to include accidental torsion.
The first approach is to perform static analyses with accidental torsions applied at each level of the structure, and then add
these results to those obtained from the modal response spectrum analysis. Where this approach is used, torsional
amplification in accordance with Section 12.8.4.3 is required.
The second approach, which applies only to threedimensional analysis, is to offset the centers of mass of each story
5 percent in each direction, thus requiring four separate models. The advantage of this method is that the effects of direct
loading and accidental torsion are combined automatically. A practical disadvantage is the increased bookkeeping for
multiple analyses.
Where this approach is used, further amplification of accidental torsion is not required because repositioning the center of
mass in a dynamic analysis changes the natural mode shapes and frequencies, producing torsions larger than the static
accidental torsion.
C12.9.6 Pdelta Effects. The requirements of Section 12.8.7, including the stability coefficient limit, . max, apply to modal
response spectrum analysis.
Amplification of displacements and member forces as a result of Pdelta effects may be accomplished through use of the
geometric stiffness. For the purpose of dynamic analysis, the linearized geometric stiffness, which includes the storywise P
. effect, is usually sufficient. Using the consistent geometric stiffness (Pd effect), which is associated with the deflected
shape of the individual elements of the structure, slightly improves accuracy. Including Pdelta effects directly in dynamic
analysis lengthens of the periods of vibration of each mode of response and increases lateral displacements.
C12.10 DIAPHRAGMS, CHORDS, AND COLLECTORS
C12.10.1 Diaphragm Design. Diaphragms are generally treated as horizontal deep beams or trusses that distribute lateral
forces to the vertical elements of the seismicforceresisting system. As deep beams, diaphragms must be designed to resist
the resultant shear and bending stresses. Diaphragms are commonly compared to girders, with the roof or floor deck
analogous to the girder web in resisting shear, and the boundary elements (chords) analogous to the flanges of the girder in
resisting flexural tension and compression. As in girder design, the chord members (flanges) must be sufficiently connected
to the body of the diaphragm (web) to prevent separation and to force the diaphragm to work as single unit.
Diaphragms may be considered flexible, semirigid, or rigid. The flexibility or rigidity of the diaphragm determines how
lateral forces will be distributed to the vertical elements of the seismicforceresisting system. See Section C12.3.1. Once
the distribution of lateral forces is determined, shear and moment diagrams are used to compute the diaphragm shear and
chord forces. Where diaphragms are not flexible, inherent and accidental torsion must be considered in accordance with
Section 12.8.4.
Diaphragm openings may require additional localized reinforcement (subchords and collectors) to resist the subdiaphragm
chord forces above and below the opening and to collect shear forces where the diaphragm depth is reduced. (See Figure
C12.101.) Collectors on each side of the opening drag shear into the subdiaphragms above and below the opening. The
subchord and collector reinforcement must extend far enough into the adjacent diaphragm to develop the axial force through
shear transfer. The required development length is determined by dividing the axial force in the subchord by the shear
capacity (in force/unit length) of the main diaphragm.
Chord reinforcement at reentrant corners must extend far enough into the main diaphragm to develop the chord force through
shear transfer. (See Figure C12.102.) Continuity of the chord members also must be considered where the depth of the
diaphragm is not constant.
Figure C12.101 Diaphragm components.
Main diaphragm
chords
Subdiaphragm
Collector
elements
Shear
wall
Shear
wall
Subdiaphragm
Direction of loading
Subchords Figure C12.102 Diaphragm with a reentrant corner.
Main diaphragm
chords
Shear
wall
Shear
wall
Direction of loading
Chord force
development
length
In wood and metal deck diaphragm design, framing members are often used as continuity elements, serving as subchords
and collector elements at discontinuities. These continuity members also are often used to transfer wall outofplane forces to
the main diaphragm, where the diaphragm itself does not have the capacity to resist the anchorage force directly. For
additional discussion, see Section C12.11.2.2.3.
Figure C12.101 Diaphragm components.
Figure C12.102 Diaphragm with a reentrant corner.
C12.10.1.1 Diaphragm Design Forces. Diaphragms must be designed to resist inertial forces, as specified in Equation
12.101, and to transfer design seismic forces due to horizontal offsets or changes in stiffness of the vertical resisting
elements. Inertial forces are those seismic forces that originate at the specified diaphragm level, while the transfer forces
originate above the specified diaphragm level. The redundancy factor, ., used for design of the seismicforceresisting
elements also applies to diaphragm transfer forces, thus completing the load path.
C12.10.2.1 Collector Elements Requiring Load Combinations with Overstrength Factor for Seismic Design
Categories C through F. The overstrength requirement of this section is intended to keep inelastic behavior in the ductile
elements of the seismicforceresisting system (consistent with the R factor) rather than in collector elements.
C12.11 STRUCTURAL WALLS AND THEIR ANCHORAGE
As discussed in Section C11.7, structural integrity is important not only in earthquakeresistant design but also in resisting
high winds, floods, explosion, progressive failure, and even such ordinary hazards as foundation settlement. The detailed
requirements of this section address walltodiaphragm integrity.
C12.11.1 Design for OutofPlane Forces. Because they are often subjected to local deformations caused by material
shrinkage, temperature changes, and foundation movements, wall connections require some degree of ductility in order to
accommodate slight movements while providing the required strength.
Although nonstructural walls are not subject to this requirement, they must be designed in accordance with Chapter 13.
C12.11.2 Anchorage of Concrete or Masonry Structural Walls. One major hazard in past earthquakes is the separation
of heavy masonry or concrete walls from floors or roofs. The forces defined in this section apply only to the anchorage or
connection of the wall to the structure, and not to overall wall design. The anchorage force should be considered both for
tension (outofplane) and sliding (inplane) directions.
Where the lateral spacing of connections used to resist the wall anchorage force are spaced further apart than 4 feet (1219
mm) as measured along the length of the wall, the section of wall that spans between the anchors must be designed to resist
the local outofplane bending caused by this force.
C12.11.2.1 Anchorage of Concrete or Masonry Structural Walls to Flexible Diaphragms. Diaphragm flexibility can
amplify outofplane accelerations so the wall anchorage forces in this condition are twice those defined in Section 12.11.1.
C12.11.2.2 Additional Requirements for Diaphragms in Structures Assigned to Seismic Design Categories C through
F.
C12.11.2.2.1 Transfer of Anchorage Forces into Diaphragm. This requirement, which aims to prevent the diaphragm
from tearing apart during strong shaking by requiring transfer of anchorage forces across the complete depth of the
diaphragm, was prompted by failures of connections between tilt up concrete walls and wood panelized roof systems in the
1971 San Fernando earthquake. An exception is provided for modestly proportioned diaphragms of lightframe construction,
which have not performed poorly.
Depending upon diaphragm shape and member spacing, numerous suitable combinations of subdiaphragms and continuous
tie elements and smaller subsubdiaphragms connecting to larger subdiaphragm and continuous tie elements are possible.
The configuration of each subdiaphragm (or subsubdiaphragm) provided must comply with the simple 2.5to1 lengthtowidth
ratio, and the continuous ties must have adequate member and connection strength to carry the accumulated wall
anchorage forces.
C12.11.2.2.2 Steel Elements of Structural Wall Anchorage System. A multiplier of 1.4 has been specified for strength
design of steel elements in order to obtain a fracture strength of almost 2 times the specified design force (where ft is 0.75 for
tensile rupture).
C12.11.2.2.3 Wood Diaphragms. Material standards for wood structural panel diaphragms permit the sheathing to resist
shear forces only; use to resist direct tension or compression forces is not permitted. Therefore, seismic anchorage forces
from walls must be transferred into framing members (such as beams, purlins, or subpurlins) using suitable straps or anchors.
For wood diaphragms, it is common to use local framing and sheathing elements as subdiaphragms to transfer the uniform
lateral wall forces into more concentrated lines of drag or continuity framing that carry the forces across the diaphragm and
hold the building together. Figure C12.111 shows a schematic plan of typical roof framing using subdiaphragms.
Fasteners to wood framing are intended to transfer shear forces only along the wood framing; any forces acting transverse to
the framing tend to induce splitting (due to crossgrain tension). Fasteners into wood ledgers attached to concrete or masonry
walls are designed to resist shear forces only; separate straps or anchors generally are provided to transfer outofplane wall
forces into perpendicular framing members.
C12.11.2.2.4 Metal Deck Diaphragms. In addition to transferring shear forces, metal deck diaphragms often can resist
direct axial forces in at least one direction. However, corrugated metal decks cannot transfer axial forces in the direction
perpendicular to the corrugations and are prone to buckling if the unbraced length of the deck as a compression element is
large. To manage diaphragm forces perpendicular to the deck corrugations, it is common that metal decks are supported at 8
to 10foot intervals by joists that are connected to walls in a manner suitable to resist the full wall anchorage design force and
to carry that force across the diaphragm. In the direction parallel to the deck corrugations, subdiaphragm systems are
considered near the walls; if the compression forces in the deck become large relative to the joist spacing, small compression
reinforcing elements are provided to transfer the forces into the subdiaphragms.
C12.11.2.2.6 Eccentrically Loaded Anchorage System. Wall anchors often are loaded eccentrically, either because the
anchorage mechanism allows eccentricity, or because of anchor bolt or strap misalignment. This eccentricity reduces the
anchorage connection capacity and hence must be considered explicitly in design of the anchorage. Figure C12.112 shows a
onesided rooftowall anchor that is subjected to severe eccentricity due to a misplaced anchor rod. If the detail were
designed as a concentric twosided connection, this condition would be easier to correct.
C12.11.2.2.7 Walls with Pilasters. The anchorage force at pilasters must be calculated considering twoway bending in
wall panels. It is customary to anchor the walls to the diaphragms assuming oneway bending and simple supports at the top
and bottom of the wall. However, where pilasters are present in the walls, their stiffening effect must be taken into account.
Each panel between pilasters is supported on four sides. The reaction at the pilaster top is the result of twoway action of the
Figure C12.111 Typical subdiaphragm framing.
Girder line
(typically also
continuity ties)
Subdiaphragm
chords
Subdiaphragm
Main diaphragm #1
Main diaphragm #1
chords
Purlins
(typical)
Subdiaphragm
chords Main diaphragm #2
Typical subdiaphragm
for outofplane forces
Opening Opening Figure C12.112 Plan view of wall anchor with misplaced anchor rod.
Roof joist
Shim added due to
misplaced anchor rod
Holddown anchor
Castinplace
anchor rod
Tiltup
wall panel
Alternate solution to one
sided connection: use
twosided connection
panel and is applied directly to the beam or girder anchorage at the top of the pilaster. The anchor load at the pilaster
generally is larger than the typical uniformly distributed anchor load between pilasters. Figure C12.113 shows the tributary
area typically used to determine the anchorage force for a pilaster.
Anchor points adjacent to the pilaster must be designed for the full tributary loading, conservatively ignoring the effect of the
adjacent pilaster.
Figure C12.111 Typical subdiaphragm framing.
Figure C12.112 Plan view of wall anchor with misplaced anchor rod.
C12.12 DRIFT AND DEFORMATION
As used in the standard, deflection is the absolute lateral displacement of any point in a structure relative to its base, and story
drift is the difference in deflection across a story (i.e., the deflection of a floor relative to that of the floor below).
The drifts and deflections are checked for the design earthquake ground motion, which is twothirds of the maximum
considered earthquake (MCE) ground motion.
Figure 12.113 Tributary area used to determine anchorage force at pilaster.
Tributary area of
wall on pilaster for
pilaster anchorage design
Wall yield line
45°
Top of parapet
Roof line
Pilaster
anchorage
There are many reasons to control drift; the most significant are to address the structural performance concerns of member
inelastic strain and system stability and to limit damage of nonstructural components, which can be lifethreatening. Drifts
provide a direct but imprecise measure of member strain and structural stability. Under small lateral deformations, secondary
stresses due to the Pdelta effect are normally within tolerable limits. (See Section C12.8.7.) The drift limits provide indirect
control of structural performance.
Figure 12.113 Tributary area used to determine anchorage force at pilaster.
Buildings subjected to earthquakes need drift control to restrict damage of partitions, shaft and stair enclosures, glass, and
other fragile nonstructural elements. The drift limits have been established without regard to economic considerations such
as a comparison of present worth of future repairs with additional structural costs to limit drift. These are matters for building
owners and designers to address.
The drift limits of Table 12.121 reflect consensus judgment taking into account life safety and damage control objectives
described above. Since the displacements induced in a structure include inelastic effects, structural damage in the designlevel
earthquake is likely. This may be seen from the seismic drift limits stated in Table 12.121. For ordinary structures
(Occupancy Category I or II), the drift limit is 0.02hsx, which is about ten times the drift ordinarily allowed under wind loads.
If deformations well in excess of the seismic drift limits were to occur repeatedly, structural components could lose so much
stiffness or strength that they compromise the safety and stability of the structure.
To provide better performance for Occupancy Category IV essential facilities, their drift limits generally are more stringent
than those for Occupancy Categories II and III. However, those limits are still greater than the damage thresholds for most
nonstructural components. Therefore, while the performance of Occupancy Category IV buildings should be better than that
of lower Occupancy Category buildings, there still can be considerable damage in the design earthquake.
The drift limits for lowrise structures are relaxed somewhat, provided that the interior walls, partitions, ceilings, and exterior
wall systems have been designed to accommodate story drifts. The type of steel building envisioned by the exception to the
table would be similar to a prefabricated steel structure with metal skin.
The limits set forth in Table 12.121 are for story drifts and apply to each and every story. For some structures, satisfying
strength requirements may produce a system with adequate drift control. However, the design of momentresisting frames
and of tall, narrow shear walls or braced frames often is governed by drift considerations. Where design spectral response
accelerations are large, seismic drift considerations are expected to control the design of midrise buildings. Where design
spectral response accelerations are small or the building is very tall, design for wind generally will control.
C12.12.3 Building Separation. The intent of this section is to address separations (also called seismic joints) between
adjacent structures or portions of the same structure (with or without frangible closures) for the purpose of permitting
independent response to earthquake ground motion. For irregular structures that cannot be expected to act reliably as a unit,
seismic joints should be used to produce separate units whose independent response to earthquake ground motion can be
predicted.
The standard does not give a precise formulation for the separations, but it does require that the distance be “sufficient to
avoid damaging contact under total deflection.” It is recommended that the distance be no less than the square root of the sum
of the squares of the lateral deflections, which represent the anticipated maximum inelastic deformations including torsion, of
the two units assumed to deflect toward each other (thus increasing with height). If the effects of impact can be shown not to
be detrimental, these distances can be reduced. For very rigid shear wall structures with rigid diaphragms whose lateral
deflections cannot be reasonably estimated, it is suggested that older code requirements for structural separations of at least 1
inch (25 mm) plus 1/2 inch (13 mm) for each 10 feet (3 m) of height above 20 feet (6 m) be followed.
C12.12.4 Deformation Compatibility For Seismic Design Categories D Through F. The purpose of this section is to
require that the seismicforceresisting system provide adequate deformation control to protect elements of the structure that
are not part of the seismicforceresisting system. In regions of high seismicity, many designers apply ductile detailing
requirements to elements that are intended to resist seismic forces but neglect such practices in nonstructural elements or
elements intended to resist only gravity forces. Even where elements of the structure are not intended to resist seismic forces
and are not detailed for such resistance, they can participate in the response and suffer severe damage as a result.
In the 1994 Northridge earthquake, such participation was a cause of several failures. A preliminary reconnaissance report of
that earthquake (EERI, 1994) states:
Of much significance is the observation that six of the seven partial collapses (in modern precast concrete parking
structures) seem to have been precipitated by damage to the gravity load system. Possibly, the combination of large
lateral deformation and vertical load caused crushing in poorly confined columns that were not detailed to be part of the
lateral load resisting system. . . . Punching shear failures were observed in some structures at slabtocolumn connections
such as at the Four Seasons building in Sherman Oaks. The primary lateral load resisting system was a perimeter ductile
frame that performed quite well. However, the interior slabcolumn system was incapable of undergoing the same lateral
deflections and experienced punching failures.
This section addresses such concerns. Rather than relying on designers to assume appropriate levels of stiffness, this section
explicitly requires that the stiffening effects of adjoining rigid structural and nonstructural elements be considered and that a
rational value of member and restraint stiffness be used for the design of components that are not part of the seismicforceresisting
system.
This section also includes a requirement to address shears that can be induced in structural components that are not part of the
seismicforceresisting system, since sudden shear failures have been catastrophic in past earthquakes.
The exception in Section 12.12.4 is intended to encourage the use of intermediate or special detailing in beams and columns
that are not part of the seismicforceresisting system. In return for better detailing, such beams and columns are permitted to
be designed to resist moments and shears from unamplified deflections. This reflects observations and experimental evidence
that welldetailed components can accommodate large drifts by responding inelastically without losing significant vertical
loadcarrying capacity.
C12.13 FOUNDATION DESIGN
C12.13.3 Foundation LoadDeformation Characteristics. This section of the standard provides guidance on modeling
loaddeformation characteristics of the foundationsoil system (foundation stiffness) for linear analysis procedures. The
further guidance contained herein addresses both linear and nonlinear analysis methods. Where linear analysis procedures
are used with the methodology given below, the earthquake forces should not be reduced by R.
Modeling of the loaddeformation characteristics of foundations should be in accordance with ASCE/SEI 41. For nonlinear
analysis of piles that may form plastic hinges, the lateral loaddeformation characteristics of piles may be taken from Song, et
al. (2005).
For load combinations including seismic load effects, the vertical, lateral, and rocking load capacities of foundations as
limited by the soil should be sufficient to resist loads with acceptable deformations, considering the short duration of loading,
the dynamic properties of the soil, and the ultimate load capacities, Qus, of the foundations.
Ultimate foundation load capacities should be determined by a qualified geotechnical engineer based on geotechnical site
investigations that include field and laboratory testing to determine soil classification and soil strength parameters or on insitu
testing of prototype foundations. For competent soils that do not undergo strength degradation under seismic loading,
strength parameters for static loading conditions may be used to compute ultimate load capacities for seismic design. For
sensitive cohesive soils or saturated cohesionless soils, the potential for earthquakeinduced strength degradation should be
considered.
Ultimate foundation load capacities, Qus, under vertical, lateral, and rocking loading should be determined using accepted
foundation design procedures and principles of plastic analysis. Calculated ultimate load capacities, Qus, should be bestestimated
values using soil properties that are representative average values for individual foundations. Bestestimated
values of Qus should be reduced by resistance factors (f) to reflect uncertainties in site conditions and in the reliability of
analysis methods. The factored foundation load capacity, fQus, should be used both to check acceptance criteria and as the
foundation capacity in nonlinear loaddeformation models.
If ultimate foundation load capacities are determined based on geotechnical site investigations including laboratory or insitu
tests, f factors equal to 0.8 for cohesive soils and 0.7 for cohesionless soils should be used for vertical, lateral, and rocking
resistance for all foundation types. If ultimate foundation load capacities are determined based on fullscale fieldtesting of
prototype foundations, f factors equal to 1.0 for cohesive soils and 0.9 for cohesionless soils are recommended.
For both linear and nonlinear analysis procedures, a model incorporating a combined superstructure and foundation system is
necessary to assess the effect of foundation deformations on the superstructure elements.
For linear analysis methods, the linear loaddeformation behavior of foundations should be represented by an equivalent
linear (secant) stiffness using soil properties that are compatible with the soil strain levels associated with the design
earthquake motion. The straincompatible shear modulus, G, and the associated straincompatible shear wave velocity, vs,
needed for the evaluation of equivalent linear stiffness are specified in Chapter 19 of the standard or can be based on a sitespecific
study. ASCE/SEI 41 is an acceptable alternative to that contained in the standard and may provide more realistic
results.
For nonlinear analysis procedures, the nonlinear loaddeformation behavior of the foundationsoil system may be represented
by a bilinear or multilinear curve having an initial equivalent linear stiffness and a limiting foundation capacity. The initial
equivalent linear stiffness should be determined as described above for linear analysis methods. The limiting foundation
capacity should be taken as the factored foundation load capacity, fQus. Parametric variations in analyses should include:
(a) a reduction in stiffness of 50 percent combined with a limiting foundation capacity, f Qus, and (b) an increase in stiffness
of 50 percent combined with a limiting foundation capacity equal to Qus multiplied by 1/f.
For linear analysis procedures, factored foundation load capacities, f Qus, should not be exceeded for load combinations that
include seismic load effects.
For the nonlinear analysis procedures, if the factored foundation load capacity, f Qus, is reached during seismic loading, the
potential significance of associated transient and permanent foundation displacements should be evaluated. Foundation
displacements are acceptable if they do not impair the continuing function of Occupancy Category IV structures or the life
safety of any structure.
C12.13.4 Reduction of Foundation Overturning. Since the vertical distribution of forces prescribed for use with the
equivalent lateral force procedure is intended to envelope story shears, overturning moments are exaggerated. (See
Section C12.13.3.) Such moments will be lower where multiple modes respond, so a 25 percent reduction is permitted for
design (strength and stability) of the foundation using this procedure. This reduction is not permitted for inverted pendulum
or cantilevered column type structures, which typically have a single mode of response.
Since the modal response spectrum analysis procedure more accurately reflects the actual distribution of shears and
overturning moments, the permitted reduction is only 10 percent.
C12.13.5 Requirements for Structures Assigned to Seismic Design Category C.
C12.13.5.1 PoleType Structures. The high contact pressures that develop between pole and soil as a result of lateral loads
make poletype structures sensitive to earthquake motions. Bending in the poles and soil lateral capacity and deformation are
key considerations in the design. For further discussion of polesoil interaction, see Section C12.13.6.7.
C12.13.5.2 Foundation Ties. One important aspect of adequate seismic performance is that the foundation acts as a unit,
not permitting one column or wall to move appreciably with respect to another. To attain this performance, it is common to
provide ties between footings and pile caps. This is especially important where the use of deep foundations is driven by the
existence of soft surface soils.
Multistory buildings often have major columns that run the full height of the building adjacent to smaller columns that
support only one level; the calculated tie force is based on the heavier column load.
The standard permits alternate methods of tying foundations together. Lateral soil pressure on pile caps is not a
recommended method because motion is imparted from soil to structure and during displacement under dynamic conditions.
C12.13.5.3 Pile Anchorage Requirements. The pile anchorage requirements are intended to prevent brittle failures of the
connection to the pile cap under moderate ground motions. Moderate ground motions can result in pile tension forces or
bending moments that could compromise shallow anchorage embedment. Loss of pile anchorage could result in increased
structural displacements from rocking, overturning instability, and loss of shearing resistance at the ground surface. A
concrete bond to a bare steel pile section usually is unreliable, but connection by means of deformed bars properly developed
from the pile cap into concrete confined by a circular pile section is permitted.
C12.13.6 Requirements for Structures Assigned to Seismic Design Categories D through F.
C12.13.6.1 PoleType Structures. See Section C12.13.5.1.
C12.13.6.2 Foundation Ties. See Section C12.13.5.2. For Seismic Design Categories D through F, the requirement is
extended to spread footings on soft soils.
C12.13.6.3 General Pile Design Requirements. Design of piles is based on the same R factor used in design of the
superstructure; since inelastic behavior will result, piles should be designed with ductility similar to that of the superstructure.
When strong ground motions occur, inertial structure pilesoil interaction may produce plastic hinging in piles near the
bottom of the pile cap, and kinematic soilpile interaction will result in bending moments and shearing forces throughout the
length of the pile, being higher at interfaces between stiff and soft soil strata. These effects are particularly severe in soft
soils and liquefiable soils so Section 14.2.3.2.1 requires special detailing in areas of concern.
The shears and curvatures in piles caused by inertial and kinematic interaction may exceed the bending capacity of
conventionally designed piles, resulting in severe damage. Analysis techniques to evaluate pile bending are discussed by
Margason and Holloway (1977) and Mylonakis (2001), and these effects on concrete piles are further discussed by Shepard
(1983). For homogeneous, elastic media and assuming the pile follows the soil, the freefield curvature (soil strains without a
pile present) can be estimated by dividing the peak ground acceleration by the square of the shear wave velocity of the soil;
considerable judgment is necessary in using this simple relationship for a layered, inelastic profile with pilesoil interaction
effects. Norris (1994) discusses methods to assess pilesoil interaction.
Where determining the extent of special detailing, the designer must consider variation in soil conditions and driven pile
lengths, so that adequate ductility is provided at potential high curvature interfaces. Confinement of concrete piles to provide
ductility and to maintain functionality of the confined core pile during and after the earthquake may be obtained by use of
heavy spiral reinforcement or use of exterior steel liners.
C12.13.6.4 Batter Piles. Partially embedded batter piles have a history of poor performance in strong ground shaking, as
shown by Gerwick and Fotinos (1992). Failure of battered piles has been attributed to design that neglect loading on the piles
from ground deformation or that assumes that lateral loads are resisted by axial response of piles without regard to moments
induced in the pile at the pile cap (Lam and Bertero, 1990). Because batter piles are considered to have limited ductility, they
must be designed using the load combinations with overstrength. Momentresisting connections between pile and pile cap
must resolve the eccentricities inherent in batter pile configurations. This concept is illustrated clearly by EQE Engineering
(1991).
C12.13.6.5 Pile Anchorage Requirements. Piles should be anchored to the pile cap to permit energy dissipating
mechanisms, such as pile slip at the pilesoil interface, while maintaining a competent connection. This section of the
standard sets forth a capacity design approach to achieve that objective. Anchorages occurring at pile cap corners and edges
should be reinforced to preclude local failure of plain concrete sections due to pile shears, axial loads, and moments.
C12.13.6.6 Splices of Pile Segments. A capacity design approach, similar to that for pile anchorage, is applied to pile
splices.
C12.13.6.7 Pile Soil Interaction. Short piles and long slender piles embedded in the earth behave differently when subject
to lateral forces and displacements. The response of a long slender pile depends on its interaction with the soil considering
the nonlinear response of the soil. Numerous design aid curves and computer programs are available for this type of analysis,
which is necessary to obtain realistic pile moments, forces, and deflections and is common in practice (Ensoft, 2004). More
sophisticated models, which also consider inelastic behavior of the pile itself, can be analyzed using generalpurpose
nonlinear analysis computer programs or closely approximated using the pilesoil limit state methodology and procedure
given by Song, et al. (2005).
Short piles (with lengthtodiameter ratios no more than 6) can be treated as a rigid body simplifying the analysis. A method
assuming a rigid body and linear soil response for lateral bearing is given in the current building codes. A more accurate and
comprehensive approach using this method is given in a study by Czerniak (1957).
C12.13.6.8 Pile Group Effects. The effects of groups of piles, where closely spaced, must be taken into account for vertical
and horizontal response. As groups of closely spaced piles move laterally, failure zones for individual piles overlap, and
horizontal strength and stiffness response of the pilesoil system is reduced. Reduction factors or “pmultipliers” are used to
account for these groups of closely spaced piles. For a pile centertocenter spacing of three pile diameters, reduction factors
of 0.6 for the leading pile row and 0.4 for the trailing pile rows are recommended by Rollins, et al. (1999). Computer
programs are available to analyze group effects assuming a nonlinear soil and elastic piles (Ensoft, 2004a).
C12.14 SIMPLIFIED ALTERNATIVE STRUCTURAL DESIGN CRITERIA FOR SIMPLE BEARING WALL OR
BUILDING FRAME SYSTEMS
C12.14.1 General. In recent years, engineers and building officials have become concerned that the seismic design
requirements in codes and standards, while intended to make structures perform more reliably, have become so complex and
difficult to understand and to implement that they may be counterproductive. Since the response of buildings to earthquake
ground shaking is very complex (especially for irregular structural systems), realistically accounting for these effects can lead
to complex requirements. There is a concern that the typical designers of small, simple structures, which may represent more
than 90 percent of construction in the United States, have difficulty understanding and applying the general seismic
requirements of the standard.
The simplified procedure presented in this section of the standard applies to lowrise, stiff structures. The procedure, which
was refined and tested over a fiveyear period, was developed to be used for a defined set of structures deemed to be
sufficiently regular in configuration to allow a reduction of prescriptive requirements. For some design elements, such as
foundations and anchorage of nonstructural systems, other sections of the standard must be followed, as referenced within
Section 12.14.
C12.14.1.1 Simplified Design Procedure. Reasons for the limitations of the simplified design procedure of Section 12.14
are as follows:
1. The procedure was developed to address adequate seismic performance for standard occupancies. Since it was not
developed for higher levels of performance associated with Occupancy Category III and IV structures, no importance
factor (I) is employed.
2. Site Class E and F soils require specialized procedures that are beyond the scope of the procedure.
3. The procedure was developed for stiff, lowrise buildings, where highermode effects are negligible.
4. Only stiff systems, where drift is not a controlling design criterion, may employ the procedure. Because of this
limitation, drifts are not computed. The response modification coefficient, R, and the associated system limitations are
consistent with those found in the general Chapter 12 requirements.
5. In order to achieve a balanced design and to achieve a reasonable level of redundancy, two lines of resistance are
required in each of the two major axis directions. Because of this stipulation, no redundancy factor (.) is applied.
6. To reduce the potential for dominant torsional response, at least one line of resistance must be placed on each side of the
center of mass.
7. Large overhangs for flexible diaphragm buildings can produce response that is inconsistent with the assumptions
associated with the procedure.
8. A system that satisfies these layout and proportioning requirements avoids torsional irregularity, so calculation of
accidental torsional moments is not required.
9. An essentially orthogonal orientation of lines of resistance effectively uncouples response along the two major axis
directions, so orthogonal effects may be neglected.
10. Where the simplified design procedure is chosen, it must be used for the entire design, in both major axis directions.
11. Since inplane and outofplane offsets generally create large diaphragm, collector, and discontinuous element demands
that are not addressed by the procedure, these irregularities are prohibited.
12. Buildings that exhibit weakstory behavior violate the assumptions used to develop the procedure.
C12.14.3 Seismic Load Effects and Combinations. The seismic load effect and combination equations for the simplified
design procedure are consistent with those for the general procedure, with one notable exception: the overstrength factor
(corresponding to O0 in the general procedure) is set at 2.5 for all systems as indicated in Section 12.14.3.2.1. Given the
limited systems that can use the simplified design procedure, specifying unique overstrength factors was deemed
unnecessary.
C12.14.7 Design and Detailing Requirements. The design and detailing requirements outlined in this section are similar to
those for the general procedure. The few differences include the following:
1. Forces used to connect smaller portions of a structure to the remainder of the structures are taken as 0.20 times the shortperiod
design spectral response acceleration, SDS, rather than the general procedure value of 0.133 (Section 12.14.7.1).
2. Anchorage forces for concrete or masonry structural walls for structures with diaphragms that are not flexible are
computed using the requirements for nonstructural walls.
C12.14.8 Simplified Lateral Force Analysis Procedure
C12.14.8.1 Seismic Base Shear. The seismic base shear in the simplified design procedure, as given by Equation 12.1411,
is a function of the shortperiod design spectral response acceleration, SDS. The value for F in the base shear equation
addresses changes in dynamic response for two and threestory buildings. As in the general procedure (Section 12.8.1.3),
SDS may be computed for short, regular structures with SS taken no greater than 1.5.
C12.14.8.2 Vertical Distribution. The seismic forces for multistory buildings are distributed vertically in proportion to the
weight of the respective floor. Given the slightly amplified base shear for multistory buildings, this assumption, along with
the threestory height limit, produces results consistent with the more traditional triangular distribution without introducing
that more sophisticated approach.
C12.14.8.5 Drift Limits and Building Separation. For the simplified design procedure, which is restricted to stiff wall and
braced frame structures, drift need not be calculated. Where drifts are required (such as for structural separations and
cladding design) a conservative drift value of 1 percent is specified.
REFERENCES
American Society of Civil Engineers. 2006. Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41. ASCE, Reston,
Virginia.
Applied Technology Council. 2009. Quantification of Building Seismic Performance Factors, FEMA P695. Federal
Emergency Management Agency, Washington, D.C.
Applied Technology Council. 1978. Tentative Provisions for the Development of Seismic Regulations for Buildings, ATC 3
06. ATC, Redwood City, California.
Bernal, D. 1987. “Amplification Factors for Inelastic Dynamic Pdelta Effects in Earthquake Analysis,” Earthquake
Engineering and Structural Dynamics, 18: 635681.
Building Seismic Safety Council. 2004. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and
Other Structures, FEMA 450. Federal Emergency Management Agency, Washington, D.C.
Charney, F. A. 1990. “Wind Drift Serviceability Limit State Design of Multistory Buildings,” Journal of Wind Engineering
and Industrial Aerodynamics, 36:203212.
Charney, F. A., and J. Marshall. 2006. “A Comparison of the Krawinkler and Scissors Models for Including BeamColumn
Joint Deformations in the Analysis of MomentResisting Frames,” AISC Engineering Journal, 43(1):3148.
Chopra, A. K. 2007. Structural Dynamics. Prentice Hall.
Chopra, A. K., and R. K. Goel. 1991. “Evaluation of torsional provisions in seismic codes, Journal of Structural
Engineering, 117(12):37623782
Chopra, A. K., and N. M. Newmark. 1980. “Analysis,” Chapter 2 of Design of Earthquake Resistant Structures, edited by E.
Rosenblueth. John Wiley and Sons.
Czerniak, E. 1957. "Resistance to Overturning of Single Short Piles" ASCE Journal of the Structural Division, 83(ST2).
Degenkolb, Henry J. 1987. “A Study of the Pdelta Effect,” Earthquake Spectra, 3(1).
De La Liera, J. C., and A. K. Chopra. 1994. “Evaluation of Code Accidental Torsion Records from Building Records,”
Journal of Structural Engineering, 120(2):697616.
EQE Engineering. 1991. Structural Concepts and Details for Seismic Design, UCRLCR106554. Department of Energy,
Washington, D.C.
Ensoft, Inc. 2004a. Computer Program GROUP, Version 6.0, A Program for the Analysis of a Group of Piles Subjected to
Axial and Lateral Loading, User’s Manual and Technical Manual. Ensoft, Austin, Texas.
Ensoft, Inc. 2004b. Computer Program LPILE Plus Version 5.0, A Program for the Analysis of Piles and Drilled Shafts
under Lateral Loads, User’s Manual and Technical Manual. Ensoft, Austin, Texas.
Gerwick, Jr., B., and G. Fotinos. 1992. "Drilled Piers and Driven Piles for Foundations in Areas of High Seismicity,"
SEAONC Fall Seminar, October 29, San Francisco, California.
Griffis, Larry. 1993. "Serviceability Limit States Under Wind Load," Engineering Journal, American Institute of Steel
Construction, First Quarter.
Gupta, A., and H. Krawinkler. 2000. "Dynamic Pdelta Effects for Flexible Inelastic Steel Structures," Journal of Structural
Engineering, 126(1):145154.
Lam, I., and V. Bertero. 1990. “Aseismic Design of Pile Foundations for Port Facilities,” in Proceedings of the POLA
Seismic Workshop on Seismic Engineering, March 2123, San Pedro, California, Port of Los Angeles.
Liew, J. Y. 2001. “Inelastic Analysis of Steel Frames with Composite Beams,” Journal of Structural Engineering,
127(2):194202.
Lopez, O. A., and M. Cruz. 1996. "Number of Modes for the Seismic Design of Buildings," Earthquake Engineering and
Structural Dynamics, 25(8):837856.
Margason, E., and M. Holloway. 1977. “Pile Bending During Earthquakes,” in Proceedings of the 6th World Conference on
Earthquake Engineering, New Delhi.
Mylonakis, G. 2001. “Seismic pile bending at soillayer interfaces,” Soils and Foundations, 41 (4), pp. 4758.
Newmark, N. A., and E. Rosenbleuth. 1971. Fundamentals of Earthquake Engineering. Prentice Hall.
Norris, G. M. 1994. “Seismic Bridge Pile Foundation Behavior,” in Proceedings, International Conference on Design and
Construction of Deep Foundations, Federal Highway Administration, Vol. 1.
Paulay, T. 1997. “Are Existing Seismic Torsion Provisions Achieving Design Aims?” Earthquake Spectra, 13(2):259280.
Paulay, T., and M. J. N. Priestly. 1992. Seismic Design of Reinforced Concrete and Masonry Structures. John Wiley and
Sons.
Rollins, Kyle M., K. T. Peterson, T. J. Weaver, and Andrew E. Sparks. 1999. “Static and dynamic lateral load behavior on a
fullscale pile group in clay,” Brigham Young University, Provo, Utah, and the Utah Department of Transportation, Salt Lake
City, June 23.
Schaffhausen, R., and A. Wegmuller. 1977. “Multistory Rigid Frames with Composite Girders under Gravity and Lateral
Forces,” AISC Engineering Journal, 2nd Quarter.
Seismology Committee, Structural Engineers Association of California. 1996. Recommended Lateral Force Requirements
and Commentary. SEAOC, Sacramento, California.
Shepard, D. A. 1983. “Seismic Design of Concrete Piling,” PCI Journal (March/April).
Song, S. T., Y. H. Chai, and T. H. Hale. 2005. “Analytical model for ductility assessment of fixedhead concrete piles,”
ASCE Journal of Structural Engineering 131(7):10511059.
Vamvatsikos, D. 2002. “Seismic Performance, Capacity and Reliability of Structures as Seen Through Incremental
Dynamic Analysis,” Ph.D. Dissertation, Department of Civil and Environmental Engineering, Stanford University, Palo Alto,
California.
Wilson, E. L., A. Der Kiureghian, and E. P. Bayo. 1981. "A Replacement for the SRSS Method in Seismic Analysis,"
Earthquake Engineering and Structural Dynamics, Vol. 9.
Wilson, E. L. 2000. Threedimensional Static and Dynamic Analysis of Structures, Computers and Structures, Inc.,
Berkeley, California.
Figure C13.11 Image of Hospital imaging equipment that fell from overhead mounts.
COMMENTARY CHAPTER 13,
SEISMIC DESIGN REQUIREMENTS FOR
NONSTRUCTURAL COMPONENTS
C13.1 GENERAL
Chapter 13 defines minimum design criteria for architectural, mechanical, electrical, and other nonstructural systems and
components recognizing structure use, occupant load, the need for operational continuity, and the interrelation of structural
and architectural, mechanical, electrical, and other nonstructural components. Nonstructural components are designed for
design earthquake ground motions as defined in Section 11.2 and determined in Section 11.4.4 of the standard. In contrast to
structures, which are implicitly designed for a low probability of collapse when subjected to the maximum considered
earthquake (MCE) ground motions, there are no implicit performance goals associated with the MCE for nonstructural
components. Performance goals associated with the design earthquake are discussed in Section C13.1.3.
Suspended or attached nonstructural components that could detach either in full or in part from the structure during an
earthquake are referred to as falling hazards and may represent a serious threat to property and life safety. Critical attributes
that influence the hazards posed by these components include their weight, their attachment to the structure, their failure or
breakage characteristics (e.g., certain types of glass), and their location relative to occupied areas (e.g., over an entry or exit, a
public walkway, an atrium, or a lower adjacent structure). Architectural components that pose potential falling hazards
include parapets, cornices, canopies, marquees, glass, large ornamental elements (e.g., chandeliers), and building cladding.
In addition, suspended mechanical and electrical components (e.g., mixing boxes, piping, and ductwork) may represent
serious falling hazards. Figures C13.11 through C13.14 show damage to nonstructural components in past earthquakes.
Figure C13.11 Hospital imaging equipment that fell from overhead mounts.
Figure C13.12 Image of Collapsed light fixtures.
Figure C13.13 Image of Collapsed duct and HVAC diffuser.
Figure C13.12 Collapsed light fixtures.
Figure C13.13 Collapsed duct and HVAC diffuser.
Figure C13.14 Image of Damaged ceiling system.
Figure C13.14 Damaged ceiling system.
Components whose collapse during an earthquake could result in blockage of the means of egress deserve special
consideration. The term “means of egress” is used commonly in building codes with respect to fire hazard. Consideration of
egress may include intervening aisles, doors, doorways, gates, corridors, exterior exit balconies, ramps, stairways, pressurized
enclosures, horizontal exits, exit passageways, exit courts, and yards. Items whose failure could jeopardize the means of
egress include walls around stairs and corridors, veneers, cornices, canopies, heavy partition systems, ceilings, architectural
soffits, light fixtures, and other ornaments above building exits or near fire escapes. Examples of components that generally
do not pose a significant falling hazard include fabric awnings and canopies. Architectural, mechanical, and electrical
components that, if separated from the structure, will fall in areas that are not accessible to the public (e.g., into a mechanical
shaft or light well) also pose little risk to egress routes.
For some architectural components such as exterior cladding elements, wind design forces may exceed the calculated seismic
design forces. Nevertheless, seismic detailing requirements may still govern the overall structural design. Where this is a
possibility, it must be investigated early in the structural design process.
The seismic design of nonstructural components may involve consideration of nonseismic requirements that are affected by
seismic bracing. For example, accommodation of thermal expansion in pressure piping systems often is a critical design
consideration and seismic bracing for these systems must be arranged in a manner that accommodates thermal movements.
Particularly in the case of mechanical and electrical systems, the design for seismic loads should not compromise the
functionality, durability, or safety of the overall design; this requires collaboration between the various disciplines of the
design and construction team.
For various reasons (e.g., business continuity), it may be desirable to consider higher performance than that required by the
building code. For example, to achieve continued operability of a piping system, it is necessary to prevent unintended
operation of valves or other inline components in addition to preventing collapse and providing leak tightness. Higher
performance also is required for components containing substantial quantities of hazardous contents (as defined in Section
11.2). These components must be designed to prevent uncontrolled release of those materials.
The requirements of Chapter 13 are intended to apply to new construction and tenant improvements installed at any time
during the life of the structure, provided they are listed in Table 13.51 or 13.61. Further, they are intended to reduce (not
eliminate) the risk to occupants and to improve the likelihood that essential facilities remain functional. While property
protection (in the sense of investment preservation) is a possible consequence of implementation of the standard, it is not
currently a stated or implied goal; a higher level of protection may be advisable if such protection is desired or required.
C13.1.1 Scope. The requirements for seismic design of nonstructural components apply to the nonstructural component as
well as to its supports and attachments to the main structure. In some cases as defined in Section 13.2, it is necessary to
consider explicitly the performance characteristics of the component. The requirements are intended to apply only to
Figure C13.15 Image of Toppled storage cabinets.
permanently attached components – not to furnishings, temporary items, or mobile units. Furnishings such as tables, chairs,
and desks may shift during strong ground shaking but generally pose minimal hazards provided they do not obstruct
emergency egress routes. Storage cabinets, tall bookshelves, and other items of significant mass do not fall into this category
and should be anchored or braced in accordance with this chapter.
Figure C13.15 Toppled storage cabinets.
Temporary items are those that remain in place for short periods of time (months, not years). Components that, while
movable or relocatable, are expected to remain in place for periods of a year or longer should be considered permanent for
the purposes of this section. Modular office systems are considered permanent since they ordinarily remain in place for long
periods. In addition, they often include storage units of significant capacity which may topple in an earthquake. They are
subject to the provisions of Section 13.5.8 for partitions if they exceed 6 feet in height. Mobile units include components that
are moved from one point in the structure to another during ordinary use. Examples include desktop computers, office
equipment, and other components that are not permanently attached to the building utility systems (Figure C13.15).
Components that are mounted on wheels to facilitate periodic maintenance or cleaning but that otherwise remain in the same
location (e.g., server racks) are not considered moveable for the purposes of anchorage and bracing. Likewise, skidmounted
components (as shown in Figure C13.16) as well as the skids themselves are considered permanent equipment.
In all cases, equipment must be anchored if it is permanently attached to utility services (electricity, gas, and water). For the
purposes of this requirement, “permanently attached” should be understood to include all electrical connections except
NEMA 515 and 520 straightblade connectors (duplex receptacles).
C13.1.2 Seismic Design Category. The requirements for nonstructural components are based in part on the Seismic Design
Category to which they are assigned. As the Seismic Design Category is established considering factors not unique to
specific nonstructural components, all nonstructural components occupying or attached to a structure are assigned to the same
Seismic Design Category as the structure.
C13.1.3 Component Importance Factor. Performance expectations for nonstructural components often are defined in
terms of the functional requirements of the structure to which the components are attached. While specific performance goals
for nonstructural components have yet to be defined in building codes, the component importance factor (Ip) implies
performance levels for specific cases. For noncritical nonstructural components (those with an importance factor, Ip, of 1.0)
the following behaviors are anticipated for shaking having different levels of intensity:
1. Minor earthquake ground motions – minimal damage; not likely to affect functionality
2. Moderate earthquake ground motions – some damage that may affect functionality
3. Design earthquake ground motions – major damage but significant falling hazards are avoided; likely loss of
functionality.
Figure C13.16 Image of Skidmounted components.
Figure C13.16 Skidmounted components.
Components with importance factors greater than 1.0 are expected to remain in place, sustain limited damage, and, when
necessary, function following an earthquake (see Section C13.2.2). These components can be located in structures that are
not assigned to Occupancy Category IV. For example, fire sprinkler piping systems have an importance factor, Ip, of 1.5 in
all structures since these essential systems should function following an earthquake.
The component importance factor is intended to represent the greater of the lifesafety importance of the component and the
hazardexposure importance of the structure. It indirectly influences the survivability of the component via required design
forces and displacement levels as well as component attachments and detailing. While this approach provides some degree of
confidence in the seismic performance of a component, it may not be sufficient in all cases. For example, individual ceiling
tiles may fall from a ceiling grid that has been designed for larger forces. This may not represent a serious falling hazard if
the ceiling tiles are made of lightweight materials, but it may lead to blockage of critical egress paths or disruption of the
facility function. When higher levels of confidence in performance are required, the component is classified as a designated
seismic system (Section 11.2), and, in certain cases, seismic qualification of the component or system is necessary. Seismic
qualification approaches are provided in Sections 13.2.5 and 13.2.6. In addition, seismic qualification approaches presently
in use by the Department of Energy (DOE) can be applied.
Occupancy Category IV structures are intended to be functional following a design earthquake; critical nonstructural
components and equipment in such structures are designed with Ip equal to 1.5. This requirement applies to most
components and equipment since damage to vulnerable unbraced systems or equipment may disrupt operations following an
earthquake even if they are not directly classified as essential to life safety. The nonessential/nonhazardous components
themselves are not assessed, and requirements focus solely on the supports and attachments. UFC 331004 has additional
guidance for improved performance.
C13.1.4 Exemptions. Some nonstructural components either possess inherent strength and stability, are subject to lowlevel
earthquake demands (accelerations and relative displacements), or both. Since these nonstructural components and systems
are expected to achieve the performance goals described earlier in this commentary without explicitly satisfying additional
requirements, they are exempt from the requirements of Chapter 13.
Chapter 13 does not apply to Seismic Design Category A due to its very low level of seismic hazard. (See Section C11.7.)
With the exception of parapets supported by bearing walls or shear walls, all components in Seismic Design Category B are
exempt due to the minimal level of seismic risk. Parapets are not exempt because experience has shown these items can fail
and pose a significant falling hazard even at low shaking levels.
Mechanical and electrical components in Seismic Design Category C with an importance factor (Ip) equal to 1.0 are exempt
because they are subject to low levels of seismic hazard, they do not contain hazardous substances, and their function is not
required to maintain life safety following an earthquake. Small components with Ip equal to 1.0 in Seismic Design
Categories D, E, and F also are exempt since they do not contain hazardous substances and are not large enough to pose a
lifesafety hazard if they fall, slide, or topple. Failures of unbraced distribution systems at or near the point of connection to
nonstructural components have been observed in past earthquakes. For this reason, flexible connections such as expansion
loops, braided hose, or expansion joints are required to allow for the larger relative displacements associated with unbraced
components. Note that the stiffness of flexible connections may be sensitive to internal pressure and length of the
connection.
C13.1.5 Applicability of Nonstructural Component and Requirements. At times, a nonstructural component should be
treated as a nonbuilding structure. When the physical characteristics associated with a given class of nonstructural
components vary widely, judgment is needed to select the appropriate design procedure and coefficients. For example,
cooling towers vary from small packaged units with an operating weight of 2,000 pounds or less to structures the size of
buildings. Consequently, design coefficients for the design of “cooling towers” are found both in Table 13.61 and Table
15.42. Small cooling towers are best designed as nonstructural components using the provisions of Chapter 13 while large
ones are clearly nonbuilding structures that are more appropriately designed using the provisions of Chapter 15. Similar
issues arise for other classes of nonstructural component (e.g., boilers and bins). Guidance on determining whether an item
should be treated as a nonbuilding structure or nonstructural component for the purpose of seismic design is provided in
Bachman and Dowty (2008).
There are practical limits on the size of a component that can be qualified via shake table testing. Components too large to be
qualified by shake table testing need to be qualified by a combination of structural analysis and qualification testing or
empirical evaluation through a subsystem approach. Subsystems of a large, complex component (e.g., a very large chiller)
can be qualified individually and the overall structural frame of the component evaluated by structural analysis
Premanufactured modular mechanical units are considered nonbuilding structures supporting nonstructural components. The
entire system (all modules assembled) can be shake table qualified or qualified separately as subsystems. Modular
mechanical units house various nonstructural components that are subject to all the design requirements of Chapter 13.
The specified weight limit for nonstructural components (25 percent relative to the combined weight of the structure and
component) relates to the condition at which dynamic interaction between the component and the supporting structural
system is potentially significant. Section 15.3.2 contains requirements for addressing this interaction in design.
C13.1.6 Reference Documents. Professional and trade organizations have developed nationally recognized codes and
standards for the design and construction of specific mechanical and electrical components. These documents provide design
guidance for normal and upset (abnormal) operating conditions and for various environmental conditions. Some of these
documents include earthquake design requirements in the context of the overall mechanical or electrical design. It is the
intent of the standard that seismic requirements in referenced documents be used. The developers of these documents are
familiar with the expected performance and failure modes of the components; however, the documents may be based on
design considerations not immediately obvious to a structural design professional. For example, in the design of industrial
piping, stresses due to seismic inertia forces typically are not added to those due to thermal expansion.
There is a potential for misunderstanding and misapplication of reference documents for the design of mechanical and
electrical systems. A registered design professional familiar with both the standard and the reference documents used should
be involved in the review and acceptance of the seismic design.
Even when reference documents for nonstructural components lack specific earthquake design requirements, mechanical and
electrical equipment constructed in accordance with industrystandard reference documents have performed well historically
when properly anchored. Nevertheless, it is expected that manufacturers of mechanical and electrical equipment will
consider seismic loads in the design of the equipment itself even when not explicitly required by this chapter.
While some reference documents provide requirements for seismic capacity appropriate to the component being designed, the
seismic demands used in design may not be less than those specified in the standard.
Specific guidance for selected mechanical and electrical components and conditions is provided in Section 13.6.
C13.1.7 Reference Documents Using Allowable Stress Design. Many nonstructural components are designed using
specifically developed reference documents that are based on allowable stress loads and load combinations and permit
increases in allowable stresses for seismic loading. Although Section 2.4.1 of the standard does not permit increases in
allowable stresses, Section 13.1.7 explicitly defines the conditions for their use in the design of nonstructural components.
C13.2 GENERAL DESIGN REQUIREMENTS
C13.2.1 Applicable Requirements for Architectural, Mechanical, and Electrical Components, Supports, and
Attachments. Compliance with the requirements of Chapter 13 may be accomplished by projectspecific design or by a
manufacturer’s certification of seismic qualification of a system or component. In each case, the evidence of compliance is
submitted to the authority having jurisdiction. When compliance is by manufacturer's certification, the items must be
installed in accordance with the manufacturer’s requirements.
Components addressed by the standard include individual simple units and assemblies of simple units for which reference
documents establish seismic analysis or qualification requirements. Also addressed by the standard are complex
architectural, mechanical, and electrical systems for which reference documents either do not exist or exist for only elements
of the system. In the design and analysis of both simple components and complex systems, the concepts of flexibility and
ruggedness often can assist the designer in determining the necessity for analysis and, when analysis is necessary, the extent
and methods by which seismic adequacy may be determined. These concepts are discussed in Section C13.6.1.
C13.2.2 Special Certification Requirements for Designated Seismic Systems. While the goal of design for most
nonstructural components is to prevent detachment or toppling that would pose a hazard to life safety, designated seismic
systems (with Ip = 1.5) are intended to meet higher performance goals. In some cases, failure of mechanical or electrical
equipment itself poses a significant hazard. This section addresses the design and certification of designated seismic system
components and their supports and attachments. The goals of this section are to improve survivability and achieve a high
level of confidence in postearthquake functionality, and they require additional considerations.
Examples of designated seismic systems include fire protection piping, uninterruptible power supplies for hospitals, and
certain vessels or piping that contain highly toxic or explosive substances.
Using an importance factor, Ip, equal to 1.5 to increase design forces can reduce the possibility of detachment or toppling, but
this directly affects only structural integrity and stability; function and operability of mechanical and electrical components
may be affected only indirectly by increasing design forces. For complex components, testing or experience may be the only
reasonable way to improve the confidence of function and operability. For many types of equipment, past earthquake
experience has shown that maintaining structural integrity and stability provides postearthquake function and operability.
On the other hand, mechanical joints in containment components (e.g., tanks, vessels, and piping) may not remain leaktight
in an earthquake. Avoiding this condition may require a design that is more conservative than that required by the standard.
Evaluating postearthquake operational performance by analysis is impractical for active mechanical and electrical equipment
with components that rotate or otherwise move mechanically during operation. Active equipment includes pumps and
electric motors. In many cases, such equipment is inherently rugged, and an evaluation of experience data together with
analysis of the component anchorage is adequate to demonstrate compliance (see Section 13.6). In other cases (e.g., motor
control centers and switching equipment), shake table testing may be required. Components that contain hazardous materials
(e.g., tanks, piping, and vessels) typically are qualified by analysis, but it may be necessary to qualify certain operational
valving or mechanical equipment within the system by other means.
C13.2.3 Consequential Damage. Although the components identified in Tables 13.51 and 13.61 are listed separately,
significant interrelationships exist and must be considered. Consequential damage occurs due to interaction between
components and systems. Even “braced” components displace and the displacement between lateral supports can be
significant in the case of distributed systems such as piping systems, cable and conduit systems and other linear systems. It is
the intent of the standard that the seismic displacements considered include both relative displacement between multiple
points of support (addressed in Section 13.3.2) and, for mechanical and electrical components, displacement within the
component assemblies. Impact of components must be avoided unless the components are fabricated of ductile materials that
have been shown to be capable of accommodating the expected impact loads. With protective coverings, ductile mechanical
and electrical components and many more fragile components are expected to survive all but the most severe impact loads.
Flexibility and ductility of the connections between distribution systems and the equipment to which they attach is essential
to the seismic performance of the system.
The determination of the displacements that generate these interactions are not addressed explicitly in Section 13.3.2.1. That
section concerns relative displacement of support points. Consequential damage may occur due to displacement of
components and systems between support points. For example, in older suspended ceiling installations, excessive lateral
displacement of a ceiling system may fracture sprinkler heads that project through the ceiling. A similar situation may arise
if sprinkler heads projecting from a small diameter branch line pass through a rigid ceiling system. While the branch line
may be properly restrained, it may still displace sufficiently between lateral support points, to impact other components or
systems. Similar interactions occur where a relatively flexible distributed system connects to a braced or rigid component.
Figure C13.21 Schematic plans illustrating branch line flexibility.
Sufficient flexibility may be
achieved in northsouth and
vertical directions only
Flexibility may be achieved in
northsouth, eastwest, and
vertical directions
Distribution system
Component
or
structure
Component
or
structure
Anchors
Component
or
structure
Distribution
system
Component
or
structure
Anchor
Anchor
N
The potential for impact between components that are in contact with or in close proximity to other structural or nonstructural
components must be considered. However, where considering these potential interactions, the designer must determine if the
potential interaction is both credible and significant. For example, the fall of a ceiling panel located above a motor control
center is a credible interaction because the falling panel in older suspended ceiling installations can reach and impact the
motor control center. An interaction is significant if it can result in damage to the target. Impact of a ceiling panel on a
motor control center may not be significant, due to the light weight of the ceiling panel. Special design consideration is
appropriate where the failure of a nonstructural element could adversely influence the performance of an adjacent critical
nonstructural component, such as an emergency generator.
C13.2.4 Flexibility. In many cases, flexibility is more important than strength in the performance of distributed systems,
such as piping and ductwork. A good understanding of the displacement demand on the system as well as its displacement
capacity is required. Components or their supports and attachments must be flexible enough to accommodate the full range
of expected differential movements; some localized inelasticity is permitted in accommodating the movements. Relative
movements in all directions must be considered. For example, even a braced branch line of a piping system will displace, so
it needs to be connected to other braced or rigid components in a manner that will accommodate the displacements without
failure (see Figure C13.21). For another example, cladding units (such as precast concrete wall units) while often very rigid
inplane, if supported at more than one level, require connections capable of accommodating story drift. (See Section
C13.5.3 for an illustration.)
If component analysis assumes rigid anchors or supports, the predicted loads and local stresses can be unrealistically large, so
it may be necessary to consider anchor and/or support stiffness.
Figure C13.21 Schematic plans illustrating branch line flexibility.
C13.2.5 Testing Alternative for Seismic Capacity Determination. Testing is a well established alternative method of
seismic qualification for small to mediumsize equipment. Several national reference documents have testing requirements
adaptable for seismic qualification. One such reference document, ICCES AC156 (2007), is a shaketable testing protocol
that has been adopted by the ICC Evaluation Service. It was developed specifically to be consistent with acceleration
demands (that is, force requirements) of the standard.
The development or selection of testing and qualification protocols should at a minimum include the following:
1. Description of how the protocol meets the intent for the projectspecific requirements and relevant interpretations of the
standard.
2. Definition of a test input motion with a response spectrum that meets or exceeds the Design Earthquake spectrum for the
site.
3. Accounting for dynamic amplification due to abovegrade equipment installations. Consideration of the actual dynamic
characteristics of the primary support structure is permitted, but not required.
4. Definition of how shaketable input demands were derived.
5. Definition and establishment of a verifiable pass/fail acceptance criterion for the seismic qualification based upon the
equipment importance factor and consistent with the building code and projectspecific design intent.
6. Development of criteria that can be used to rationalize test unit configuration requirements for highly variable equipment
product lines.
To aid the design professional in assessing the adequacy of the manufacturer’s certificate of compliance it is recommended
that certificates of compliance include:
1. Product family or group covered
2. Building code(s) and standard(s) for which compliance was evaluated
3. Testing standard used
4. Performance objective and corresponding importance factor (Ip = 1.0 or Ip = 1.5)
5. Seismic demand for which the component is certified, including code and/or standard design parameters used to
calculate seismic demand (such as values used for ap, Rp, and site class)
6. Installation restrictions, if any (grade, floor, or roof level)
Without a test protocol recognized by the building code, qualification testing is inconsistent and difficult to verify. The use
of ICCES AC156 simplifies the task of compliance verification since it was developed to address directly the testing
alternative for nonstructural components, as specified in the standard. It also sets forth minimum test plan and report
deliverables.
Use of other standards or adhoc protocols to verify compliance of nonstructural components with the requirement of the
standard should be considered carefully and used only where projectspecific requirements cannot be met otherwise.
Where other qualification test standards will be used, in whole or in part, it is necessary to verify compliance with this
standard. For example, IEEE 693 indicates that it is to be used for the sole purpose of qualifying electrical equipment
(specifically listed in the standard) for use in utility substations. Where equipment testing has been conducted to other
standards (for instance, testing done in compliance with IEEE 693), a straightforward approach would be to permit
evaluation, by the manufacturer, of the test plan and data to validate compliance with the requirements of ICCES AC156,
because it was developed specifically to comply with the seismic demands of this standard.
The qualification of mechanical and electrical components for seismic loads alone may not be sufficient to achieve high
performance objectives. Establishing a high confidence that performance goals will be met requires consideration of the
performance of structures, systems (fluid, mechanical, electrical, instrumentation, etc.), and their interactions (for example
interaction of seismic and other loads) as well as compliance with installation requirements.
C13.2.6 Experience Data Alternative for Seismic Capacity Determination. An established method of seismic
qualification for certain types of nonstructural components is the assessment of data for the performance of similar
components in past earthquakes. The seismic capacity of the component in question is extrapolated based on estimates of the
demands (force, displacement) to which the components in the database were subjected. Procedures for such qualification
have been developed for use in nuclear facility applications by the Seismic Qualification Utility Group (SQUG) of the
Electric Power Research Institute.
The SQUG rules for implementing the use of experience data are described in a proprietary Generic Implementation
Procedure (GIP) database. It is a collection of findings from detailed engineering studies by experts for equipment from a
variety of utility and industrial facilities.
Valid use of experience data requires satisfaction of rules that address physical characteristics, manufacturer’s classification
and standards, and findings from testing, analysis, and expert consensus opinion.
Four criteria are used to establish seismic qualification by experience, as follows:
1. Seismic capacity versus demand (a comparison with a bounding spectrum)
2. Earthquake experience database cautions and inclusion rules
3. Evaluation of anchorage
4. Evaluation of seismic interaction
Experience data should be used with care, since the design and manufacture of components may have changed considerably
in the intervening years. The use of this procedure is also limited by the relative rarity of strong motion instrument records
associated with corresponding equipment experience data.
C13.2.7 Construction Documents. Where the standard requires seismic design of components or their supports and
attachments, appropriate construction documents defining the required construction and installation must be prepared. This
facilitates the special inspection and testing needed to provide a reasonable level of quality assurance. Of particular concern
are large nonstructural components (such as rooftop chillers) whose manufacture and installation involves multiple trades and
suppliers, and which impose significant loads on the supporting structure. In these cases, it is important that the construction
documents used by the various trades and suppliers to satisfy the seismic design requirements are prepared by a registered
design professional.
The information required to prepare construction documents for component installation includes the dimensions of the
component, the locations of attachment points, the operating weight, and the location of the center of mass. For instance, if
an anchorage angle will be attached to the side of a metal chassis, the gage and material of the chassis must be known so that
the number and size of required fasteners can be determined. Or, when a piece of equipment has a base plate that will be
anchored to a concrete slab with expansion anchors, the drawings must show the base plate’s material and thickness, the
diameter of the bolt holes in the plate, and the size and depth of embedment of the anchor bolts. If the plate will be elevated
above the slab for leveling, the construction documents must also show the maximum gap permitted between the plate and
the slab.
C13.3 SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS
The seismic demands on nonstructural components, as defined in this section, are acceleration demands and relative
displacement demands. Acceleration demands are represented by equivalent static forces. Relative displacement demands
are provided directly and are based on either the actual displacements computed for the structure or the maximum allowable
drifts that are permitted for the structure.
C13.3.1 Seismic Design Force. The seismic design force for a component depends on the weight of the component, the
component importance factor, the component response modification factor, the component amplification factor, and the
component acceleration at a point of attachment to the structure. The forces prescribed in this section of the standard reflect
the dynamic and structural characteristics of nonstructural components. As a result of these characteristics, forces used for
verification of component integrity and design of connections to the supporting structure typically are larger than those used
for design of the overall seismicforceresisting system.
Certain nonstructural components lack the desirable attributes of structures (such as ductility, toughness, and redundancy)
that permit the use of greatly reduced lateral design forces. Thus values for the response modification factor, Rp, in Tables
13.51 and 13.61 generally are smaller than R values for structures. These Rp values, used to represent the energy absorption
capability of a component and its attachments, depend on both overstrength and deformability. At present these potentially
separate considerations are combined in a single factor. The tabulated values are based on the collective judgment of the
responsible committee.
The 2005 edition of the standard includes significant adjustments to tabulated Rp values for certain mechanical and electrical
systems. For example, the value of Rp for welded steel piping systems is increased from 3.5 to 9. The ap value increased
from 1.0 to 2.5, so while it might appear that forces on such piping systems have been reduced greatly, the net change is
negligible, as Rp/ap changes from 3.5 to 3.6. The minimum seismic design force of Equation 13.33, which governs in many
cases, is unchanged.
The component amplification factor (ap) represents the dynamic amplification of component responses as a function of the
fundamental periods of the structure (T) and component (Tp). When components are designed or selected, the structural
fundamental period is not always defined or readily available. The component fundamental period (Tp) is usually only
accurately obtained by shaketable or pullback tests and is not available for the majority of components. Tabulated ap
values are based on component behavior that is assumed to be either rigid or flexible. Where the fundamental period of the
component is less than 0.06 seconds, dynamic amplification is not expected, and the component is considered rigid. The
tabulation of assumed ap values is not meant to preclude more precise determination of the component amplification factor
where the fundamental periods of both structure and component are available. The NCEER formulation shown in Figure
C13.31 may be used to compute ap as a function of Tp/T.
Dynamic amplification occurs where the period of a nonstructural component closely matches that of any mode of the
supporting structure, although this effect may not be significant depending on the ground motion. For most buildings, the
primary mode of vibration in each direction will have the most influence on the dynamic amplification for nonstructural
components. For longperiod structures (such as tall buildings), where the period of vibration of the fundamental mode is
greater than 3.5 times Ts, higher modes of vibration may have periods that more closely match the period of nonstructural
components. For this case, it is recommended that amplification be considered using such higher mode periods in lieu of the
higher fundamental period. This approach may be generalized by computing floor response spectra for various levels that
reflect the dynamic characteristics of the supporting structure to determine how amplification will vary as a function of
component period. Calculation of floor response spectra can be complex, but simplified procedures are presented in Kehoe
and Hachem (2003). Consideration of nonlinear behavior of the structure greatly complicates the analysis.
Figure C13.31 NCEER formulation for ap as function of structural and component periods.
T /T
a
2.5
1.4 2.0 p
1.0
p
0.5 0.7
NCEER study Figure C13.32 Lateral force magnitude over height.
Figure C13.31 NCEER formulation for ap as function of structural and component periods.
Equation 13.31 represents a trapezoidal distribution of floor accelerations within a structure, varying linearly from the
acceleration at the ground (taken as 0.4SDS) to the acceleration at the roof (taken as 1.2SDS). The ground acceleration
(0.4SDS) is intended to be the same acceleration used as design input for the structure itself, including site effects. The roof
acceleration is established as three times the input ground acceleration based on examination of recorded instructure
acceleration data for short and moderate height structures in response to large California earthquakes. Work by Miranda and
Singh suggest that, for taller structures, the amplification with height may vary significantly due to higher mode effects.
Where more information is available, Equation 13.34 permits an alternate determination of the component design forces
based on the dynamic properties of the structure.
Equation 13.33 establishes a minimum seismic design force, Fp, that is consistent with current practice. Equation 13.32
provides a simple maximum value of Fp that prevents multiplication of the individual factors from producing a design force
that would be unreasonably high, considering the expected nonlinear response of support and component. Figure C13.32
illustrates the distribution of the specified lateral design forces.
Figure C13.32 Lateral force magnitude over height.
For elements with points of attachment at more than one height, it is recommended that design be based on the average of
values of Fp determined individually at each point of attachment (but with the entire component weight, Wp) using Equations
13.31 through 13.33.
Alternatively, for each point of attachment a force Fp may be determined using Equations 13.31 through 13.33, with the
portion of the component weight, Wp, tributary to the point of attachment. For design of the component, the attachment force
Fp must be distributed relative to the component’s mass distribution over the area used to establish the tributary weight. To
Figure C13.33 Displacements over less than story height.
Flexible glazing
system
Rigid spandrels
hx
x
dy
hsx
hy
illustrate these options, consider a solid exterior nonstructural wall panel, supported top and bottom, for a onestory building
with a rigid diaphragm. The values of Fp computed, respectively, for the top and bottom attachments using Equations 13.31
through 13.33 are 0.48SDSIpWp and 0.30SDSIpWp. In the recommended method, a uniform load is applied to the entire panel
based on 0.39SDSIpWp. In the alternative method, a trapezoidal load varying from 0.48SDSIpWp at the top to 0.30SDSIpWp at
the bottom is applied. Each anchorage force is then determined considering static equilibrium of the complete component
subject to all the distributed loads.
Cantilever parapets that are part of a continuous element should be checked separately for parapet forces. The seismic force
on any component must be applied at the center of gravity of the component and must be assumed to act in any horizontal
direction. Vertical forces on nonstructural components equal to ±0.2SDSWp are specified in Section 13.3.1 and are intended
to be applied to all nonstructural components and not just cantilevered elements. Nonstructural concrete or masonry walls
laterally supported by flexible diaphragms must be anchored outofplane in accordance with Section 12.11.2.
C13.3.2 Seismic Relative Displacements. The equations of this section are for use in design of cladding, stairways,
windows, piping systems, sprinkler components, and other components connected to one structure at multiple levels or to
multiple structures. Two equations are given for each situation. Equations 13.35 and 13.37 produce structural
displacements as determined by elastic analysis, unreduced by the structural response modification factor (R). Since the
actual displacements may not be known when a component is designed or procured, Equations 13.36 and 13.38 provide
upperbound displacements based on structural drift limits. Use of upperbound equations may facilitate timely design and
procurement of components, but may also result in costly added conservatism.
The standard does not provide explicit acceptance criteria for the effects of seismic relative displacements, except for glazing.
Damage to nonstructural components due to relative displacement is acceptable, provided the performance goals defined
elsewhere in the chapter are achieved.
C13.3.2.1 Displacements within Structures. Seismic relative displacements can subject components or systems to
unacceptable stresses. Nonstructural components designed with no intended structural function, such as infill walls, may
interact with structural framing elements as a result of building deformation. The resulting stresses may exceed acceptable
limits for the nonstructural components, the structural elements, or both. Consideration of this interrelationship is likely to
govern the clearance between such components and the ductility and strength of their supports and attachments.
Where nonstructural components are supported between, rather than at, structural levels, as frequently occurs for glazing
systems, partitions, stairs, veneers, and mechanical and electrical distributed systems, the height over which the displacement
demand, Dp, must be accommodated may be less than the story height, hsx, and should be considered carefully. For example,
consider the glazing system supported by rigid precast concrete spandrels shown in Figure C13.33. The glazing system will
be subjected to full story drift, Dp, although its height (hx – hy) is only a fraction of the story height. The design drift must be
accommodated by anchorage of the glazing unit, the joint between the precast spandrel and the glazing unit, or some
combination of the two. Similar displacement demands arise where pipes, ducts, or conduit that are braced to the floor or
roof above are connected to the top of a tall, rigid, floormounted component.
Figure C13.33 Displacements over less than story height.
For ductile components, such as steel piping fabricated with welded connections, the relative seismic displacements between
support points can be more significant than inertial forces. Ductile piping can accommodate relative displacements by local
Figure C13.34 Displacements between structures.
Case A Case B
A
B
A
B
d
xA
h
y
h
x
h
y
h
x
d
xB
d
xA
d
xB
yielding with strain accumulations well below failure levels. However, for components fabricated using less ductile
materials, where local yielding must be avoided to prevent unacceptable failure consequences, relative displacements must be
accommodated by flexible connections.
C13.3.2.2 Displacements between Structures. A component or system connected to two structures must accommodate
horizontal movements in any direction, as illustrated in Figure C13.34.
Figure C13.34 Displacements between structures.
C13.4 NONSTRUCTURAL COMPONENT ANCHORAGE
Unless exempted in Section 13.1.4, components must be anchored to the structure, and all required supports and attachments
must be detailed in the construction documents. To satisfy the load path requirement of this section, the detailed information
described in Section C13.2.7 must be communicated, during the design phase, to the registered design professional
responsible for the design of the supporting structure.
Unanchored components often rock or slide when subjected to earthquake motions. Since this behavior may have serious
consequences, is difficult to predict, and is exacerbated by vertical ground motions, positive restraint must be provided for
each component.
The effective seismic weight used in design of the seismic forceresisting system must include the weight of supported
components. To satisfy the load path requirements of this section, localized component demand must also be considered.
This may be accomplished by checking the capacity of the first structural element in the load path (for example, a floor beam
directly under a component) for combined dead, live, operating, and seismic loads, using the horizontal and vertical loads
from Section 13.3.1 for the seismic demand, and repeating this procedure for each structural element or connection in the
load path until the load case including horizontal and vertical loads from Section 13.3.1 no longer governs design of the
element. The load path includes housekeeping slabs and curbs, which must be adequately reinforced and positively fastened
to the supporting structure.
Since the exact magnitude and location of loads imposed on the structure may not be known until nonstructural components
are ordered, the initial design of supporting structural elements should be based on conservative assumptions. The design of
the supporting structural elements must be verified once the final magnitude and location of the design loads have been
established.
Tests have shown there are consistent shear ductility variations between bolts installed in drilled or punched plates with nuts
and connections using welded shear studs. The need for reductions in allowable loads for particular anchor types to account
for loss of stiffness and strength may be determined through appropriate dynamic testing. Although comprehensive design
recommendations are not available at present, this issue should be considered for critical connections subject to dynamic or
seismic loading.
C13.4.2 Anchors in Concrete or Masonry. Design capacity for anchors in concrete must be determined in accordance with
ACI 318 Appendix D. Design capacity for anchors in masonry is determined in accordance with ACI 530. Anchors must be
designed to have ductile behavior or to provide a specified degree of excess strength. In either case, design forces are
multiplied by 1.3 or based on the capacity of the component or its supports. The anchorage criteria provided in Chapter 13
specifically address the issue of nonductile response and force amplification. Since the capacity of anchors in masonry is
rarely governed by steel capacity, and failure in the masonry is nonductile, an Rp of 1.5 should be used for design.
Depending on the specifics of the design condition, ductile design of anchors in concrete may satisfy one or more of the
following objectives:
1. Adequate load redistribution between anchors in a group
2. Allowance for anchor overload without brittle failure
3. Energy dissipation
Achieving deformable, energyabsorbing behavior in the anchor itself is often difficult. Unless the design specifically
addresses the conditions influencing desirable hysteretic response (adequate gauge length, anchor spacing, edge distance,
steel properties, etc.), anchors cannot be relied upon for energy dissipation. Simple geometric rules, such as restrictions on
the ratio of anchor embedment length to depth, are not adequate to produce reliable ductile behavior. For example, a single
anchor with sufficient embedment to force ductile tension failure in the steel body of the anchor bolt may still experience
concrete fracture (a nonductile failure mode) if the edge distance is small, the anchor is placed in a group of tensionloaded
anchors with reduced spacing, or the anchor is loaded in shear instead of tension. In the common case where anchors are
subject primarily to shear, response governed by the steel element may be nonductile if the deformation of the anchor is
constrained by rigid elements on either side of the joint. Designing the attachment so that its response is governed by a
deformable link in the load path to the anchor is encouraged. This approach provides ductility and overstrength in the
connection while protecting the anchor from overload. Ductile bolts should only be relied upon as the primary ductile
mechanism of a system if the bolts are designed to have adequate gauge length (unbonded strained length of the bolt) to
accommodate the anticipated nonlinear displacements of the system at the design earthquake. Guidance for determining the
gauge length can be found in Part 3 of the Provisions.
Postinstalled expansion and undercut anchors must be qualified in accordance with ACI 355.204, Qualification of Post
Installed Mechanical Anchors in Concrete. The ICCES acceptance criteria AC193 and AC308, which include specific
provisions for screw anchors and adhesive anchors, also reference ACI 355.2. Reference to adhesives (such as in
Section 13.5.7.2) apply, not to adhesive anchors, but to steel plates and other structural elements bonded or glued to the
surface of another structural component with adhesive; such connections are generally nonductile.
Anchors used to support towers, masts, and equipment are often provided with double nuts for leveling during installation.
Where baseplate grout is specified at anchors with double nuts, it should not be relied upon to carry loads since it can shrink
and crack or be omitted altogether. The design should include the corresponding tension, compression, shear, and flexure
loads.
C13.4.3 Installation Conditions. Prying forces on anchors, which result from a lack of rotational stiffness in the connected
part, can be critical for anchor design and must be considered explicitly.
For anchorage configurations that do not provide a direct mechanism to transfer compression loads (for example, a base plate
that does not bear directly on a slab or deck but is supported on a threaded rod), the design for overturning must reflect the
actual stiffness of baseplates, equipment, housing, and other elements in the load path when computing the location of the
compression centroid and the distribution of uplift loads to the anchors.
C13.4.4 Multiple Attachments. While the standard does not prohibit the use of single anchor connections, it is good
practice to use at least two anchors in any loadcarrying connection whose failure might lead to collapse, partial collapse, or
disruption of a critical load path.
C13.4.5 Power Actuated Fasteners. The capacity of power actuated fasteners in concrete often varies more than that of
drilled postinstalled anchors. The shallow embedment, small diameter, and friction mechanism of these fasteners make
them particularly susceptible to the effects of concrete cracking. The suitability of power actuated fasteners to resist tension
in concrete should be demonstrated by simulated seismic testing in cracked concrete.
Where properly installed in steel, power actuated fasteners typically exhibit reliable cyclic performance. Nevertheless, they
should not be used singly to support suspended elements. Where used to attach cladding and metal decking, subassembly
testing may be used to establish design capacities since the interaction between the decking, the subframe, and the fastener
can only be estimated crudely by currently available analysis methods.
C13.4.6 Friction Clips. Friction clips, such as beam clamps, may loosen under cyclic loading, resulting in slippage or loss
of connection capacity. Where friction clips are used, they may not be relied upon for seismic resistance. Fasteners that
provide a positive mechanical connection have more reliable seismic performance. Clips that provide marginal mechanical
connection, such as beam clamps that “dimple” the flange of the steel support may still rely chiefly on friction. These may
not provide adequate cyclic capacity and should be qualified by seismic testing.
C13.5 ARCHITECTURAL COMPONENTS
For structures in Occupancy Category I through III, the requirements of Section 13.5 are intended to reduce property damage
and lifesafety hazards posed by architectural components due to loss of stability or integrity. When subjected to seismic
motion, components may pose a direct falling hazard to building occupants or to people outside the building (as in the case of
parapets, exterior cladding, and glazing). Failure or displacement of interior components (such as partitions and ceiling
systems in exits and stairwells) may block egress.
For structures in Occupancy Category IV, the potential disruption of essential function due to component failure must also be
considered.
Architectural component failures in earthquakes can be caused by deficient design or construction of the component,
interrelationship with another component that fails, interaction with the structure, or inadequate attachment or anchorage. For
architectural components, attachment and anchorage are typically the most critical concerns related to their seismic
performance. Concerns regarding loss of function are most often associated with mechanical and electrical components.
Architectural damage, unless very severe, can be accommodated temporarily. Very severe architectural damage is often
accompanied by significant structural damage.
C13.5.1 General. Suspended architectural components are not required to satisfy the force and displacement requirements of
Chapter 13, where prescriptive requirements are met. The requirements were relaxed in the 2005 edition of the standard to
better reflect the consequences of the expected behavior. For example, impact of a suspended architectural ornament with a
sheet metal duct may only dent the duct without causing a credible danger (assuming the ornament remains intact). The
reference to Section 13.2.3 allows the designer to consider such consequences in establishing the design approach.
C13.5.2 Forces and Displacements. Partitions and interior and exterior glazing must accommodate story drift without
failure that will cause a lifesafety hazard. Design judgment must be used to assess potential lifesafety hazards and the
likelihood of lifethreatening damage. Special detailing to accommodate drift for typical gypsum board or demountable
partitions is unlikely to be costeffective, and damage to these components poses a low hazard to life safety. Damage in these
partitions occurs at low drift levels, but is inexpensive to repair.
If they must remain intact following strong ground motion, nonstructural fireresistant enclosures and firerated partitions
require special detailing that provides isolation from the adjacent or enclosing structure for deformation equivalent to the
calculated drift (relative displacement). Inplane differential movement between structure and wall is permitted. Provision
must be made for outofplane restraint. These requirements are particularly important in steel or concrete moment frame
structures, which experience larger drifts. The problem is less likely to be encountered in stiff structures, such as those with
shear walls.
Differential vertical movement between horizontal cantilevers in adjacent stories (such as cantilevered floor slabs) has
occurred in past earthquakes. The possibility of such effects should be considered in the design of exterior walls.
C13.5.3 Exterior Nonstructural Wall Elements and Connections. Nonbearing wall panels that are attached to and enclose
the structure must be designed to resist seismic (inertial) forces, wind forces, and gravity forces and to accommodate
movements of the structure resulting from lateral forces and temperature change. The connections must allow wall panel
movements due to thermal and moisture changes, and be designed so as to prevent the loss of loadcarrying capacity in the
event of significant yielding. Where wind loads govern, common practice is to design connectors and panels to allow for not
less than two times the story drift caused by wind loads determined using a return period appropriate to the site location.
Design to accommodate seismic relative displacements often presents a greater challenge than design for strength. Story
drifts can amount to 2 inches (50 mm) or more. Separations between adjacent panels are intended to limit contact and
resulting panel misalignment or damage under all but extreme building response. Section 13.5.3(a) calls for a minimum
separation of 1/2 inch (13 mm). For practical joint detailing and acceptable appearance, separations typically are limited to
about 3/4 inch (19 mm). Manufacturing and construction tolerances for both wall elements and the supporting structure must
be considered in establishing design joint dimensions and connection details.
Cladding elements, which are often very stiff inplane, must be isolated so that they do not restrain and are not loaded by drift
of the supporting structure. Slotted connections can provide isolation, but connections with long rods that flex achieve the
desired behavior without requiring precise installation. Such rods must be designed to resist tension and compression in
addition to induced flexural stresses, brittle, lowcycle fatigue failure.
Fullstory wall panels are usually rigidly attached to and move with the floor structure nearest the panel bottom and isolated
at the upper attachments. Panels also can be vertically supported at the top connections with isolation connections at the
bottom. An advantage of this configuration is that failure of an isolation connection is less likely to result in complete
detachment of the panel, since it will tend to rotate into the structure rather than away from it.
To minimize the effects of thermal movements and shrinkage on architectural cladding panels, connection systems are
generally detailed to be statically determinate. Since the resulting support systems often lack redundancy, exacerbating the
consequences of a single connection failure, fasteners must be designed for amplified forces and connecting members must
be ductile. The intent is to keep inelastic behavior in the connecting members while the more brittle fasteners remain
essentially elastic. To achieve this intent, the tabulated ap and Rp values produce fastener design forces that are about 3 times
those for the connecting members.
Limited deformability curtain walls, such as aluminum systems, are generally light and can undergo large deformations
without separating from the structure. However, care must be taken in design of these elements so that low deformability
components(as defined in Section 11.2) that may be part of the system, such as glazing panels, are detailed to accommodate
the expected deformations without failure.
In Table 13.51, veneers are classified as either limited or low deformability elements. Veneers with limited deformability,
such as vinyl siding, pose little risk. Veneers with low deformability, such as brick and ceramic tile, are highly sensitive to
the performance of the supporting substrate. Significant distortion of the substrate results in veneer damage, possibly
including separation from the structure. The resulting risk depends on the size and weight of fragments likely to be dislodged
and on the height from which the fragments would fall. Detachment of large portions of the veneer can pose a significant
risk to life. Such damage can be reduced by isolating veneer from displacements of the supporting structure. For structures
with flexible lateral forceresisting systems, such as moment frames and bucklingrestrained braced frames, approaches used
to design nonbearing wall panels to accommodate story drift should be applied to veneers.
C13.5.5 OutofPlane Bending. The effects of outofplane application of seismic forces (defined in Section 13.3.1) on
nonstructural walls, including the resulting deformations, must be considered. Where weak or brittle materials are employed,
conventional deflection limits are expressed as a proportion of the span. The intent is to preclude outofplane failure of
heavy materials (such as brick or block) or applied finishes (such as stone or tile).
C13.5.6 Suspended Ceilings. Suspended ceiling systems are fabricated using a wide range of building materials with
differing characteristics. Some systems (such as lath and plaster or gypsum board, screwed or nailed to suspended members)
are fairly homogeneous and should be designed as lightframe diaphragm assemblies, using the forces of Section 13.3 and the
applicable materialspecific design provisions of Chapter 14. Others comprise discrete elements laid into a suspension
system and are the subject of this section.
Seismic performance of ceiling systems with layin or acoustical panels depends on support of the grid and individual panels
at walls and expansion joints, integrity of the grid/panel assembly, interaction with other systems (such as fire sprinklers),
and support for other nonstructural components (such as light fixtures and HVAC systems). Observed performance problems
include dislodgement of tiles due to impact with walls and water damage (sometimes leading to loss of occupancy) due to
interaction with fire sprinklers. Extensive shake table testing performed at the State University of New York at Buffalo
addresses seismic performance of suspended ceiling systems at various ground motion levels. That work is reported by Yao
(2000) and by Bidillo, et al. (2003, 2006, and 2007).
The performance of ceiling systems is affected by the placement of seismic bracing and the layout of light fixtures and other
supported loads. Dynamic testing has demonstrated that splayed wires, even with vertical compression struts, may not
adequately limit lateral motion of the ceiling system due to straightening of the end loops. Construction problems include
slack installation or omission of bracing wires due to obstructions. Other testing has shown that unbraced systems may
perform well where the system can accommodate the expected displacements, by providing both sufficient clearance at
penetrations and wide closure members which are now required by the standard.
C13.5.6.1 Seismic Forces. Where the weight of the ceiling system is distributed nonuniformly, that condition should be
considered in the design, since the typical Tbar ceiling grid has limited ability to redistribute lateral loads.
C13.5.6.2 Industry Standard Construction. Industry standard construction relies on ceiling contact with the perimeter wall
for restraint. The key to good seismic performance is sufficiently wide closure angles at the perimeter to accommodate
relative ceiling motion and adequate clearance at penetrating components (such as columns and piping) to avoid
concentrating restraining loads on the ceiling system.
C13.5.6.2.1 Seismic Design Category C. While there is no direct equivalency between Seismic Design Categories and
seismic zones, application of CISCA requirements for Seismic Zones 0 to 2 produces reasonable results for Seismic Design
Category C. ASTM E580 is currently being revised for consistency with the IBC and ASCE/SEI 705. When updated, it is
expected to replace the CISCA requirements.
C13.5.6.2.2 Seismic Design Categories D through F. Where certain prescriptive requirements are met, lateral restraints
may be omitted for small areas of suspended ceiling. The behavior of an unbraced ceiling system is similar to that of a
pendulum; therefore, the lateral displacement is a function of the level of ground motion and the square root of the
suspension length. The default displacement limit is based on anticipated damping and energy absorption of the suspended
ceiling system without significant impact with the perimeter wall.
The requirements set forth in this section of the standard for Seismic Design Categories D through F are in addition to the
CISCA requirements for Seismic Zones 3 and 4. Therefore, seismic requirements for ceilings are triggered where ceiling
areas exceed 256 square feet, and additional requirements apply where ceiling areas exceed 1,000 square feet and 2,500
square feet. The alternative to provide swing joint connections or flexible devices (such as hoses) for sprinkler drops is
included in the latest edition of NFPA 13.
C13.5.6.3 Integral Construction. Ceiling systems utilizing integral construction are constructed of modular preengineered
components, which integrate lights, ventilation components, firesprinklers, and seismic bracing into a complete system.
They may include aluminum, steel, and PVC components and may be designed using integral construction of ceiling and
wall. They often use rigid grid and bracing systems, which provide lateral support for all the ceiling components, including
sprinkler drops. This reduces the potential for adverse interactions between components, and eliminates the need to provide
clearances for differential movement.
C13.5.7 Access Floors
C13.5.7.1 General. In past earthquakes and in cyclic load tests, some typical raised access floor systems behaved in a brittle
manner and exhibited little reserve capacity beyond initial yielding or failure of critical connections. Testing shows that
unrestrained individual floor panels may pop out of the supporting grid unless mechanically fastened to supporting pedestals
or stringers. This may be a concern, particularly in egress pathways.
For systems with floor stringers, it is accepted practice to calculate the seismic force, Fp, for the entire access floor system
within a partitioned space and then distribute the total force to the individual braces or pedestals. For stringerless systems,
the seismic load path should be established explicitly.
Overturning effects subject individual pedestals to vertical loads well in excess of the weight, Wp, used in determining the
seismic force, Fp. It is unconservative to use the design vertical load simultaneously with the design seismic force for design
of anchor bolts, pedestal bending, and pedestal welds to base plates. “Slip on” heads that are not mechanically fastened to the
pedestal shaft and thus cannot transfer tension are likely unable to transfer to the pedestal the overturning moments generated
by equipment attached to adjacent floor panels.
To preclude brittle failure, each element in the seismic load path must have energy absorbing capacity. Buckling failure
modes should be prevented. Lower seismic force demands are allowed for special access floors that are designed to preclude
brittle and buckling failure modes.
C13.5.7.2 Special Access Floors. An access floor can be a “special access floor” if the registered design professional opts to
comply with the requirements of Section 13.5.7.2. Special access floors include construction features that improve the
performance and reliability of the floor system under seismic loading. The provisions focus on providing a reliable load path
for seismic shear and overturning forces. Special access floors are designed for smaller lateral forces, and their use is
encouraged at facilities with higher nonstructural performance objectives.
C13.5.8 Partitions. Partitions subject to these requirements must have independent lateral support bracing from the top of
the partition to the building structure or to a substructure attached to the building structure. Some partitions are designed to
span vertically from the floor to a suspended ceiling system. The ceiling system must be designed to provide lateral support
for the top of the partition. An exception to this condition is provided to exempt bracing of light (gypsum board) partitions
where the load does not exceed the minimum partition lateral load. Experience has shown that partitions subjected to the
minimum load can be braced to the ceiling without failure.
C13.5.9 Glass in Glazed Curtain Walls, Glazed Storefronts, and Glazed Partitions. The performance of glass in
earthquakes falls into one of four categories:
1. The glass remains unbroken in its frame or anchorage.
2. The glass cracks but remains in its frame or anchorage while continuing to provide a weather barrier, and to be otherwise
serviceable.
3. The glass shatters but remains in its frame or anchorage in a precarious condition, likely to fall out at any time.
4. The glass falls out of its frame or anchorage, either in shards or as whole panels.
Categories 1 and 2 satisfy both immediateoccupancy and lifesafety performance objectives. Although the glass is cracked
in Category 2, immediate replacement is not required. Categories 3 and 4 cannot provide for immediate occupancy, and their
provision of life safety depends on the postbreakage characteristics of the glass and the height from which it can fall.
Tempered glass shatters into multiple, pebblesize fragments that fall from the frame or anchorage in clusters. These broken
glass clusters are relatively harmless to humans when they fall from limited heights, but they could be harmful when they fall
from greater heights.
C13.5.9.1 General. Equation 13.51 is derived from Earthquake Safety Design of Windows, published in November 1982 by
the Sheet Glass Association of Japan and is similar to an equation in Bouwkamp and Meehan (1960) that permits calculation
of the story drift required to cause glasstoframe contact in a given rectangular window frame. Both calculations are based
on the principle that a rectangular window frame (specifically, one that is anchored mechanically to adjacent stories of a
structure) becomes a parallelogram as a result of story drift, and that glasstoframe contact occurs when the length of the
shorter diagonal of the parallelogram is equal to the diagonal of the glass panel itself. The value .fallout represents the
displacement capacity of the system and Dp represents the displacement demand.
The 1.25 factor in the requirements described above reflect uncertainties associated with calculated inelastic seismic
displacements of building structures. Wright (1989) states that “postelastic deformations, calculated using the structural
analysis process, may well underestimate the actual building deformation by up to 30 percent. It would therefore be
reasonable to require the curtain wall glazing system to withstand 1.25 times the computed maximum interstory displacement
to verify adequate performance.”
The reason for Exception 2 to Equation 13.51 is that the tempered glass, if shattered, would not produce an overhead falling
hazard to adjacent pedestrians, although some pieces of glass may fall out of the frame.
C13.5.9.2 Seismic Drift Limits for Glass Components. As an alternative to the prescriptive approach of Section 13.5.9.1,
the deformation capacity of glazed curtain wall systems may be established by test.
C13.6 MECHANIAL AND ELECTRICAL COMPONENTS
These requirements, focused on design of supports and attachments, are intended to reduce the hazard to life posed by loss of
component structural stability or integrity. The requirements increase the reliability of component operation but do not
address functionality directly. For critical components where operability is vital, Section 13.2.2 provides methods for
seismically qualifying the component.
Traditionally, mechanical equipment without rotating or reciprocating components (such as tanks and heat exchangers) is
anchored directly to the structure. Mechanical and electrical equipment with rotating or reciprocating components often is
isolated from the structure by vibration isolators (such as rubberinshear, springs, or air cushions). Heavy mechanical
equipment (such as large boilers) may not be restrained at all, and electrical equipment other than generators, which are
normally isolated to dampen vibrations, usually is rigidly anchored (for example, switchgear and motor control centers).
Two distinct levels of earthquake safety are considered in the design of mechanical and electrical components. At the usual
safety level, failure of the mechanical or electrical component itself due to seismic effects poses no significant hazard. In this
case, design of the supports and attachments to the structure is required to avoid a lifesafety hazard. At the higher safety
level, the component must continue to function acceptably following the design earthquake. Such components are defined as
designated seismic systems in Section 11.2 and may be required to meet the special certification requirements of Section
13.2.2.
Not all equipment or parts of equipment need to be designed for seismic forces. Where Ip is specified to be 1.0, damage to,
or even failure of, a piece or part of a component does not violate these requirements as long as a lifesafety hazard is not
created. The restraint or containment of a falling, breaking, or toppling component (or its parts) by means of bumpers,
braces, guys, wedges, shims, tethers, or gapped restraints to satisfy these requirements often is acceptable, although the
component itself may suffer damage.
Judgment is required to fulfill the intent of these requirements; the key consideration is the threat to life safety. For example,
a nonessential air handler package unit that is less than 4 feet (1.2 meters) tall bolted to a mechanical room floor is not a
threat to life as long as it is prevented from significant displacement by having adequate anchorage. In this case, seismic
design of the air handler itself is unnecessary. On the other hand, a 10foot (3.0 meters) tall tank on 6foot (1.8 meters) long
angles used as legs, mounted on a roof near a building exit does pose a hazard. The intent of these requirements is that the
supports and attachments (tank legs, connections between the roof and the legs, and connections between the legs and the
tank), and possibly even the tank itself be designed to resist seismic forces. Alternatively, restraint of the tank by guys or
bracing could be acceptable.
It is not the intent of the standard to require the seismic design of shafts, buckets, cranks, pistons, plungers, impellers, rotors,
stators, bearings, switches, gears, nonpressure retaining casings and castings, or similar items. Where the potential for a
hazard to life exists, it is expected that design effort will focus on equipment supports including base plates, anchorages,
support lugs, legs, feet, saddles, skirts, hangers, braces, or ties.
Many mechanical and electrical components consist of complex assemblies of parts that are manufactured in an industrial
process that produces similar or identical items. Such equipment may include manufacturer's catalog items and often are
designed by empirical (trialanderror) means for functional and transportation loadings. A characteristic of such equipment
is that it may be inherently rugged. The term “rugged” refers to an ampleness of construction that provides such equipment
with the ability to survive strong motions without significant loss of function. By examining such equipment, an experienced
design professional usually should be able to confirm such ruggedness. The results of an assessment of equipment
ruggedness may be used in determining an appropriate method and extent of seismic design or qualification effort.
C13.6.1 General. The exception allowing unbraced suspended components has been clarified, addressing concerns about the
type of nonstructural components allowed by these exceptions as well as the acceptable consequences of interaction between
components. In previous editions of the standard, certain nonstructural components that could represent a fire hazard
following an earthquake were exempt from lateral bracing requirements. In the revised exception, reference to Section 13.2.3
addresses such concerns while distinguishing between credible seismic interactions and incidental interactions.
The seismic demand requirements are based on component structural attributes of flexibility (or rigidity) and ruggedness.
Table 13.61 provides seismic coefficients based on judgments of the component flexibility, expressed in the ap term, and
ruggedness expressed in the Rp term. It may also be necessary to consider the flexibility and ductility of the attachment
system that provides seismic restraint.
Entries for components and systems in Table 13.61 are grouped and described to improve clarity of application.
Components are divided into three broad groups, within which they are further classified depending on the type of
construction or expected seismic behavior. For example, mechanical components include “airside” components (such as fans
and air handlers) that experience dynamic amplification but are light and deformable; “wetside” components that generally
contain liquids (such as boilers and chillers) that are more rigid and somewhat ductile; and very rugged components (such as
engines, turbines, and pumps) that are of massive construction due to demanding operating loads, and generally perform well
in earthquakes, if adequately anchored.
A distinction is made between components isolated using neoprene and those that are spring isolated. Spring isolated are
assigned a lower Rp value since they tend to have less effective damping. Internally isolated components are classified
explicitly to avoid confusion.
C13.6.2 Component Period. Component period is used to clarify components as rigid (T = 0.06s) or flexible (T > 0.06s).
Determination of the fundamental period of a mechanical or electrical component using analytical or test methods can
become very involved. If not properly performed, the fundamental period may be underestimated, producing unconservative
results. The flexibility of the component’s supports and attachments typically dominates response and thus fundamental
component period. Therefore, analytical determinations of component period must consider those sources of flexibility.
Where determined by testing, the dominant mode of vibration of concern for seismic evaluation must be excited and captured
by the test setup. This dominant mode of vibration cannot be discovered through insitu tests that measure only ambient
vibrations. To excite the mode of vibration with the highest fundamental period by insitu tests, relatively significant input
levels of motion are required (that is, the flexibility of the base and attachment must be exercised). A resonant frequency
search procedure, such as that given in ICCES AC156, may be used to identify the dominant modes of vibration of a
component.
Many types of mechanical components have fundamental periods below 0.06 seconds and may be considered to be rigid.
Examples include horizontal pumps, engine generators, motor generators, air compressors, and motor driven centrifugal
blowers. Other types of mechanical equipment are very stiff, but may have fundamental periods up to about 0.125 seconds.
Examples include vertical immersion and deep well pumps, belt driven and vane axial fans, heaters, air handlers, chillers,
boilers, heat exchangers, filters, and evaporators. These fundamental period estimates do not apply where the equipment is
mounted on vibration isolators.
Electrical equipment cabinets can have fundamental periods of about 0.06 to 0.3 seconds, depending upon the supported
weight and its distribution, the stiffness of the enclosure assembly, the flexibility of the enclosure base, and the load path
through to the attachment points. Tall, narrow motor control centers and switchboards lie at the upper end of this period
range. Low and mediumvoltage switchgear, transformers, battery chargers, inverters, instrumentation cabinets, and
instrumentation racks usually have fundamental periods ranging from 0.1 to 0.2 seconds. Braced battery racks, stiffened
vertical control panels, benchboards, electrical cabinets with top bracing, and wallmounted panelboards have fundamental
periods ranging from 0.06 to 0.1 seconds.
C13.6.3 Mechanical Components and C13.6.4 Electrical Components. Most mechanical and electrical equipment is
inherently rugged and, where properly attached to the structure, has performed well in past earthquakes. Since the
operational and transportation loads for which the equipment is designed typically are larger than those due to earthquakes,
these requirements focus primarily on equipment anchorage and attachments. However, Designated Seismic Systems, which
are required to function following an earthquake or which must maintain containment of flammable or hazardous materials,
must themselves be designed for seismic forces or be qualified for seismic loading in accordance with Section 13.2.2.
The likelihood of postearthquake operability can be increased where the following measures are taken:
1. Internal assemblies, subassemblies, and electrical contacts are attached sufficiently to prevent their being subjected to
differential movement or impact with other internal assemblies or the equipment enclosure.
2. Operators, motors, generators, and other such components that are functionally attached to mechanical equipment by
means of an operating shaft or mechanism are structurally connected or commonly supported with sufficient rigidity
such that binding of the operating shaft will be avoided.
3. Any ceramic or other nonductile components in the seismic load path are specifically evaluated.
4. Adjacent electrical cabinets are bolted together and cabinet lineups are prevented from impacting adjacent structural
members.
Components that could be damaged, or could damage other components, and are fastened to multiple locations of a structure
must be designed to accommodate seismic relative displacements. Such components include bus ducts, cable trays, conduit,
elevator guide rails, and piping systems. As discussed in Section C13.3.2.1, special design consideration is required where
full story drift demands are concentrated in a fraction of the story height.
C13.6.5 Component Supports. The intent of this section is to require seismic design of all mechanical and electrical
component supports to prevent sliding, falling, toppling, or other movement that could imperil life. Component supports are
differentiated here from component attachments to emphasize that the supports themselves, as enumerated in the text, require
seismic design even if fabricated by the mechanical or electrical component manufacturer. This is regardless of whether the
mechanical or electrical component itself is designed for seismic loads.
C13.6.5.1 Design Basis. Standard supports are those developed in accordance with a reference document (Section 13.1.6).
Where standard supports are not used, the seismic design forces and displacement demands of Chapter 13 are used with
applicable materialspecific design procedures of Chapter 14.
C13.6.5.2 Design for Relative Displacement. For some items, such as piping, seismic relative displacements between
support points are of more significance than inertial forces. Components made of high deformability materials such as steel
or copper can accommodate relative displacements inelastically, provided the connections also provide high deformability.
Threaded and soldered connections exhibit poor ductility under inelastic displacements, even for ductile materials.
Components made of less ductile materials can accommodate relative displacement effects only if appropriate flexibility or
flexible connections are provided.
Detailing distribution systems that connect separate structures with bends and elbows makes them less prone to damage and
less likely to fracture and fall, provided the supports can accommodate the imposed loads.
C13.6.5.3 Support Attachment to Component. As used in this Section, “integral” relates to the manufacturing process, not
the location of installation. For example, both the legs of a cooling tower and the attachment of the legs to the body of the
cooling tower must be designed, even if the legs are provided by the manufacturer and installed at the plant. Also, if the
cooling tower has an Ip=1.5, the design must address not only the attachments (welds, bolts, etc.) of the legs to the
component but also local stresses imposed on the body of the cooling tower by the support attachments.
C13.6.5.5 Additional Requirements. As reflected in this Section of the standard and in the footnote to Table 13.61,
vibration isolated equipment with snubbers is subject to amplified loads as a result of dynamic impact.
Use of expansion anchors for nonvibration isolated mechanical equipment rated over 10 hp is prohibited based on
experience with older anchor types. The ASCE/SEI 7 Seismic Subcommittee developing the 2010 edition of the standard is
considering a proposal that would allow anchors qualified by simulated seismic testing and longterm vibration testing to also
be exempt.
C13.6.6 Utility and Service Lines. For essential facilities (Occupancy Category IV), auxiliary onsite mechanical and
electrical utility sources are recommended.
Where utility lines pass through the interface of adjacent, independent structures, they must be detailed to accommodate
differential displacement computed in accordance with Section 13.3.2 and including the Cd factor of Section 12.2.1.
As specified in Section 13.1.3, nonessential piping whose failure could damage essential utilities in the event of pipe rupture
are deemed Designated Seismic Systems.
C13.6.7 HVAC Ductwork. Experience in past earthquakes has shown that HVAC duct systems are rugged and perform
well in strong ground shaking. Bracing in accordance with the Sheet Metal and Air Conditioning Contractors National
Association ANSI/SMACNA 001 has been effective in limiting damage to duct systems. Typical failures have affected only
system function, and major damage or collapse has been uncommon. Therefore, industry standard practices should prove
adequate for most installations. Expected earthquake damage is limited to opening of duct joints and tears in ducts.
Connection details that are prone to brittle failures, especially hanger rods subject to large amplitude cycles of bending stress,
should be avoided.
The amplification factor for ductwork has been increased from 1.0 to 2.5, because even braced duct systems are relatively
flexible. The Rp values also have been increased so that the resulting seismic design forces are consistent with those
determined previously.
Ductwork systems that carry hazardous materials or must remain operational during and after an earthquake, are assigned a
value of Ip =1.5, and require a detailed engineering analysis addressing leaktightness.
C13.6.8 Piping Systems. In earthquakes, piping systems rarely collapse but often cause nonstructural damage due to
leaking. Industry standards and guidelines address a wide variety of piping systems and materials. Construction in
accordance with referenced national standards is effective in limiting damage to and avoiding loss of fluid containment in
piping systems under earthquake conditions.
ASHRAE’s A Practical Guide to Seismic Restraint, while not an ANSI standard, is in common use and may be an
appropriate reference document for use in the seismic design of piping systems.
The prescriptive conditions provided in the standard under which seismic bracing for piping may be omitted are based on
observed performance in past earthquakes.
C13.6.8.1 ASME Pressure Piping Systems. The Rp values tabulated for ASME B31 compliant piping systems reflect the
stringent design and quality control requirements as well as the intensified stresses used in ASME design procedures.
C13.6.8.4 Other Piping Systems
Piping not designed in accordance with ASME B31 typically is assigned lower Rp values. Piping component testing suggests
that the ductility capacity of carbon steel threaded and grooved joint piping component joints ranges between 1.4 and 3.0.
Therefore, these types of connections have been classified as having limited deformability. Grooved couplings and other
articulating type of connections may demonstrate free rotational capacity that increases the overall rotational design capacity
of the connection. When considered in design, this increase should not exceed 50 percent of the total demonstrated design
capacity. The free rotational capacity is the maximum articulating angle where the connection behaves essentially as a
pinned joint. The remaining rotational capacity of the connection is where it behaves as a conventional joint whose design
force demands are determined by traditional means.
C13.6.9 Boilers and Pressure Vessels
Experience in past earthquakes has shown that boilers and pressure vessels are rugged and perform well in strong ground
motion. Construction in accordance with current requirements of the ASME Boiler and Pressure Vessel Code (ASME
BPVC) has been shown to be effective in limiting damage to and avoiding loss of fluid containment in boilers and pressure
vessels under earthquake conditions. It is, therefore, the intent of the standard that nationally recognized codes be used to
design boilers and pressure vessels provided that the seismic force and displacement demands are equal to or exceed those
outlined in Section 13.3. Where nationally recognized codes do not yet incorporate force and displacement requirements
comparable to the requirements of Section 13.3, it is nonetheless the intent to use the design acceptance criteria and
construction practices of those codes.
C13.6.10 Elevator and Escalator Design Requirements
The ASME Safety Code for Elevators and Escalators (ASME A17.1) has adopted many requirements to improve the seismic
response of elevators; however, they do not apply to some regions covered by this chapter. These changes are to extend force
requirements for elevators to be consistent with the standard.
C13.6.10.3 Seismic Switches
The purpose of seismic switches as used here is different from that of ASME A17.1, which has incorporated several
requirements to improve the seismic response of elevators (such as rope snag point guards, rope retainer guards, and guide
rail brackets) and which does not apply to some buildings covered by the standard. Building motions that are expected in
areas not covered by the seismic provisions of ASME 17.1 are sufficiently large to impair the operation of elevators. The
seismic switch is positioned high in the structure where structural response will be the most severe. The seismic switch
trigger level is set to shut down the elevator where structural motions are expected to impair elevator operations.
Elevators in which the seismic switch and counterweight derail device have triggered should not be put back into service
without a complete inspection. However, in the case where the loss of use of the elevator creates a lifesafety hazard, an
attempt to put the elevator back into service may be attempted. Operating the elevator prior to inspection may cause severe
damage to the elevator or its components.
The building owner should have detailed written procedures in place defining for the elevator operator/maintenance
personnel which elevators in the facility are necessary from a postearthquake life safety perspective. It is highly
recommended that these procedures be inplace, with appropriate personnel training, prior to an event strong enough to trip
the seismic switch.
C13.6.10.4 Retainer Plates
The use of retainer plates is a very low cost provision to improve the seismic response of elevators.
C13.6.11 Other Mechanical and Electrical Components. The material properties set forth in Item 2 of this Section are
similar to those allowed in ASME BPVC and reflect the high factors of safety necessary for seismic, service, and
environmental loads.
REFERENCES
ANCO Engineers, Inc. 1983. Seismic Hazard Assessment of NonStructural Components —Phase I, Final Report for
National Science Foundation from ANCO Engineers, Inc., Culver City, California, September.
American National Standards Institute/ Sheet Metal and Air Conditioning Contractors’ National Association. 2000. Seismic
Restraint Manual: Guidelines for Mechanical Systems, ANSI/SMACNA 0012000.
American Society of Heating, Refrigeration, and Air Conditioning Engineers. 2000. A Practical Guide to Seismic Restraint.
ASTM International. 2006. Standard Practice for Application of Ceiling Suspension Systems for Acoustical Tile and Layin
Panels in Areas Requiring Seismic Restraint, ASTM E580
Bachman, R. E., and S. M. Dowty. 2008. “Nonstructural Component or Nonbuilding Structure?” Building Safety Journal
(AprilMay).
Bachman, R. E, and R. M. Drake. 1996. “A Study To Empirically Validate the Component Response Modification Factors
in the 1994 NEHRP Provisions Design Force Equations for Architectural, Mechanical, and Electrical Components,” letter
report to the National Center for Earthquake Engineering Research, July.
Bachman, R. E., R. M. Drake, and P. J. Richter. 1993. 1994 Update to 1991 NEHRP Provisions for Architectural,
Mechanical, and Electrical Components and Systems, letter report to the National Center for Earthquake Engineering
Research, February 22.
Badillo, H. 2003. Seismic Fragility Testing of Suspended Ceiling Systems, Masters Thesis, Department of Civil, Structural,
and Environmental Engineering, State University of New York at Buffalo, Buffalo New York, September.
Badillo, H., A. S. Whittaker, A. M. Reinhorn, and G. P. Cimmarello. 2006. Seismic Fragility of Suspended Ceiling Systems,
MCEER Report060001. Multidisciplinary Center for Earthquake Engineering Research, State University of New York at
Buffalo.
Badillo, H., A. S. Whittaker, and A. M. Reinhorn. 2007. “Seismic Fragility of Suspended Ceiling Systems,” Earthquake
Spectra, 23(1).
Behr, R. A., A. Belarbi, and A. T. Brown. 1995. “Seismic Performance of Architectural Glass in a Storefront Wall System,”
Earthquake Spectra, 11(3):367391.
Behr, R. A., and A. Belarbi. 1996. “Seismic Tests Methods for Architectural Glazing Systems,” Earthquake Spectra,
12(1):129143.
Bouwkamp, J. G., and J. F. Meehan. 1960. “Drift Limitations Imposed by Glass,” Proceedings of the Second World
Conference on Earthquake Engineering, Tokyo, Japan, 17631778.
Ceiling and Interior Systems Construction Association. 2004. Guidelines for Seismic Restraint for Directhung Suspended
Ceiling Assemblies (zones 34).
Ceiling and Interior Systems Construction Association. 2004. Recommendations for Directhung Acoustical Tile and Layin
Panel Ceilings (zones 02).
Drake, R. M., and R. E. Bachman. 1996. “NEHRP Provisions for 1994 for Nonstructural Components,” ASCE Journal of
Architectural Engineering, March.
Drake, R. M., and R. E. Bachman. 1995. “Interpretation of Instrumented Building Seismic Data and Implications for
Building Codes,” in Proceedings of the 1995 SEAOC Annual Convention.
Drake, R. M., and R. E. Bachman. 1994. “1994 NEHRP Provisions for Architectural, Mechanical, and Electrical
Components,” in Proceedings of the 5th United States National Conference on Earthquake Engineering.
Earthquake Engineering Research Institute. 1994. “Northridge Earthquake, January 17, 1994: Preliminary Reconnaissance
Report,” edited by John F. Hall, pp. 5657. EERI, Oakland, California.
Gates, W. E. and G. McGavin. 1998. “Lessons Learned from the 1994 Northridge Earthquake on the Vulnerability of
Nonstructural Systems,” in Proceedings, Seminar on Seismic Design, Retrofit, and Performance of Nonstructural
Components, ATC291, January 2223, 1998, San Francisco, California. Applied Technology Council, Redwood City,
California, pp. 93101.
Housner, G. W., and M. A. Haroun. 1980. “Seismic Design of Liquid Storage Tanks” in ASCE Convention Proceedings.
Institute of Electrical and Electronics Engineers, Inc. 2005. IEEE Recommended Practices for Seismic Design of
Substations, IEEE 6932005.
International Code Council Evaluation Service. 2007. Seismic Qualification by Shaketable Testing of Nonstructural
Components and Systems, ICCES AC156. International Code Council Evaluation Service, Whittier, California.
Kehoe, B., and M. Hachem. 2003. "Procedures for Estimating Floor Accelerations" by ATC 292, 2003
Pantelides, C. P., K. Z. Truman, R. A. Behr, and A. Belarbi. 1996. “Development of a Loading History for Seismic Testing
of Architectural Glass in a ShopFront Wall System,” Engineering Structures, 18(12):917935.
Unified Facilities Criteria, Department of Defense. 2007. Seismic Design for Buildings, United States Department of
Defense, UFC 331004.
Wright, P. D. 1989. The Development of a Procedure and Rig for Testing the Racking Resistance of Curtain Wall Glazing,
BRANZ Studey Report 17. Building Research Association of New Zealand (BRANZ).
Yao, G. C. 2000. “Seismic Performance of Direct Hung Suspended Ceiling Systems,” Journal of Architectural Engineering,
6(1):611.
Page intentionally left blank.
COMMENTARY TO CHAPTER 14,
MATERIAL SPECIFIC SEISMIC DESIGN AND DETAILING
REQUIREMENTS
Because seismic loading is expected to cause nonlinear behavior in structures, seismic design criteria require not only
provisions to govern loading, but also provisions to define the required configurations, connections, and detailing to produce
material and system behavior consistent with the design assumptions. Thus, while ASCE/SEI 705 is primarily a loading
standard, compliance with Chapter 14, which covers material specific seismic design and detailing, is required. In general,
Chapter 14 adopts material design and detailing standards developed by industry material standards organizations. These
materials standards organizations maintain complete commentaries covering their standards and such material is not
duplicated here.
The refinements, additions, and recommended changes to the material standards produced by the Provisions Update
Committee appear in Part 1 of the 2009 NEHRP Recommended Seismic Provisions as exceptions to ASCE/SEI 705 along
with associated commentary.
C14.0 SCOPE
The scoping statement in this section clarifies that foundation elements are subject to all of the structural design requirements
of the standard.
C14.1 STEEL
C14.1.1 Reference Documents. This section lists a series of structural standards published by the American Institute of
Steel Construction (AISC), American Iron and Steel Institute (AISI), American Society of Civil Engineers (ASCE/SEI), and
Steel Joist Institute (SJI) that are to be applied in the seismic design of steel members and connections in conjunction with the
requirements of ASCE/SEI 7. The AISC references are available free of charge in electronic format at www.aisc.org.
C14.1.2 Seismic Design Categories B and C. For the lower Seismic Design Categories B and C, the engineer is allowed a
choice in the design of a steel lateral force resisting system. The first option is to design the structure to meet the design and
detailing requirements for structures assigned to higher Seismic Design Categories, with the corresponding seismic design
parameters (R, O0, and Cd ). The second option is to use a lower R factor of 3 (and higher resulting base shear), an O0 of 3,
and a Cd value of 3 but without specific seismic design and detailing requirements. The concept of this option is that design
for a higher base shear force will result in essentially elastic response that will compensate for the limited ductility of the
members and connections, resulting in performance similar to that of more ductile systems.
C14.1.3 Seismic Design Categories D through F. For the higher Seismic Design Categories, the Engineer is not given a
choice, but must follow the seismic design provisions of either AISC or AISI using the seismic design parameters specified
for the chosen structural system. It is not considered appropriate to design structures without specific design and detailing for
seismic response in these high Seismic Design Categories.
C14.1.4 ColdFormed Steel. This section adopts two standards by direct reference: AISI NAS, North American
Specification for the Design of ColdFormed Steel Structural Members, and ASCE/SEI 8, Specification for the Design of
Cold Formed Stainless Steel Structural Members.
Both of the adopted reference documents have specific limits of applicability. AISI NAS (Section A1.1) applies to the design
of structural members that are coldformed to shape from carbon or lowalloy steel sheet, strip, plate, or bar not more than
oneinch in thickness. ASCE/SEI 8 (Section 1.1.1) governs the design of structural members that are coldformed to shape
from annealed and coldrolled sheet, strip, plate, or flat bar stainless steels. Both documents focus on loadcarrying members
in buildings; however, allowances are made for applications in nonbuilding structures, if dynamic effects are considered
appropriately.
Within each document, there are requirements related to general provisions for the applicable types of steel; design of
elements, members, structural assemblies, connections, and joints; and mandatory testing. In addition, AISI NAS contains a
chapter on the design of coldformed steel structural members and connections undergoing cyclic loading. Both standards
contain extensive commentaries for the benefit of the user.
C14.1.4.1 LightFramed ColdFormed Steel Construction. This subsection of coldformed steel relates to lightframed
construction, which is defined as a method of construction where the structural assemblies are formed primarily by a system
of repetitive wood or coldformed steel framing members or subassemblies of these members (ASCE/SEI 705 Section 11.2).
Not only does this subsection repeat the direct adoptions of AISI NAS and ASCE/SEI 8, but it also allows the user to choose
from an additional suite of standards that address different aspects of construction, including the following:
1. AISI GP, Standard for ColdFormed Steel Framing— General Provisions, applies to the design, construction, and
installation of structural and nonstructural coldformed steel framing members where the specified minimum base metal
thickness is between 18 mils and 118 mils (Section A1).
2. AISI WSD, Standard for ColdFormed Steel Framing – Wall Stud Design, applies to the design and installation of coldformed
steel studs for both structural and nonstructural walls in buildings (Section A1).
3. AISI Lateral, Standard for ColdFormed Steel Framing – Lateral Design, contains design requirements for shear walls,
diagonal strap bracing (as part of a structural wall), and diaphragms (Section A1).
The requirements of AISI GP apply to all lightframed coldformed steel and, consequently, the standard is adopted by direct
reference in both AISI WSD and AISI Lateral. In addition, all of these documents include commentaries to aid the user in
the correct application of their requirements.
C14.1.5 Prescriptive Framing. This section adopts AISI PM, Standard for ColdFormed Steel Framing – Prescriptive
Method for One and Two Family Dwellings, which applies to the construction of detached oneand twofamily dwellings,
townhouses, and other attached singlefamily dwellings not more than two stories in height using repetitive inline framing
practices (Section A1). This document adopts AISI GP by direct reference and includes a commentary to aid the user in the
correct application of its requirements.
C14.1.6 Steel Deck Diaphragms. Design of steel deck diaphragms is to be based upon recognized national standards or a
specific testing program directed by a person experienced in testing procedures and steel deck. All fastener design values
(welds, screws, power actuated fasteners, button punches) for attaching steel deck sheet to steel deck sheet or for attaching
the steel deck to the building framing members must be per recognized national design standards or specific steel deck testing
programs. All steel deck diaphragm and fastener design properties must be approved for use by the authorities in whose
jurisdiction the construction project occurs. Steel deck diaphragm inplane design forces (seismic, wind, or gravity) must be
determined per ASCE/SEI 705 Section 12.10.1. Steel deck manufacturer test reports prepared in accordance with this
provision can be used where adopted and approved by the authority having jurisdiction for the building project. The
diaphragm design manual produced by the Steel Deck Institute (2004) is also a potential reference for design values.
Steel deck is assumed to have a corrugated profile consisting of alternating up and down flutes that are manufactured
in various widths and heights. Use of flat sheet metal as the overall floor or roof diaphragm is permissible where designed by
engineering principles, but is beyond the scope of this section. Flat or bent sheet metal may be used as closure pieces for
small gaps or penetrations or for shear transfer over short distances in the steel deck diaphragm where diaphragm design
forces are considered.
Steel deck diaphragm analysis must include design of chord members at the perimeter of the diaphragm and around interior
openings in the diaphragm. Chord members may be steel beams attached to the underside of the steel deck designed for a
combination of axial loads and bending moments due to acting gravity and lateral loads.
Where diaphragm design loads exceed the bare steel deck diaphragm design capacity, then either horizontal steel trusses or a
structurally designed concrete topping slab placed over the steel deck must be provided to distribute lateral forces. Where
horizontal steel trusses are used, the steel deck must be designed to transfer diaphragm forces to the steel trusses. Where a
structural concrete topping over the steel deck is used as the diaphragm, the diaphragm chord members at the perimeter of the
diaphragm and edges of interior openings must be either: (a) designed flexural reinforcing steel placed in the structural
concrete topping or (b) steel beams located under the steel deck with connectors (that provide a positive connection) as
required to transfer design shear forces between the concrete topping and steel beams.
C14.1.7 Steel Cables. These provisions reference ASCE/SEI 1996, Structural Applications of Steel Cables for Buildings,
for the determination of the design strength of steel cables. ASCE/SEI 19 uses service level load combinations with a safety
factor relative to the cable design strength. The service level load combinations specified in ASCE/SEI 19 are adjusted in
two ways. First, the prestress loading is multiplied by a factor of 1.1 to account for any over prestressing that may occur in
the field. Second, the safety factor for load combinations including seismic effects is reduced from 2.0 to 1.5 to account for
the dynamic nature of seismic loading and the ductility of the system. While T3 and T4 in ASCE/SEI 19 may be calculated
using either wind or seismic loads, the modifications of this section apply only to load combinations including seismic
loadings.
C14.1.8 Additional Detailing Requirements for Steel Piles in Seismic Design Categories D through F. Steel piles used
in higher Seismic Design Categories are expected to yield just under the pile cap or foundation due to combined bending and
axial load. Design and detailing requirements of AISC 341 for Hpiles are intended to produce stable plastic hinge formation
in the piles. Since piles can be subjected to tension due to overturning moment, mechanical means to transfer such tension
must be designed for the required tension force, but not less than 10 percent of the pile compression capacity.
C14.2 CONCRETE
The section adopts ACI 31805, Building Code Requirements for Structural Concrete (ACI 318), by reference for structural
concrete design and construction. In addition, modifications to ACI 318 are made to coordinate the provisions of that
material design standard with the provisions of ASCE/SEI 7.
C14.2.2.1 ACI 318 Section 7.10. The reinforcement details for ties in compression members prescribed in ACI 318 Section
7.10.5 are appropriate for SDC A and B structures. This modification prescribes additional details for ties around anchor
bolts of structures assigned to SDC C, D, E, or F.
C14.2.2.2 ACI 318 Section 10.5. This provision affects ordinary moment frames. It is intended to improve continuity, and
thereby lateral force resistance and structural integrity, compared to that of frames designed to the provisions of Chapters1
through 18 of ACI 318 only. The provision does not apply to slabcolumn moment frames.
C14.2.2.3 ACI 318 Section 11.11. This requirement is intended to provide additional toughness to resist shear for columns
of frames in SDC B. Otherwise the proportions of those columns make them more susceptible to shear failure under
earthquake loading.
C14.2.2.4 Definitions. The first four definitions relate the wall types of ASCE/SEI 705 with detailing requirements of ACI
318 and distinguish between ordinary reinforced concrete structural walls and ordinary precast structural walls. These
definitions are essential to the proper interpretation of the R and Cd factors for each wall type specified in Table 12.21.
A wall pier is recognized as a separate category of structural element in this document but not in ACI 318.
C14.2.2.5 Scope. ACI 318 uses the terminology of low, moderate, and high seismic risk for structures assigned to SDC A
and B, SDC C, and SDC D through F, respectively. The modifications of this provision show how the ACI 318 provisions
should be interpreted for consistency with the ASCE/SEI 705 provisions.
C14.2.2.6 Reinforcement in Members Resisting EarthquakeInduced Forces. ACI 318 does not allow the use of
prestressing tendons in special and intermediate moment frames. This provision and ASCE/SEI 705 Sections 14.2.2.7 and
14.2.2.8 impose conditions that have been demonstrated to permit the safe use of such tendons.
These provisions are intended to apply to frames containing unbonded tendons only. The average prestress in plastic hinge
regions is restricted to limit the strain in the prestressing steel under the design displacement to not greater than 1 percent.
The strain in the prestressing steel at the design displacement should be calculated considering the anticipated inelastic
mechanism of the structure.
C14.2.2.7 Anchorages for Unbonded Posttensioning Tendons. Fatigue testing for 50 cycles of loading between 40 and
80 percent of the specified tensile strength of the prestressing strand has been an industry practice of long standing (ACI
423.6, Specification for Unbonded SingleStrand Tendons). The 80 percent limit is increased to 85 percent for seismic
applications in order to correspond to a 1 percent limit, and therefore the effective start of yielding, in the prestressing steel.
Testing over this range of stress conservatively simulates the effect of a severe earthquake on structures prestressed in
accordance with the requirements of ASCE/SEI 705 Sections 14.2.2.6 and 14.2.2.8.
C14.2.2.8 Flexural Members of Special Moment Frames. The restrictions on the flexural strength provided by the
tendons are based on the results of analytical and experimental studies (Ishizuka and Hawkins, 1987; Park and Thompson,
1977). Although satisfactory seismic performance can be obtained with greater amounts of prestressing steel, this restriction
is needed to allow the use of the same response modification and deflection amplification factors as those specified for
special moment frames without prestressing steel.
C14.2.2.9 Wall Piers and Wall Segments. Wall piers are typically segments between openings in walls that are thin in the
direction normal to the face of the wall. In current practice these elements are often not regarded as columns or as part of the
special structural walls. If not properly reinforced these elements are vulnerable to shear failure, and that failure prevents the
wall from developing the assumed flexural hinging. ACI 318 Section 21.7.10 is written specifically to preclude such preemptive
shear failure. The required shear strength in ACI 318 Section 21.4.5.1 is based on the probable shear strength, Ve ,
under the probable moment, M pr. Wall segments with a horizontal lengthtothickness ratio less than 2.5 and a clear heightto
length ratio of at least 2 are required to be designed as columns in compliance with ACI 318 Section 21.4 if they are used
as part of the lateralforceresisting system even though the shortest crosssectional dimension may be less than 12 inches in
violation of Section 21.4.1.1. Such wall segments may be designed to comply with ACI 318 Section 21.11 if they are not
used as part of the lateralforceresisting system. Wall segments with a horizontal lengthtothickness ratio larger than or
equal to 2.5, which do not meet the definition of wall piers (ASCE/SEI 705 Section 14.2.2.4), must be designed as special
structural walls or as portions of special structural walls in full compliance with ACI 318 Section 21.7.
C14.2.2.12 Members Not Designated as Part of the LateralForceResisting System. ACI 318 Section 21.4.3.2 permits
lap splices only within the center half of the column. Section 21.11.2 applies where the magnitude of the moments induced
in the column by the design displacement are explicitly checked. Section 21.11.3 applies where the effects of the design
displacement are not explicitly checked. Section 21.11.2.2, if not modified, would permit lap splices to be placed at any
location over the height of the column if the column is expected to yield. If, however, the column is not expected to yield the
wording effectively requires the splice to be located near midheight. This is not rational and the modification results in a
more rational provision.
C14.2.2.13 Columns Supporting Reactions from Discontinuous Stiff Members. Discontinuous shear walls and other
stiff members can impose large axial forces on supporting columns. The specified transverse reinforcement is to improve
column toughness under anticipated seismic demands.
C14.2.2.14 Intermediate Precast Structural Walls. ACI 318 Section 21.13 imposes requirements on precast walls for
moderate seismic risk applications. The intent is to produce ductile behavior by yielding of the steel elements or
reinforcement between panels or between panels and foundations. The 2003 IBC restricted yielding to steel reinforcement
because of concern that steel elements in the body of a connection could fracture due to strain demands.
Several steel element connections have been tested under simulated seismic loading and the adequacy of their loaddeformation
characteristics and strain capacity of yield has been demonstrated (Schultz and Magana, 1996). One such
connection was used in the fivestory building test that was part of the PRESSS Phase 3 research. The connection was used
to provide damping and energy dissipation, and demonstrated a very large strain capacity (Nakaki et al., 2001). Since then
several other steel element connections have been developed that can achieve similar results (Banks and Stanton, 2005;
Nakaki et al., 2005). In view of these results it is appropriate to allow yielding in steel elements that have been shown
experimentally to have adequate strain capacity to maintain at least 80 percent of their yield force of through the full design
displacement of the structure. This provision requires the designer to determine the deformation in the connection
corresponding to the earthquake design displacement, and then to check for experimental data that the connection type used
can accommodate that deformation without significant strength degradation.
The wall pier requirements in the modified ACI 318 Section 21.13.5 are less stringent than those for wall piers for special
structural walls as specified in the modified Section 21.7.10. Where intermediate precast structural walls are used in SDCs
D, E and F, wall piers should satisfy the requirements of ASCE/SEI 705 Section 14.2.2.9 rather than 14.2.2.14.
C14.2.2.15 Detailed Plain Concrete Shear Walls. Design requirements for plain masonry walls have existed for many
years, and the competing type of concrete construction is the plain concrete wall. To allow the use of such walls as the
lateralforceresisting system in SDC A and B, this provision requires such walls to contain at least the minimal
reinforcement specified in ACI 318 Section 22.6.7.2.
C14.2.2.16 Plain Concrete in Structures Assigned to Seismic Design Category C, D, E, or F. Modifications are made to
ACI 318 Section 22.10 that restrict markedly the use of ordinary and detailed structural plain concrete walls in SDC C, D, E,
and F.
C14.2.2.17 General Requirements for Anchoring to Concrete. ACI 318 uses the terminology of regions of moderate or
high seismic risk and structures assigned to intermediate or high seismic performance or design categories. In this
modification, the only changes to ACI 318 in Sections D3.3.3 through D3.3.4 are the replacement of that terminology with
the SDC terminology.
There are two changes to the provisions in ACI 318 Section D3.3.5. The first is the use of the SDC terminology, and the
second is the addition of the last phrase of the provision referring to the minimum design strength of the anchors. The last
phrase requires an anchor strength that is at least the maximum likely O0 value (2.5) times the design force calculated as
being transmitted to the attachment by the lateralforceresisting system.
C14.2.2.18 Strength Requirements for Anchors. ACI 318 requires laboratory testing to establish the strength of anchor
bolts greater than 2 inches in diameter or exceeding 25 inches in tensile embedment depth. This modification makes the ACI
318 equation giving the basic concrete breakout strength of a single anchor in tension in cracked concrete applicable
irrespective of the anchor bolt diameter and tensile embedment depth.
Korean Power Engineering (KPE) has made tension tests on anchors with diameters up to 4.25 inches and embedment depths
up to 45 inches and found that the diameter and embedment depth limits of ACI 318 Section D4.2.2 for the design procedure
for anchors in tension (Section D5.2) can be eliminated. KPE has also made shear tests on anchors with diameters up to 3.0
inches and embedment depths as large as 30 inches and found no effect of the embedment depth on shear strength. However,
the diameter tests showed that the basic shear breakout strength equation (ACI 318 Section D24) needed some modification
for the complete elimination of the 2 inch limit to be fully appropriate. Analytical work performed at the University of
Stuttgart supports the need for some modification to the ACI 318 Equation D24. Changes consistent with the Korean and
Stuttgart findings have already been made to the FIB Design Guide for anchors and a change proposal consistent with those
changes has been submitted to ACI 318 for consideration.
C14.2.3.1.2 Reinforcement for Uncased Concrete Piles (SDC C): The transverse reinforcing requirements in the
potential plastic hinge zone of uncased concrete piles in Seismic Design Category C is a selective composite of two ACI 318
requirements. In the potential plastic hinge region of an intermediate momentresisting concrete frame column, the
transverse reinforcement spacing is restricted to the least of: (a) 8 times the diameter of the smallest longitudinal bar, (b) 24
times the diameter of the tie bar, (c) onehalf the smallest crosssectional dimension of the column, and (d) 12 inches.
Outside of the potential plastic hinge region of a special momentresisting frame column, the transverse reinforcement
spacing is restricted to the smaller of: 6 times the diameter of the longitudinal column bars and 6 inches.
C14.2.3.1.5 Reinforcement for Precast Nonprestressed Concrete Piles (SDC C): Transverse reinforcement requirements
inside and outside of the plastic hinge zone of precast nonprestressed piles are clarified. The transverse reinforcement
requirement in the potential plastic hinge zone is a composite of two ACI 318 requirements (see Section C14.2.3.1.2).
Outside of the potential plastic hinge region the eight longitudinalbardiameter spacing is doubled. The maximum 8in. tie
spacing comes from current building code provisions for precast concrete piles.
C14.2.3.1.6 Reinforcement for Precast Prestressed Piles (SDC C): The transverse and longitudinal reinforcing
requirements given in ACI 318 Chapter 21 were never intended for slender precast prestressed concrete elements and will
result in unbuildable piles. The requirements are based on the 1993 Recommended Practice for Design, Manufacture and
Installation of Prestressed Concrete Piling by the PCI Committee on Prestressed Concrete Piling.
ASCE/SEI 705 Equation 14.21, originally from ACI 318, has always been intended to be a lowerbound spiral
reinforcement ratio for larger diameter columns. It is independent of the member section properties and therefore can be
applied to large or small diameter piles. For castinplace concrete piles and precast prestressed concrete piles, the resulting
spiral reinforcing ratios from this formula are considered to be sufficient to provide moderate ductility capacities.
Full confinement per Equation 14.21 is required for the upper 20 feet of the pile length where curvatures are large. The
amount is relaxed by 50 percent outside of that length in view of lower curvatures and in consideration of confinement
provided by the soil.
C14.2.3.2.5 Reinforcement for Precast Concrete Piles (SDC D through F): The transverse reinforcement requirements
for precast nonprestressed concrete piles are taken from current building code requirements and are intended to provide
ductility in the potential plastic hinge zones.
C14.2.3.2.6 Reinforcement for PrecastPrestressed Piles (SDC D through F): The last paragraph provides minimum
transverse reinforcement outside of the zone of prescribed ductile detailing.
C14.3 COMPOSITE STEEL AND CONCRETE STRUCTURES
This section provides guidance on the design of composite and hybrid steelconcrete structures. Composite structures are
defined as those incorporating structural elements made of steel and concrete portions connected integrally throughout the
structural element by mechanical connectors, bond, or both. Hybrid structures are defined as consisting of steel and concrete
structural elements connected together at discrete points. Composite and hybrid structural systems mimic many of the
existing steel (moment and braced frame) and concrete (moment frame and wall) configurations, but are given their own
design coefficients and factors in Table 12.21. Their design is based on the same ductility and energy dissipation concepts
used in conventional steel and reinforced concrete structures, but requires special attention to the interaction of the two
materials as it affects the stiffness, strength, and inelastic behavior of the members, connections, and systems.
C14.3.1 Reference Documents. Seismic design for composite structures assigned to Seismic Design Category D, E, or F is
governed primarily by Part II: Composite Structural Steel and Reinforced Concrete Buildings of ANSI/AISC 341. Part II of
ANSI/AISC 341 is less prescriptive than Part I and provides flexibility for designers to utilize analytical tools and results of
research in their practice. Composite structures assigned to Seismic Design Category A, B, or C may be designed according
to principles outlined in ANSI/AISC 360 and ACI 318. ACI 318 and ANSI/AISC 360 provide little guidance on connection
design; therefore, designers are encouraged to review ANSI/AISC 341 Part II for guidance on the design of joint areas.
Differences between older AISC and ACI provisions for crosssectional strength for composite columns have been
minimized by changes in the latest ANSI/AISC 360. However, there is not uniform agreement between the provisions in
ACI 318 and ANSI/AISC 360 regarding detailing, limits on material strengths, stability, and shear design for composite
columns. The composite design provisions in ANSI/AISC 360 are considered to be current.
C14.3.2 MetalCased Concrete Piles. Design of metalcased concrete piles, which are analogous to circular concrete filled
tubes, is governed by ASCE/SEI 705 Sections 14.2.3.1.3 and 14.2.3.2.4. The intent of these provisions is to require metalcased
concrete piles to have confinement and protection against longterm deterioration comparable to that for uncased
concrete piles.
C14.4 MASONRY
Seismic design for masonry structures is governed primarily by two documents produced by the Masonry Standards Joint
Committee (MSJC): ACI 53005/ASCE/SEI 505/TMS 4025, Building Code Requirements for Masonry Structures (the
MSJC Code), and ACI 530.105/ASCE/SEI 605/TMS 60205, Specification for Masonry Structures (the MSJC
Specification).
C14.4.2 R Factors. Where intermediate and special reinforced masonry shear walls are designed using the allowablestress
provisions of the MSJC Code, these additional requirements are intended to produce a level of inelastic flexural deformation
capacity consistent with that of intermediate and special reinforced masonry shear walls designed using the strengthdesign
provisions of the MSJC Code. The additional requirements are discussed in ASCE/SEI 705 Section C14.4.6.
C14.4.3 Classification of Shear Walls. Section 1.14 of the 2005 MSJC Code can be interpreted as permitting, in SDCs A
and B, masonry walls that need not be considered part of the lateralforceresisting system and that do not need to be isolated.
ASCE/SEI 705 Section 14.4.3 is intended to preclude that interpretation.
C14.4.5.1 Separation Joints. This section is intended to address force transfer across interfaces between masonry and other
materials, but it is redundant. Article 3.2B of the MSJC Specification requires that the interface between concrete and
masonry be cleaned and acceptable for laying of units. Further, Section 1.9.4.2.4 of the 2005 MSJC Code addresses the
design and transfer of shear at interfaces, and Section 1.7.5.2 requires that a load path and force transfer between a foundation
and the masonry above be maintained.
C14.4.5.2 Flanged Shear Walls. Section 1.9.4.2.3 of the MSJC Code contains the compression requirement (lesser of 6
times the flange thickness or the actual flange). The principal effect of the tension provision in ASCE/SEI 705 Section
14.4.5.2 is to establish the amount of tensile reinforcement used in calculating flexural capacity and maximum permitted
reinforcement, but this provision is not well established technically. Research in masonry, and analogous design provisions
for concrete (ACI 318 Section 21.7.5.2), suggest that effective flange widths in tension are more logically related to the total
wall height rather than the floortofloor height. The 2005 MSJC Code and ASCE/SEI 705 are working together to resolve
this issue and add appropriate requirements to TMS 402.
C14.4.6 Modifications to Chapter 2 of ACI 530/ASCE/SEI 5/TMS 402. Chapter 2 of the MSJC Code deals with
allowablestress design.
C14.4.6.1 Stress Increase. The MSJC Code permits allowable stresses to be increased by onethird for allowablestress
loading conditions that include wind or earthquake, provided that the legally adopted building code so permits. While the
alternate allowablestress loading combinations of the 2006 IBC do so permit, the allowablestress loading combinations of
ASCE/SEI 705 do not.
C14.4.6.2 Reinforcement Requirements and Details.
C14.4.6.2.1 Reinforcing Bar Size Limitations. The intent of this requirement is to prevent splitting of masonry due to the
presence of reinforcement. A similar requirement is appears in Chapter 3 (Strength Design) of the 2005 MSJC Code. The
MSJC is working to move that requirement to Chapter 1 (General Requirements) so that it would apply to all masonry
construction.
C14.4.6.2.2 Splices. In general, the first portion of this section, which prohibits splices in plastic hinge zones, is intended to
produce adequate inelastic deformation capacity in those regions. In general, the presence of splices in plastic hinge zones
reduces inelastic deformation capacity because the area of steel is doubled at the splice, reducing the extent of yielding.
However, there is some controversy concerning the technical validity and necessity for this requirement for masonry walls.
Similar requirements apply to plastic hinge zones of reinforced concrete frames, they do not apply to plastic hinge zones of
reinforced concrete walls. Also, this requirement does not distinguish between shearcritical and flexurally dominated shear
walls. The MSJC is continuing to discuss related requirements for flexurally dominated, highly ductile shear walls.
The remaining portions of this section (requirements for splices) are intended to provide adequate capacity of welded splices
and mechanical connections. The MSJC is developing similar provisions.
C14.4.6.2.3 Maximum Area of Flexural Tensile Reinforcement. The intent of this section is to produce adequate inelastic
flexural deformation capacity in flexurally dominated masonry shear walls by placing an upper limit on flexural
reinforcement, so that behavior is dominated by yielding of reinforcement rather than by crushing of the compression toe.
Similar provisions appear in Chapter 3 (Strength Design) of the MSJC Code and are being developed for Chapter 2
(AllowableStress Design).
C14.4.7 Modifications to Chapter 3 of ACI 530/ASCE/SEI 5/TMS 402.
C14.4.7.2 Splices in Reinforcement. See Section C14.4.6.2.2.
C14.4.7.3 Coupling Beams. The intent of this requirement is to produce adequate inelastic flexural deformation capacity in
coupling beams. The section is somewhat redundant with Section 3.1.3 of the MSJC Code, which requires capacity design of
masonry elements for shear.
C14.4.7.4 Deep Flexural Members. The intent of this requirement is to require that the design of deep flexural members
correctly addresses the presence of distributed flexural reinforcement in capacity design for shear, and that crack widths are
adequately controlled.
C14.4.7.5 Shear Keys. The intent of this requirement is to increase resistance to sliding shear at the foundation level of
flexurally dominated masonry shear walls. The original proposal was based on laboratory research (Leiva et al., 1990)
involving isolated shear walls. In subsequent research (Seible et al., 1993), flanged walls without shear keys did not show
sliding.
C14.4.7.6 Anchoring to Masonry. The intent of this requirement is to guard against brittle failure of masonry anchorages
that are part of the seismic forceresisting system.
C14.4.7.7 Anchor Bolts. ASCE/SEI 705 Sections 14.4.7.7 and 14.4.7.8 augment the current anchor bolt provisions of
MSJC Code Chapter 3 (Strength Design) to address pryout and to include an appropriate f factor.
C14.4.8 Modifications to Chapter 6 of ACI 530/ASCE/SEI 5/TMS 402. There is an apparent difference in the treatment
of corrugated sheet metal anchors in different chapters of the MSJC Code. Chapter 6 of that document, dealing with masonry
veneer, permits corrugated sheetmetal anchors. Chapters 2 and 3 of that document do not permit multiwythe, noncomposite
masonry (functionally identical to veneer) to be bonded by corrugated sheetmetal anchors.
C14.4.9 Modifications to ACI 530.1/ASCE/SEI 6/TMS 602.
C14.4.9.1 Construction Procedures. This requirement was introduced originally as a result of the TCCMaR program as a
way to address volume loss as a result of plastic shrinkage of grout. The original provision required the use of a particular
admixture (Sika’s Grout Aid®) in the grout. The MSJC Specification requires both consolidation and reconsolidation of
masonry grout, which in combination with today’s masonry construction materials can minimize grout shrinkage without the
requirement of a proprietary grout admixture available from a single source.
C14.5 WOOD
C14.5.1 Reference Documents. Two national consensus standards are adopted for seismic design of engineered wood
structures: the National Design Specification (NDS), and the Special Design Provisions for Wind and Seismic (SDPWS)
Supplement to the NDS. Both of these standards, published by the American Forest and Paper Association (AF&PA), are
presented in dual allowable stress design (ASD) and load and resistance factor design (LRFD) formats. Both standards
reference a number of secondary standards for related items such as wood materials and fasteners. SDPWS addresses general
principles and specific detailing requirements for shear wall and diaphragm design and provides tabulated nominal unit shear
capacities for shear wall and diaphragm sheathing and fastening. The balance of member and connection design is to be in
accordance with the NDS. A commentary to the NDS is published by AF&PA (2005b); commentary to the SDPWS is
included in the SDPWS publication (AF&PA, 2005c).
C14.5.2 Framing. This section provides specific guidance on two general topics related to detailing. First, vertical loads on
columns and posts must be transferred in and out by end bearing only or by connectors only; mixing the capacity of end
bearing and connectors is prohibited due to a potential lack of deformation compatibility. Second, load path continuity for
top plates, which often function as collectors, is addressed.
C14.5.3.1 ASCE/SEI 705 Modification to SDPWS Section 4.3.3.2, Summing Shear Capacities. This amendment to the
SDPWS does not provide additional clarity; therefore, it is expected to be deleted ASCE/SEI 710.
REFERENCES
American Forest and Paper Association. 2005a. National Design Specification (NDS) for Wood Construction,
ANSI/AF&PA NDS2005. AF&PA, Washington, D.C.
American Forest and Paper Association. 2005b. National Design Specification Commentary, 2005 ed. AF&PA,
Washington, D.C.
American Forest and Paper Association. 2005c. Special Design Provisions for Wind and Seismic (Wind & Seismic),
ANSI/AF&PA SDPWS2005. AF&PA, Washington, D.C.
American Institute of Timber Construction. 2005. Timber Construction Manual, 5th ed. John Wiley and Sons, Inc.
APA  The Engineered Wood Association. 2004. Diaphragms and Shear Walls Design/Construction Guide, L350. APA,
Tacoma, Washington.
APA  The Engineered Wood Association. 1994. Northridge California Earthquake, T945. APA, Tacoma, Washington.
Applied Technology Council. 1981. Guidelines for the Design of Horizontal Wood Diaphragms, ATC7. ATC, Redwood
City, California.
Banks, G., and J. Stanton. 2005. “PaneltoPanel Connections for HollowCore Shear Walls Subjected to Seismic Loading,”
in Proceedings, 2005 PCI Convention, Palm Springs, California.
Breyer et al. 2006. Design of Wood Structures ASD/LRFD, Sixth Edition. McGrawHill Book Company, New York, New
York.
Building Seismic Safety Council. 2003. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and
Other Structures, FEMA 450. Federal Emergency Management Agency, Washington, D.C.
Canadian Wood Council. 2005. Wood Design Manual 2005. Canadian Wood Council, Ottawa.
Canadian Wood Council. 1995. Wood Reference Handbook. Canadian Wood Council, Ottawa.
Cobeen, K. 2004. “Recent developments in the Seismic Design and Construction of Woodframe Buildings,” Chapter 18 of
Earthquake Engineering from Engineering Seismology to PerformanceBased Engineering, edited by Yousef Bozorgia and
Vitelmo Bertero. CRC Press, LLC, Boca Raton, Florida.
Consortium of Universities for Research in Earthquake Engineering. 2004. Recommendations for Earthquake Resistance in
the Design and Construction of Woodframe Buildings, CUREE W30. CUREE, Richmond, California.
Department of the Army, Navy, and Air Force. 1992. Seismic Design for Buildings, TM580910 (TriServices Manual).
U.S. Government Printing Office, Washington, D.C.
Dolan, J. D. 2003. “Wood Structures,” Chapter 15 of Earthquake Engineering Handbook, edited by WaiFah Chen and
Charles Scawthorn. CRC Press, LLC, Boca Raton, Florida.
Earthquake Engineering Research Institute. 1996. “Northridge earthquake reconnaissance report,” Earthquake Spectra,
Chapter 6 of Supplement C to Volume 11.
Faherty, Keith F., and T. G. Williamson. 1989. Wood Engineering and Construction Handbook. McGrawHill, New York,
New York.
Federal Emergency Management Agency. 2005. Coastal Construction Manual, Third Edition, FEMA 55. FEMA,
Washington, D.C.
Forest Products Laboratory. 1986. Wood: Engineering Design Concepts. Materials Education Council, The Pennsylvania
State University, University Park.
Goetz, KarlHeinz, Dieter Hoor, Karl Moehler, and Julius Natterer. 1989. Timber Design and Construction Source Book: A
Comprehensive Guide to Methods and Practice. McGrawHill, New York, New York.
Hoyle and Woeste. 1989. Wood Technology and Design of Structures. Iowa State University Press.
International Code Council. 2006. “ICC Standard on the Design and Construction of Log Structures,” Third Draft. ICC,
Country Club Hills, Illinois.
Ishizuka, T., and N. M. Hawkins. 1987. Effect of Bond Deterioration on the Seismic Response of Reinforced and Partially
Prestressed Concrete Ductile Moment Resistant Frames, Report SM 872. Department of Civil Engineering, University of
Washington, Seattle.
Karacabeyli, E., and M. Popovsky . 2003. “Design for Earthquake Resistance,” Chapter 15 of Timber Engineering, edited
by H. Larsen & S. Thelandersson. John Wiley & Sons.
Keenan, F. J. 1986. Limit States Design of Wood Structures. Morrison Hershfield Limited.
Masonry Standards Joint Committee (MSJC). 2005a. Building Code Requirements for Masonry Structures, ACI 530
05/ASCE/SEI 505/TMS 4025.
Masonry Standards Joint Committee. 2005b. Specification for Masonry Structures, ACI 530.105/ASCE/SEI 605/TMS
60205.
Nakaki, S., R. Becker, M. G. Oliva, and D. Paxson. 2005. “New Connections for Precast Wall Systems in High Seismic
Regions,” in Proceedings, 2005 PCI Convention, Palm Springs, California.
Nakaki, S., J. F. Stanton, and S. Sritharan. 2001. “The PRESSS FiveStory Precast Concrete Test Building, University of
California, San Diego, La Jolla, California,” PCI Journal, 46(5):2026.
Park, R., and K. J. Thompson. 1977. “Cyclic Load Tests on Pretsressed and Partially Prestressed BeamColumn Joints,”
PCI Journal, 22(3):84110.
Schultz, A. E., and R. A. Magana. 1996. “Seismic Behavior of Connections in Precast Concrete Walls,” Proceedings, Mete
A. Sozen Symposium, SP162, pp. 273311. American Concrete Institute, Farmington Hills, Michigan.
Steel Deck Institute. 2004. Diaphragm Design Manual, 3rd Edition, No. DDMO3. SDI, Fox River Grove, Illinois.
Structural Engineeers Association of California. 1999. Recommended Lateral Force Requirements and Commentary.
SEAOC, Sacramento, California.
Structural Engineeers Association of Northern California. 2005. Guidelines for Seismic Evaluation and Rehabilitation of
Tiltup Buildings and Other Rigid Wall/Flexible Diaphragm Structures. SEAONC, Sacramento, California.
Sherwood and Stroh. 1989. “WoodFrame House Construction” in Agricultural Handbook 73. U.S. Government Printing
Office, Washington, D.C.
Somayaji, Shan. 1992. Structural Wood Design. West Publishing Co., St. Paul, Minnesota.
Stalnaker, Judith J., and E. C. Harris. 1996. Structural Design in Wood, Second Edition. McGrawHill, New York, New
York.
U.S. Department of Agriculture, National Oceanic and Atmospheric Administration. 1971. San Fernando, California,
Earthquake of February 9, 1971. NOAA, Washington, D.C.
Page intentionally left blank.
Figure C15.11 Image of Steel multilegged water tower.
COMMENTARY TO CHAPTER 15,
SEISMIC DESIGN REQUIREMENTS FOR
NONBUILDING STRUCTURES
C15.1.1 Nonbuilding Structures. Building codes traditionally have been perceived as minimum standards for the design of
nonbuilding structures, and building code compliance of these structures is required by building officials in many
jurisdictions. However, requirements in the industry reference documents are often at odds with building code requirements.
In some cases, the industry documents need to be altered while in other cases the building codes need to be modified.
Registered design professionals are not always aware of the numerous accepted documents within an industry and may not
know whether the accepted documents are adequate. The intent of Chapter 15 of the standard is to bridge the gap between
building codes and existing industry reference documents.
Differences between the ASCE/SEI 705 design approaches for buildings and industry document requirements for steel
multilegged water towers (Figure C15.11) are representative of this inconsistency. Historically, such towers have
performed well when properly designed in accordance with American Water Works Association (AWWA) standards and
industry practices. Those standards and practices differ from the ASCE/SEI 705 treatment of buildings in that tensiononly
rods are allowed, upset rods are preloaded at the time of installation, and connection forces are not amplified.
Figure C15.11 Steel multilegged water tower.
Chapter 15 also provides an appropriate link so that the industry reference documents can be used with the seismic ground
motions established in the standard. It should be noted that some nonbuilding structures are very similar to buildings and can
be designed employing sections of the standard directly, whereas other nonbuilding structures require special analysis unique
to the particular type of nonbuilding structure.
Note that building structures, vehicular bridges, electrical transmission towers, hydraulic structures (e.g., dams), buried utility
lines and their appurtenances, and nuclear reactors are excluded from the scope of the nonbuilding structure requirements.
The excluded structures are covered by other well established design criteria (e.g., electrical transmission towers and
vehicular bridges), are not under the jurisdiction of local building officials (e.g., nuclear reactors, and dams), or require
technical considerations beyond the scope of the standard (e.g., buried utility lines and their appurtenances).
C15.1.2 Design. Nonbuilding structures and building structures have much in common with respect to design intent and
expected performance, but there are also important differences. Chapter 15 relies on other portions of the standard where
possible and provides special notes where necessary.
There are two types of nonbuilding structures: those with structural systems similar to buildings, and those with structural
systems not similar to buildings. Specific requirements for these two cases appear in Sections 15.5 and 15.6.
Figure C15.12 Image of Steel pipe rack.
C15.1.3 Structural Analysis Procedure Selection. Nonbuilding structures that are similar to buildings are subject to the
same analysis procedure limitations as building structures. Nonbuilding structures that are not similar to buildings are subject
to those limitations and are subject to procedure limitations prescribed in applicable specific reference documents.
For many nonbuilding structures supporting flexible system components, such as pipe racks (Figure C15.12), the supported
piping and platforms generally are not regarded as rigid enough to redistribute seismic forces to the supporting frames.
Figure C15.12 Steel pipe rack.
For nonbuilding structures supporting rigid system components, such as steam turbine generators (STGs) and heat recovery
steam generators (HRSGs) (Figure C15.13), the supported equipment, ductwork, and other components (depending on how
they are attached to the structure) may be rigid enough to redistribute seismic forces to the supporting frames. Torsional
effects may need to be considered in such situations.
Section 12.6 presents seismic analysis procedures for building structures based on the Seismic Design Category; the
fundamental period, T; and the presence of certain horizontal or vertical irregularities in the structural system. Where the
fundamental period is greater than or equal to 3.5Ts (where Ts = SD1/SDS), the use of the equivalent lateral force procedure is
not permitted in Seismic Design Categories D, E, and F. This requirement is based on the fact that, unlike the dominance of
the first mode response in case of buildings with lower first mode period, higher vibration modes do contribute more
significantly in situations when the first mode period is larger than 3.5Ts. For buildings that exhibit classic flexural
deformation patterns (such as slender shear wall or braced frame systems), the second mode frequency is at least 3.5 times
the first mode frequency, so where the fundamental period exceeds 3.5Ts, the higher modes will have larger contributions to
the total response as they occur near the peak of the design response spectrum
It follows that dynamic analysis (modal response spectrum analysis, or responsehistory analysis) is required for buildinglike
nonbuilding structures if the first mode period is larger than 3.5Ts and that the equivalent lateral force analysis is sufficient
for nonbuilding structures that respond as singledegreeoffreedom systems such as singlepedestal elevated water tanks.
The recommendations for nonbuilding structures provided below are intended to supplement the designer’s judgment and
experience. The designer is given considerable latitude in selecting a suitable analysis method for nonbuilding structures.
Figure C15.13 Image of Heat recovery steam generators.
Figure C15.13 Heat recovery steam generators.
Buildinglike Nonbuilding Structures. Table 12.61 is used in selecting analysis methods for buildinglike nonbuilding
structures, but, as illustrated in the following three conditions, the relevance of key behavior must be considered carefully:
1. Irregularities: Table 12.61 requires dynamic analysis for Seismic Design Category D, E, and F structures having certain
horizontal or vertical irregularities. Some of these building irregularities (defined in Section 12.3.2) are relevant to
nonbuilding structures. The weakand softstory vertical irregularities (Types 1a, 1b, 5a, and 5b of Table 12.32) are
pertinent to the behavior of buildinglike nonbuilding structures. Other vertical and horizontal irregularities may or may
not be relevant as described below.
a. Horizontal irregularities: Horizontal irregularities of Type 1a and 1b affect the choice of analysis method, but these
irregularities apply only where diaphragms are rigid or semirigid and some buildinglike nonbuilding structures have
either no diaphragms or flexible diaphragms.
b. Vertical irregularities: Vertical irregularity Type 2 is relevant where the various levels actually support significant
loads. Where a buildinglike nonbuilding structure supports significant mass at a single level, while other levels
support small masses associated with stair landings, access platforms, and so forth, dynamic response will be
dominated by the first mode, so the equivalent lateral force procedure may be applied. Vertical irregularity Type 3
addresses large differences in the horizontal dimension of the seismic forceresisting system in adjacent stories,
since the resulting stiffness distribution can produce a fundamental mode shape unlike that assumed in the
development of the equivalent lateral force procedure. Since the concern relates to stiffness distribution, it is the
horizontal dimension of the seismic forceresisting system, not of the overall structure, that is important.
2. Arrangement of supported masses: Even where a nonbuilding structure has buildinglike appearance, it may not behave
like a building, depending on how masses are attached. For example, the response of nonbuilding structures with
suspended vessels and boilers cannot be determined reliably using the equivalent lateral force procedure because of the
pendulum modes associated with the significant mass of the suspended components. The resulting pendulum modes,
while potentially reducing story shears and base shear, may require large clearances to allow pendulum motion of the
supported components and may produce excessive demands on attached piping. Dynamic analysis should be performed
in such cases, with consideration for appropriate impact forces in the absence of adequate clearances.
Figure C15.14 of Multiple lateral supports.
3. Relative rigidity of beams: Even where a classic building model may seem appropriate, the equivalent lateral force
procedure may underpredict the total response if the beams are flexible relative to the columns (of moment frames) or
the braces (of braced frames). This is because higher modes associated with beam flexure may contribute more
significantly to the total response (even if the first mode response is at a period less than 3.5Ts). This situation of
flexible beams can be especially pronounced for nonbuilding structures since the “normal” floors common to buildings
may be absent. Therefore, the dynamic analysis procedures are recommended for buildinglike nonbuilding structures
with flexible beams.
Nonbuilding Structures Not Similar to Buildings. The (static) equivalent lateral force procedure is based on classic
building dynamic behavior, which is an inappropriate characterization for many nonbuilding structures not similar to
buildings. As discussed below, several issues should be considered for selecting either an appropriate method of dynamic
analysis or a suitable distribution of lateral forces for static analysis.
1. Structural geometry: The dynamic response of nonbuilding structures with a fixed base and a relatively uniform
distribution of mass and stiffness, such as bottomsupported vertical vessels, stacks, and chimneys, can be represented
adequately by a cantilever (shear building) model. For these structures the equivalent lateral force procedure provided in
the standard is suitable. This procedure treats the dynamic response as being dominated by the first mode. In such cases,
it is necessary to identify the first mode shape (using, for instance, the RayleighRitz method or other classical methods
from the literature) for distribution of the dynamic forces. For some structures, such as tanks with low heighttodiameter
ratios storing granular solids, it is conservative to assume a uniform distribution of forces. Dynamic analysis is
recommended for structures that have neither a uniform distribution of mass and stiffness nor an easily determined first
mode shape.
2. Number of lateral supports: Cantilever models are obviously unsuitable for structures with multiple supports. Figure
C15.14 shows a nonbuilding braced frame structure that provides nonuniform horizontal support to a piece of
equipment. In such cases, the analysis should include coupled model effects. For such structures an application of the
equivalent lateral force method could be used depending on the number and locations of the supports. For example,
most beamtype configurations lend themselves to application of the equivalent lateral force method.
Figure C15.14 Multiple lateral supports.
3. Method of supporting dead weight: Certain nonbuilding structures (such as power boilers) are supported from the top.
They may be idealized as pendulums with uniform mass distribution. In contrast, a suspended platform may be idealized
as a classic pendulum with concentrated mass. In either case, these types of nonbuilding structures can be analyzed
adequately using the equivalent lateral force method by calculating the appropriate frequency and mode shape. Figure
C15.15 shows a nonbuilding structure containing lug supported equipment with WP greater than 0.25(WS + WP). In
such cases, the analysis should include a coupled system with the mass of the equipment and the local flexibility of the
supports considered in the model. Where the support is located near the nonbuilding structure’s vertical location of the
center of mass, a dynamic analysis is recommended.
Figure C15.15 of Unusual support of dead weight.
Figure C15.16 of Mass irregularities.
W1
W2
W1
W2
W3
W4
(a) (b)
Figure C15.15 Unusual support of dead weight.
4. Mass irregularities: Just as in the case of buildinglike nonbuilding structures, the presence of significantly uneven mass
distribution can render the structures unsuitable for application of the equivalent lateral force method. The dynamic
analysis methods are recommended in such situations. Figure C15.16 illustrates two such situations. In part (a), a mass
irregularity exists if W1 is greater than 1.5W2 or less than 0.67W2. In part (b), a mass irregularity exists if W3 is greater
than either 1.5W2 or 1.5W4.
Figure C15.16 Mass irregularities.
Figure C15.17 of Torsional irregularity.
Figure C15.18 of Softstory irregularity.
5. Torsional irregularities: Structures in which the fundamental mode of response is torsional or in which modes with
significant mass participation exhibit a prominent torsional component may also have inertial force distributions that are
significantly different from that predicted by the equivalent lateral force method. In such cases dynamic analyses should
be considered. Figure C15.17 illustrates one such case where a vertical vessel is attached to a secondary vessel with W2
greater than about 0.25(W1 + W2).
Figure C15.17 Torsional irregularity.
6. Stiffness/strength irregularities: Just as for buildinglike nonbuilding structures, abrupt changes in the distribution of
stiffness or strength in a nonbuilding structure not similar to buildings can result in substantially different inertial forces
that differ substantially from those indicated by the equivalent lateral force method. Figure C15.18 represents one such
case. For structures having such configurations, consideration should be given to use of dynamic analysis procedures.
Even where dynamic analysis is required, the standard does not define in any detail the degree of modeling; an adequate
model may have a few dynamic degrees of freedom or tens of thousands of dynamic degrees of freedom. The important
point is that the model captures the significant dynamic response features so that the resulting lateral force distribution is
valid for design. The designer is responsible to determine whether dynamic analysis is warranted and, if so, the degree
of detail required to address adequately the seismic performance.
Figure C15.18 Softstory irregularity.
Figure C15.19 of Coupled system.
WS
WP
(a) (b)
Nonbuilding
structure
Support
structure
7. Coupled Response: Where the weight of the supported structure is large compared to the weight of the supporting
structure, the combined response can be affected significantly by the flexibility of the supported nonbuilding structure.
In that case, dynamic analysis of the coupled system is recommended. Examples of such structures are shown in
Figure C15.19. Part (a) shows a flexible nonbuilding structure with Wp greater than 0.25(Ws + Wp), supported by a
relatively flexible structure; the flexibility of the supports and attachments should be considered. Part (b) shows flexible
equipment connected by a largediameter, thickwalled pipe and supported by a flexible structure; the structures should
be modeled as a coupled system including the pipe.
Figure C15.19 Coupled system.
C15.2 REFERENCE DOCUMENTS
Chapter 15 of the standard makes extensive use of reference documents in the design of nonbuilding structures for seismic
forces. The documents referenced in Chapter 15 are industry documents commonly used to design specific types of
nonbuilding structures. The vast majority of these reference documents contain seismic provisions that are based on the
seismic ground motions of the 1997 UBC or earlier editions of the UBC. In order to use these reference documents, Chapter
15 modifies the seismic force provisions of these reference documents through the use of “bridging equations.” The standard
only modifies industry documents that specify seismic demand and capacity. The bridging equations are intended to be used
directly with the other provisions of the specific reference documents. Unlike the other provisions of the standard, if the
reference documents are written terms of allowable stress design, then the bridging equations are shown in allowable stress
design format. In addition, the detailing requirements referenced in Tables 15.41 and Table 15.42 must be followed, as well
as the general requirements found in Section 15.4.1. The usage of reference documents in conjunction with the requirements
of Section 15.4.1 are summarized below in Table C15.21.
Table C15.21 Usage of Reference Documents in Conjunction with Section 15.4.1
Subject
Requirement
R, O0, and Cd values, detailing
requirements, and height limits
Use values and limits in Tables 12.21, 15.41, or 15.42 as appropriate.
Values from the reference document are not to be used.
Minimum base shear
Use the appropriate value from Equation 15.41 or 15.42 for nonbuilding
structures not similar to buildings. For structures containing liquids, gases,
and granular solids supported at the base, the minimum seismic force
cannot be less than that required by the reference document.
Importance factor
Use the value from Section 15.4.1.1 based on Occupancy Category.
Importance factors from the reference document are not to be used unless
they are greater than those provided in the standard.
Vertical distribution of lateral
load
Use requirements of Section 12.8.3 or Section 12.9 or the applicable
reference document.
Seismic provisions of
reference documents
The seismic force provisions of reference documents may be used only if
they have the same basis as Section 11.4 and the resulting values for total
lateral force and total overturning moment are no less than 80 percent of
the values obtained from the standard.
Load combinations
Load combinations specified in Section 2.3 (LRFD) or Section 15 (includes
ASD load combinations of Section 2.4) must be used.
Currently, only two reference documents have been revised to meet the seismic requirements of the standard. AWWA D100
05 and API 650 10th Edition Addendum 4 (2005) have been adopted by reference in the standard without modification except
that height limits are imposed on “elevated tanks on symmetrically braced legs (not similar to buildings)” in AWWA D100
05. Both of these reference documents apply to welded steel liquid storage tanks.
C15.3 NONBUILDING STRUCTURES SUPPORTED BY OTHER SRUCTURES
There are instances where nonbuilding structures not similar to buildings are supported by other structures or other
nonbuilding structures. This section specifies how the seismic design loads for such structures are to be determined and the
detailing requirements that are to be satisfied in the design.
C15.3.1 Less than 25 Percent of Combined Weight Condition. In many instances, the weight of the supported
nonbuilding structure is relatively small compared to the weight of the supporting structure such that the supported
nonbuilding structure will have a relatively small effect on the overall nonlinear earthquake response of the primary structure
during designlevel ground motions. It is permitted to treat such structures as nonstructural components and use the
requirements of Chapter 13 for their design. The ratio of secondary component weight to total weight of 25 percent at which
this treatment is permitted is based on judgment and was introduced into code provisions in the 1988 Uniform Building Code
by the SEAOC Seismology Committee. Analytical studies, typically based on linear elastic primary and secondary
structures, indicate that the ratio should be lower, but the SEAOC Seismology Committee judged that the 25 percent ratio is
appropriate where primary and secondary structures exhibit nonlinear behavior that tends to lessen the effects of resonance
and interaction. In cases where a nonbuilding structures (or nonstructural component) is supported by another structure, it
may be appropriate to analyze in a single model. In such cases it is intended that seismic design loads and detailing
requirements be determined following the procedures of Section 15.3.2. Where there are multiple large nonbuilding
structures, such as vessels supported on a primary nonbuilding structure, and the weight of an individual supported
nonbuilding structure does not exceed the 25 percent limit but the combined weight of the supported nonbuilding structures
does, it is recommended that the combined analysis and design approach of Section 15.3.2 be used. It is also suggested that
dynamic analysis be performed in such cases, since the equivalent lateral force procedure may not capture some important
response effects in some members of the supporting structure.
Where the weight of the supported nonbuilding structure does not exceed the 25 percent limit and a combined analysis is
performed, the following procedure should be used to determine the Fp force of the supported nonbuilding structure based on
Equation 13.34:
1. A modal analysis should be performed in accordance with Section 12.9. The base shear of the combined structure and
nonbuilding structure should be taken as no less than 85 percent of the equivalent lateral force procedure base shear.
2. For a component supported at level i, the acceleration at that level should be taken as ai, the total shear just below level i
divided by the seismic weight at and above level i.
3. The elastic value of the component shear force coefficient should next be determined as the shear force from the modal
analysis at the point of attachment of the component to the structure divided by the weight of the component. This value
is preliminarily taken as aiap. Since ap cannot be taken as less than 1.0, the value of ap is taken as aiap / ai, except that
the final value ap need not be taken as greater than 2.5 and should not be taken as less than 1.0. The final value of aiap
should be the final value of ai determined in Step 2 multiplied by the final value of ap determined earlier in this step.
4. The resulting value of (aiap) should be used in Equation 13.34; the resulting value of Fp is subject to the maximum and
minimum values of Equations 13.32 and 13.33, respectively.
C15.3.2 Greater Than or Equal to 25 Percent Combined Weight Condition. Where the weight of the supported
structure is relatively large compared to the weight of the supporting structure, the overall response can be affected
significantly. The standard sets forth two analysis approaches, depending on the rigidity of the nonbuilding structure. The
determination of what is deemed rigid or flexible is based on the same criteria used for nonstructural components.
Where the supported nonbuilding structure is rigid, it is acceptable to treat the supporting structure as a nonbuilding structure
similar to a building and to determine its design loads and detailing using the requirements of Section 15.5. The design of the
rigid nonbuilding structure and its anchorage is determined using the requirements of Chapter 13 with the amplification
factor, ap, taken as 1.0. However, this is a relatively rare condition since the flexibility of any directly supporting members in
the primary structure, such as floor beams, must be considered in determining the period of the component.
In the usual case, where the supported nonbuilding structure is flexible, a combined model of the supporting structure and the
supported nonbuilding structure is used. The design loads and detailing are determined based on the lower R value of the
supported nonbuilding structure or supporting structure.
Although not specifically mentioned in Section 15.3.2, another approach is permitted. A nonlinear response history analysis
of the combined system can be performed in accordance with Section 16.2, and the results can be used for the design of both
the supported and supporting nonbuilding structures. This option should be considered where standard static and dynamic
elastic analysis approaches may be inadequate to evaluate the earthquake response (such as for suspended boilers). This
option should be used with extreme caution since modeling and interpretation of results requires considerable judgment. Due
to this sensitivity, Section 16.2 requires independent design review.
C15.4 STRUCTURAL DESIGN REQUIREMENTS
This section specifies the basic coefficients and minimum design forces to be used to determine seismic design loads for
nonbuilding structures. It also specifies height limits and restrictions. As with building structures, it presumes that the first
step in establishing the design forces is to determine the design base shear for the structure.
There are two types of nonbuilding structures: those with structural systems similar to buildings and those with structural
systems not similar to buildings. Specific requirements for these two cases appear in Sections 15.5 and 15.6.
C15.4.1 Design Basis. Separate tables are provided in this section that identify the basic coefficients, associated detailing
requirements, and height limits and restrictions for the two types of nonbuilding structures.
For nonbuilding structures similar to buildings, the design seismic loads are determined using the same procedures used for
buildings as specified in Chapter 12 with two exceptions: fundamental periods are determined in accordance with Section
15.4.4, and Table 15.41 provides additional options for structural systems. Although only Section 12.8 (the equivalent
lateral force procedure) is specifically mentioned in Section 15.4.1, Section 15.1.3 provides the analysis procedures that are
permitted for nonbuilding structures.
In Table 15.41, seismic coefficients, system restrictions, and height limits are specified for a few nonbuilding structures
similar to buildings. The values of R, O o, and Cd, the detailing requirement references, and the structural system height
limits are the same as those in Table 12.21 for the same systems, except for ordinary moment frames. In Chapter 12
increased height limits for ordinary moment frames structural systems apply to metal building systems, while in Chapter 15
they apply to pipe racks with end plate bolted moment connections. The seismic performance of pipe racks was judged to be
similar to that of metal building structures with end plate bolted moment connections, so the height limits were made the
same as those specified in previous editions.
Table 15.41 also provides lower R values with less restrictive height limits in Seismic Design Categories D, E, and F based
on good performance in past earthquakes. For some options, no seismic detailing is required if very low values of R (and
corresponding high seismic design forces) are used. The concept of extending this approach to other structural systems is the
subject of future research using the methodology developed by the ATC 63 project.
For nonbuilding structures not similar to buildings, the seismic design loads are determined as in Chapter 12 with three
exceptions: the fundamental periods are determined in accordance with Section 15.4.4, the minima are those specified in
Section 15.4.1.2, and the seismic coefficients are those specified in Table 15.42.
Some entries in Table 15.42 may seem to be conflicting or confusing. For example, the first major entry is for elevated
tanks, vessels, bins, or hoppers. A subset of this entry is for tanks on braced or unbraced legs. This subentry is intended for
structures where the supporting columns are integral with the shell (such as an elevated water tank). Tensiononly bracing is
allowed for such a structure. Where the tank or vessel is supported by buildinglike frames, the frames are to be designed in
accordance with all of the restrictions normally applied to building frames. The entry for tanks or vessels supported on
structural towers similar to buildings assumes that the operating weight of the supported tank or vessel is less than 25 percent
of the total weight; if the ratio is greater than 25 percent, the proper entry is that most closely related to the subject vessel or
bin.
C15.4.1.1 Importance Factor. The importance factor for a nonbuilding structure is based on the occupancy category
defined in Chapter 1 of the standard or the building code being used in conjunction with the standard. In some cases,
reference standards provide a higher importance factor, in which case the higher importance factor is used.
If the importance factor is taken as 1.0 based on a Hazard and Operability (HAZOP) analysis performed in accordance with
Chapter 1, the third paragraph of Section 1.5.2 requires careful consideration; worstcase scenarios (instantaneous release of a
vessel or piping system) must be considered. HAZOP risk analysis consultants often do not make such assumptions, so the
design professional should review the HAZOP analysis with the HAZOP consultant to confirm that such assumptions have
been made in order to validate adjustment of the importance factor. Clients may not be aware that HAZOP consultants do
not normally consider the worstcase scenario of instantaneous release but tend to focus on other more hypothetical limitedrelease
scenarios, such as those associated with a 2inch square hole in a tank or vessel.
C15.4.2 Rigid Nonbuilding Structures. The definition of rigid (having a natural period of less than 0.06 second) was
selected judgmentally. Below that period, the energy content of seismic ground motion is generally believed to be very low,
and therefore the building response is not likely to be excessively amplified. Also, it is unlikely that any building will have a
first mode period as low as 0.06 second, and it is even unusual for a second mode period to be that low. Thus, the likelihood
of either resonant behavior or excessive amplification becomes quite small for equipment having periods below 0.06 second.
The analysis to determine the period of the nonbuilding structure should include the flexibility of the soil subgrade.
C15.4.3 Loads. As for buildings, the seismic weight must include the range of design operating weight of permanent
equipment.
C15.4.4 Fundamental Period. A significant difference between building structures and nonbuilding structures is that the
approximate period formulas and limits of Section 12.8.2.1 may not be used for nonbuilding structures. In lieu of calculating
a specific period for a nonbuilding structure for determining seismic lateral forces, it is of course conservative to assume a
period of Ts (= SD1/SDS) which results in the largest lateral design forces. Computing the fundamental period is not
considered a significant burden, since most commonly used computer analysis programs can perform the required
calculations.
C15.4.8 SiteSpecific Response Spectra. Where sitespecific response spectra are required, they should be developed in
accordance with Chapter 21 of the standard. If determined for other recurrence intervals, Section 21.1 applies, but Sections
21.2 through 21.4 apply only to MCE determinations. Where other recurrence intervals are used, it should be demonstrated
that the requirements of Chapter 15 also are satisfied.
C15.5 NONBUILDING STRUCTURES SIMILAR TO BUILDINGS
C15.5.1 General. Although certain nonbuilding structures exhibit behavior similar to that of building structures, their
functions and occupancies are different. Section 15.5 of the standard addresses the differences.
C15.5.2 Pipe Racks. Freestanding pipe racks supported at or below grade with framing systems that are similar to building
systems are designed in accordance with Section 12.8 or 12.9 and Section 15.4. Singlecolumn pipe racks that resist lateral
loads should be designed as inverted pendulums.
Based on good performance in past earthquakes, Table 15.41 sets forth the option of lower R values and less restrictive
height limits for structural systems commonly used in pipe racks. The R value versus height limit tradeoff recognizes that
the size of some nonbuilding structures is determined by factors other than traditional loadings and results in structures that
are much stronger than required for seismic loadings. Therefore, the ductility demand is generally much lower than that for a
corresponding building. The intent is to obtain the same structural performance at the increased heights. This option will
prove to be economical in most situations due to the relative cost of materials and construction labor. The lower R values and
increased height limits of Table 15.41 apply to nonbuilding structures similar to buildings; they cannot be applied to
building structures. Table C15.51 illustrates the R values and height limits for a 70foothigh steel ordinary moment frame
(OMF) pipe rack.
Table C15.51 R Value Selection Example for Steel OMF Pipe Racks
SDC
R
ASCE/SEI 705 Table
System
Seismic Detailing
Requirements
C
3.5
12.21 or 15.41
Ordinary steel moment frame
AISC 341
C
3
12.21
Structural steel systems not
specifically detailed for seismic
resistance
None
D or E
2.5
15.41
Steel OMF with permitted height
increase
AISC 341
(AISC Seismic)
D, E, or
F
1
15.41
Steel OMF with unlimited height
None
C15.5.3 Steel Storage Racks. The two approaches to the design of steel storage racks set forth by the standard are intended
to produce comparable results.
These recommendations address the concern that storage racks in warehousetype retail stores may pose a greater seismic risk
to the general public than exists in lowoccupancy warehouses or more conventional retail environments. Under normal
conditions, retail stores have a far higher occupant load than an ordinary warehouse of a comparable size. Failure of a
Figure C15.51 of Merchandise restrained by netting.
storage rack system in a retail environment is much more likely to cause personal injury than a similar failure in a storage
warehouse. To provide an appropriate level of additional safety in areas open to the public, an importance factor of 1.50 is
specified. Storage rack contents, while beyond the scope of the standard, may pose a potentially serious threat to life should
they fall from the shelves in an earthquake. It is recommended that restraints be provided, as shown in Figure C15.51, to
prevent the contents of rack shelving open to the general public from falling during strong ground shaking.
Figure C15.51 Merchandise restrained by netting.
C15.5.4 Electrical Power Generating Facilities. Electrical power plants closely resemble building structures, and their
performance in seismic events has been good. For reasons of mechanical performance, lateral drift of the structure must be
limited. The lateral bracing system of choice has been the concentrically braced frame. In the past, the height limits on
braced frames in particular have been an encumbrance to the design of large power generating facilities. Based on acceptable
past performance, Table 15.41 permits the use of CBRs with both lower R values and less restrictive height limits. This
option is particularly effective for boiler buildings that generally are 300 feet or more in height. A peculiarity of large boiler
buildings is the general practice of suspending the boiler from the roof structures; this results in an unusual mass distribution
as discussed in Section C15.1.3.
C15.5.5 Structural Towers for Tanks and Vessels. The requirements of this section apply to structural towers that are not
integral with the supported tank. Elevated water tanks designed in accordance with AWWA D10006 are not subject to
Section 15.5.5.
C15.5.6 Piers and Wharves. Current industry practice recognizes the distinct differences between the two categories of
piers and wharves described in the standard. Piers and wharves with public occupancy, described in Section 15.5.6.2, are
commonly treated as the “foundation” for buildings or buildinglike structures; design is performed using the standard, likely
under the jurisdiction of the local building official. Piers and wharves without occupancy by the general public are often
treated differently and are outside the scope of the standard; in many cases, these structures do not fall under the jurisdiction
of building officials, and design is performed using other industryaccepted approaches.
Design decisions associated with these structures often reflect economic considerations by both owners and local, regional, or
state jurisdictional entities with interest in commercial development. Where building officials have jurisdiction but lack
experience analyzing pier and wharf structures, reliance on other industryaccepted design approaches is common.
Where occupancy by the general public is not a consideration, seismic design of structures at major ports and marine
terminals often uses a performancebased approach, with criteria and methods that are very different from those used for
buildings, as provided in the standard. Design approaches most commonly used are generally consistent with the practices
and criteria described in the following documents:
1. Seismic Design Guidelines for Port Structures, Working Group No. 34 of the Maritime Navigation Commission
(PIANC/MarCom/WG34), A. A. Balkema, Lisse, Netherlands, 2001.
2. Seismic Criteria for California Marine Oil Terminals, Vol. 1 and Vol. 2, Technical Report TR2103SHR, Naval
Facilities Engineering Service Center, Ferritto, J., Dickenson, S., Priestley N., Werner, S., Taylor, C., Burke D., Seelig
W., and Kelly, S., Port Hueneme, CA, 1999.
3. Seismic Design and Retrofit of Bridges, Priestley, N.J.N., Siebel, F., and Calvi, G.M., New York, 1996.
4. Seismic Guidelines for Ports, by the Ports Committee of the Technical Council on Lifeline Earthquake Engineering,
ASCE/SEI, edited by Stuart D. Werner, Monograph No. 12, published by ASCE, Reston, Virginia, March 1998.
5. MOTEMS, 2005, “Marine Oil Terminal Engineering and Maintenance Standards”, 2001 Title 24, Part 2, California
Building Code, Chapter 31F, January 31, 2005.
These alternative approaches have been developed over a period of many years by working groups within the industry, and
they reflect the historical experience and performance characteristics of these structures, which are very different from those
of building structures.
The main emphasis of the performancebased design approach is to provide criteria and methods that depend on the
economic importance of a facility. Adherence to the performance criteria in the documents listed above does not seek to
provide uniform margins of collapse for all structures; their application is expected to provide at least as much inherent lifesafety
as for buildings designed using the standard. The reasons for the higher inherent level of lifesafety for these
structures include the following:
1. These structures have relatively infrequent occupancy, with few working personnel and very low density of personnel.
Most of these structures consist primarily of open area, with no enclosed structures that can collapse onto personnel.
Small control buildings on marine oil terminals or similar secondary structures are commonly designed in accordance
with the local building code.
2. These pier or wharf structures typically are constructed of reinforced concrete, prestressed concrete, or steel and are
highly redundant due to the large number of piles supporting a single wharf deck unit. Tests done at the University of
California at San Diego for the Port of Los Angeles have shown that very high ductilities (10 or more) can be achieved in
the design of these structures using practices currently employed in California ports.
3. Container cranes, loading arms, and other major structures or equipment on piers or wharves are specifically designed
not to collapse in an earthquake. Typically, additional piles and structural members are incorporated into the wharf or
pier specifically to support such items.
4. Experience has shown that seismic “failure” of wharf structures in zones of strong seismicity is indicated not by collapse
but by economically irreparable deformations of the piles. The wharf deck generally remains level or slightly tilting, but
has shifted out of position. Complete failure that could endanger lifesafety due to earthquake loading has never
occurred historically where the structure in the marine environment has been maintained properly.
5. The performancebased criteria of the listed documents address reparability of the structure, which is much more
stringent criteria than collapse prevention and results in a greater margin for lifesafety.
Lateral load design of these structures in low, or even moderate, seismic regions often is governed by other marine
conditions.
C15.6 GENERAL REQUIREMENTS FOR NONBUILDING STRUCTURES NOT SIMILAR TO BUILDINGS
Nonbuilding structures not similar to buildings exhibit behavior markedly different from that of building structures. Most of
these types of structures have reference documents that address their unique structural performance and behavior. The
ground motion in the standard requires appropriate translation to allow use with industry standards.
C15.6.1 EarthRetaining Structures. Section C11.8.3 presents commonly used approaches for the design of nonyielding
walls and yielding walls for bending, overturning, sliding, etc., taking into account the varying soil types, importance, and
site seismicity.
C15.6.2 Stacks and Chimneys. The design of stacks and chimneys to resist natural hazards generally is governed by wind
design considerations. The exceptions to this general rule involve locations with high seismicity, stacks and chimneys with
large elevated masses, and stacks and chimneys with unusual geometries. It is prudent to evaluate the effect of seismic loads
in all but those areas with the lowest seismicity. Although not specifically required, it is recommended that the special
seismic details required elsewhere in the standard be considered for application to stacks and chimneys.
Guyed steel stacks and chimneys generally are lightweight. As a result, the design loads due to natural hazards generally are
governed by wind. On occasion, large flares or other elevated masses located near the top may require indepth seismic
analysis. Although it does not specifically address seismic loading, Chapter 6 of Troitsky (1982) provides a methodology
appropriate for resolution of the seismic forces defined in the standard.
Figure C15.61 Showing Wall forces.
Hydrodynamic
force
Hydrodynamic
force
Wall
inertia
force
Wall
inertia
force
Wall
inertia
force
C15.6.4 Special Hydraulic Structures. The most common special hydraulic structures are baffle walls and weirs that are
used in water treatment and waste water treatment plants. Because there are openings in the walls, during normal operations
the fluid levels are equal on each side of the wall, exerting no net horizontal force. Sloshing during a seismic event can exert
large forces on the wall, as illustrated in Figure C15.61. The walls can fail unless they are designed properly to resist the
dynamic fluid forces.
C15.6.5 Secondary Containment Systems. This section reflects the judgment that designing all impoundment dikes for the
MCE ground motion when full and sizing all impoundment dikes for the sloshing wave is too conservative. Designing an
impoundment dike as full for the MCE assumes failure of the primary containment and occurrence of a significant
aftershock. Such significant aftershocks (of the same magnitude as the MCE ground motion) are rare and do not occur in all
locations. While explicit design for aftershocks is not a requirement of the standard, secondary containment must be
designed full for an aftershock to protect the general public. The use of twothirds of the MCE ground motion as the
magnitude of the design aftershock is supported by Bath’s Law, according to which the maximum expected aftershock
magnitude may be estimated to be 1.2 scale units below the main shock magnitude.
The risk assessment and risk management plan described in Section 1.5.2 are used to determine where the secondary
containment must be designed full for the MCE. The decision to design secondary containment for this more severe
condition should be based on the likelihood of a significant aftershock occurring at the particular site, considering the risk
posed to the general public by the release of hazardous material from the secondary containment.
Figure C15.61 Wall forces.
Secondary containment systems must be designed to contain the sloshing wave where the release of liquid would place the
general public at risk by exposing them to hazardous materials, by scouring of foundations of adjacent structures, or by
causing other damage to adjacent structures.
C15.6.6 Telecommunication Towers. Telecommunication towers support small masses, and their design generally is
governed by wind forces. Although telecommunication towers have a history of experiencing seismic events without failure
or significant damage, seismic design in accordance with the standard is required.
Typically bracing elements bolt directly (without gusset plates) to the tower legs, which consist of pipes or bent plates in a
triangular plan configuration.
C15.7 TANKS AND VESSELS
C15.7.1 General. Methods for seismic design of tanks, currently adopted by a number of reference documents, have
evolved from earlier analytical work by Jacobsen, Housner, Veletsos, Haroun, and others. The procedures used to design
flatbottom storage tanks and liquid containers are based on the work of Housner, Wozniak, and Mitchell. The reference
documents for tanks and vessels have specific requirements to safeguard against catastrophic failure of the primary structure
based on observed behavior in seismic events since the 1930s. Other methods of analysis, using flexible shell models, have
been proposed but at present are beyond the scope of the standard.
The industryaccepted design methods employ three basic steps:
1. Dynamic modeling of the structure and its contents. When a liquidfilled tank is subjected to ground acceleration, the
lower portion of the contained liquid, identified as the impulsive component of mass, Wi, acts as if it were a solid mass
rigidly attached to the tank wall. As this mass accelerates, it exerts a horizontal force, P
(C15.71)
An examination of those terms as used in the different references reveals the following:
i, on the wall; this force is
directly proportional to the maximum acceleration of the tank base. This force is superimposed on the inertia force of
the accelerating wall itself, Ps. Under the influence of the same ground acceleration, the upper portion of the contained
liquid responds as if it were a solid mass flexibly attached to the tank wall. This portion, which oscillates at its own
natural frequency, is identified as the convective component, Wc, and exerts a horizontal force, Pc, on the wall. The
convective component oscillations are characterized by sloshing whereby the liquid surface rises above the static level on
one side of the tank and drops below that level on the other side.
2. Determination of the period of vibration, Ti, of the tank structure and the impulsive component; and determination of the
natural period of oscillation (sloshing), Tc, of the convective component.
3. Selection of the design response spectrum. The response spectrum may be sitespecific or it may be constructed on the
basis of seismic coefficients given in national codes and standards. Once the design response spectrum is constructed,
the spectral accelerations corresponding to Ti and Tc are obtained and are used to calculate the dynamic forces Pi, Ps,
and Pc.
Detailed guidelines for the seismic design of circular tanks, incorporating these concepts to varying degrees, have been the
province of at least four industry reference documents: AWWA D100 for welded steel tanks (since 1964); API 650 for
petroleum storage tanks; AWWA D110 for prestressed, wirewrapped tanks (since 1986); and AWWA D115 for prestressed
concrete tanks stressed with tendons (since 1995). In addition, API 650 and API 620 contain provisions for petroleum,
petrochemical, and cryogenic storage tanks. The detail and rigor of analysis prescribed in these documents have evolved
from a semistatic approach in the early editions to a more rigorous approach at present, reflecting the need to include the
dynamic properties of these structures.
The requirements in Section 15.7 are intended to link the latest procedures for determining designlevel seismic loads with
the allowable stress design procedures based on the methods in the standard. These requirements, which in many cases
identify specific substitutions to be made in the design equations of the reference documents, will assist users of the standard
in making consistent interpretations.
ACI has published ACI 350.301, “Seismic Design of LiquidContaining Concrete Structures.” This document, which
addresses all types of concrete tanks (prestressed and nonprestressed, circular and rectilinear), has provisions that are
consistent with the seismic criteria of the 2000 Provisions. The document serves as both a practical “hoto” loading reference
and a guide to supplement application of ACI 318 Chapter 21.
C15.7.2 Design Basis. In the case of the seismic design of nonbuilding structures, standardization requires adjustments to
industry reference documents to minimize existing inconsistencies among them, while recognizing that structures designed
and built over the years in accordance with these documents have performed well in earthquakes of varying severity. Of the
inconsistencies among reference documents, the ones most important to seismic design relate to the base shear equation. The
traditional base shear takes the following form:
Equation
w
V ZIS CW
R
=
1. ZS: The seismic zone coefficient, Z, has been rather consistent among all the documents since it usually has been
obtained from the seismic zone designations and maps in the model building codes. On the other hand, the soil profile
coefficient, S, does vary from one document to another. In some documents these two terms are combined.
2. I: The importance factor, I, has varied from one document to another, but this variation is unavoidable and
understandable owing to the multitude of uses and degrees of importance of tanks and vessels.
3. C: The coefficient C represents the dynamic amplification factor that defines the shape of the design response spectrum
for any given ground acceleration. Since C is primarily a function of the frequency of vibration, inconsistencies in its
derivation from one document to another stem from at least two sources: differences in the equations for the
determination of the natural frequency of vibration, and differences in the equation for the coefficient itself. (For
example, for the shell/impulsive liquid component of lateral force, the steel tank documents use a constant design
spectral acceleration [constant C] that is independent of the “impulsive” period, T.) In addition, the value of C will vary
depending on the damping ratio assumed for the vibrating structure (usually between 2 percent and 7 percent of critical).
4. Where a sitespecific response spectrum is available, calculation of the coefficient C is not necessary except in the case
of the convective component (coefficient Cc) which is assumed to oscillate with 0.5 percent of critical damping and
whose period of oscillation is usually long (greater than 2.5 seconds). Since sitespecific spectra are usually constructed
for high damping values (3 percent to 7 percent of critical) and since the sitespecific spectral profile may not be well
defined in the longperiod range, an equation for Cc applicable to a 0.5 percent damping ratio is necessary in order to
calculate the convective component of the seismic force.
5. Rw: The response modification factor, Rw, is perhaps the most difficult to quantify, for a number of reasons. While Rw
is a compound coefficient that is supposed to reflect the ductility, energydissipating capacity, and redundancy of the
structure, it is also influenced by serviceability considerations, particularly in the case of liquidcontaining structures.
In the standard the base shear equation for most structures has been reduced to V = CsW, where the seismic response
coefficient, Cs, replaces the product ZSC/Rw. Cs is determined from the design spectral response acceleration parameters SDS
and SD1 (at short periods and at a period of 1, respectively) which, in turn, are obtained from the mapped MCE spectral
accelerations Ss and S1. As in the case of the prevailing industry reference documents, where a sitespecific response
spectrum is available, Cs is replaced by the actual values of that spectrum.
The standard contains several bridging equations, each designed to allow proper application of the design criteria of a
particular reference document in the context of the standard. These bridging equations associated with particular types of
liquidcontaining structures and the corresponding reference documents are discussed below. Calculation of the periods of
vibration of the impulsive and convective components is in accordance with the reference documents, and the detailed
resistance and allowable stresses for structural elements of each industry structure are unchanged, except where new
information has led to additional requirements.
It is expected that the bridging equations of Sections 15.7.7.3 and 15.7.10.7 will be eliminated as the relevant reference
documents are updated to conform to the standard. The bridging equations previously provided for AWWA D100 and API
650 already have been eliminated as a result of updates of these documents.
C15.7.3 Strength and Ductility. As is the case for building structures, ductility and redundancy in the lateral support
systems for tanks and vessels are desirable and necessary for good seismic performance. Tanks and vessels are not highly
redundant structural systems, and therefore ductile materials and welldesigned connection details are needed to increase the
capacity of the vessel to absorb more energy without failure. The critical performance of many tanks and vessels is governed
by shell stability requirements rather than by yielding of the structural elements. For example, contrary to building
structures, ductile stretching of anchor bolts is a desirable energy absorption component where tanks and vessels are
anchored. The performance of crossbraced towers is highly dependent on the ability of the horizontal compression struts
and connection details to develop fully the tension yielding in the rods. In such cases, it is also important to preclude both
premature failure in the threaded portion of the connection and failure of the connection of the rod to the column prior to
yielding of the rod.
C15.7.4 Flexibility of Piping Attachments. Poor performance of piping connections (tank leakage and damage) due to
seismic deformations is a primary weakness observed in recent seismic events. While commonly used piping connections
can impart mechanical loads to the tank shell, proper design in seismic areas results in only negligible mechanical loads on
tank connections subject to the displacements shown in Table 15.71. API 650 treats the values shown in Table 15.71 as
allowable stress based values and therefore requires that these values be multiplied by 1.4 where strengthbased capacity
values are required for design.
In addition, interconnected equipment, walkways, and bridging between multiple tanks must be designed to resist the loads
and accommodate the displacements imposed by seismic forces. Unless connected tanks and vessels are founded on a
common rigid foundation, the calculated differential movements must be assumed to be out of phase.
C15.7.5 Anchorage. Many steel tanks can be designed without anchors by using annular plate detailing in accordance with
reference documents. Where tanks must be anchored due to overturning potential, proper anchorage design will provide both
a shell attachment and an embedment detail that will yield the bolt without tearing the shell or pulling the bolt out of the
foundation. Properly designed anchored tanks have greater reserve strength to resist seismic overload than do unanchored
tanks.
Where anchor bolts and attachments are misaligned such that the anchor nut or washer does not bear evenly on the
attachment, additional bending stresses in threaded areas may cause premature failure before anchor yielding.
C15.7.6 GroundSupported Storage Tanks for Liquids
C15.7.6.1 General. The response of ground storage tanks to earthquakes is well documented by Housner, Mitchell and
Wozniak, Veletsos, and others. Unlike building structures, the structural response of these tanks is influenced strongly by the
fluidstructure interaction. Fluidstructure interaction forces are categorized as sloshing (convective) and rigid (impulsive)
forces. The proportion of these forces depends on the geometry (heighttodiameter ratio) of the tank. API 650, API 620,
AWWA D100, AWWA D110, AWWA D115, and ACI 350.3 provide the data necessary to determine the relative masses
and moments for each of these contributions.
The standard requires that these structures be designed in accordance with the prevailing reference documents, except that the
height of the sloshing wave, ds
, must be calculated using Equations 15.713. Note that API 650 and AWWA D100 include
this requirement in their latest editions.
Equations 15.710 and 15.711 provide the spectral acceleration of the sloshing liquid for the constantvelocity and constantdisplacement
regions of the response spectrum, respectively. The 1.5 factor in these equations is an adjustment for
0.5 percent damping.
Smalldiameter tanks and vessels are more susceptible to overturning and vertical buckling. As a general rule, a greater ratio
of H/D produces lower resistance to vertical buckling. Where H/D is greater than 2, overturning approaches “rigid mass”
behavior (the sloshing mass is small). Largediameter tanks may be governed by additional hydrodynamic hoop stresses in
the middle regions of the shell.
The impulsive period (the natural period of the tank components and the impulsive component of the liquid) is typically in
the 0.25 to 0.6 second range. Many methods are available for calculating the impulsive period. The Veletsos flexibleshell
method is commonly used by many tank designers. For example, see Velestos (1974) and Malhotra, Wenk, and Wieland
(2000).
C15.7.6.1.1 Distribution of Hydrodynamic and Inertia Forces. Most of the reference documents for tanks define reaction
loads at the base of shellfoundation interface, without indicating the distribution of loads on the shell as a function of height.
ACI 350.3 specifies the vertical and horizontal distribution of such loads.
The overturning moment at the base of the shell in the industry reference documents is only the portion of the moment that is
transferred to the shell. The total overturning moment also includes the variation in bottom pressure, which is an important
consideration for design of pile caps, slabs, or other support elements that must resist the total overturning moment. Wozniak
and Mitchell (1978) and TID 7024 (1963) provide additional information.
C15.7.6.1.2 Sloshing. In past earthquakes, sloshing contents in ground storage tanks has caused both leakage and noncatastrophic
damage to the roof and internal components. Even this limited damage, and the associated costs and
inconvenience, can be significantly mitigated where the following items are considered:
1. Effective masses and hydrodynamic forces in the container.
2. Impulsive and pressure loads at
a. The sloshing zone (that is, the upper shell and edge of the roof system),
b. The internal supports (such as roof support columns and traysupports), and
c. The internal equipment (such as distribution rings, access tubes, pump wells, and risers).
3. Freeboard (which depends on the sloshing wave height).
A minimum freeboard of 0.7ds is recommended for economic considerations but is not required.
Tanks and vessels storing biologically or environmentally benign materials typically do not require freeboard to protect the
public health and safety. However, providing freeboard in areas of frequent seismic occurrence for vessels normally operated
at or near top capacity may lessen damage (and the cost of subsequent repairs) to the roof and upper container.
The sloshing wave height specified in Section 15.7.6.1.2 is based on the design earthquake defined in the standard. For
economic reasons, freeboard for tanks assigned to Occupancy Category I, II, or III may be calculated using a fixed value of
TL equal to 4 seconds (as indicated in Section 15.7.6.1, Note d) but using the appropriate importance factor taken from Table
11.51. Due to lifesafety concerns, freeboard for tanks assigned to Occupancy Category IV must be based on the mapped
value of TL. Because use of the mapped value of TL results in the theoretical maximum value of freeboard, the calculation of
freeboard in the case of Occupancy Category IV tanks is based on an importance factor equal to 1.0 (as indicated in Section
15.7.6.1, Note c).
If the freeboard provided is less than the computed sloshing height, ds, the sloshing liquid will impinge on the roof in the
vicinity of the rooftowall joint, subjecting it to a hydrodynamic force. This force may be approximated by considering the
sloshing wave as a hypothetical static liquid column having a height, ds. The pressure exerted at any point along the roof at a
distance ys above the atrest surface of the stored liquid may be assumed equal to the hydrostatic pressure exerted by the
hypothetical liquid column at a distance ds – ys from the top of that column. A better approximation of the pressure exerted
on the roof is found in Malhotra (2005 and 2006).
Another effect of a lessthanfull freeboard is that the restricted convective (sloshing) mass “converts” into an impulsive mass
thus increasing the impulsive forces. This effect should be taken into account in the tank design. A method for converting the
restricted convective mass into an impulsive mass is found in Malhotra (2005 and 2006). It is recommended that sufficient
freeboard to accommodate the full sloshing height be provided wherever possible.
C15.7.6.1.4 Internal Components. Wozniak and Mitchell (1978) provides a recognized analysis method for determining
the lateral loads on internal components due to sloshing liquid.
C15.7.6.1.5 Sliding Resistance. Historically, steel groundsupported tanks full of product have not slid off foundations. A
few unanchored, empty tanks or bulk storage tanks without steel bottoms have moved laterally during earthquake ground
shaking. In most cases, these tanks may be returned to their proper locations. Resistance to sliding is obtained from the
frictional resistance between the steel bottom and the sand cushion on which bottoms are placed. Because tank bottoms
usually are crowned upward toward the tank center and are constructed of overlapping, filletwelded, individual steel plates
(resulting in a rough bottom), it is reasonably conservative to take the ultimate coefficient of friction as 0.70 (AISC, 1986),
and therefore a value of tan 30o (= 0.577) is used in design. The value of 30o represents the internal angle of friction of sand.
The vertical weight of the tank and contents, as reduced by the component of vertical acceleration, provides the net vertical
load. An orthogonal combination of vertical and horizontal seismic forces, following the procedure in Section 12.5.3, may be
used.
C15.7.6.1.6 Local Shear Transfer. The transfer of seismic shear from the roof to the shell and from the shell to the base is
accomplished by a combination of membrane shear and radial shear in the wall of the tank. For steel tanks, the radial (outofplane)
seismic shear is very small and usually is neglected; thus, the shear is assumed to be resisted totally by membrane (inplane)
shear. For concrete walls and shells, which have a greater radial shear stiffness, the shear transfer may be shared. The
ACI 350.3 commentary provides further discussion.
C15.7.6.1.7 Pressure Stability. Internal pressure may increase the critical buckling capacity of a shell. Provision to include
pressure stability in determining the buckling resistance of the shell for overturning loads is included in AWWA D100.
Recent testing on conical and cylindrical shells with internal pressure yielded a design methodology for resisting permanent
loads in addition to temporary wind and seismic loads. See Miller, Meier, and Czaska (1997).
C15.7.6.1.8 Shell Support. Anchored steel tanks should be shimmed and grouted to provide proper support for the shell
and to reduce impact on the anchor bolts under reversible loads. The high bearing pressures on the toe of the tank shell may
cause inelastic deformations in compressible material (such as fiberboard), creating a gap between the anchor and the
attachment. As the load reverses, the bolt is no longer snug and an impact of the attachment on the anchor can occur. Grout
is a structural element and should be installed and inspected as an important part of the vertical and lateralforceresisting
system.
C15.7.6.1.9 Repair, Alteration, or Reconstruction. During their service life, storage tanks are frequently repaired,
modified, or relocated. Repairs often are related to corrosion, improper operation, or overload from wind or seismic events.
Modifications are made for changes in service, updates to safety equipment for changing regulations, or installation of
additional process piping connections. It is imperative these repairs and modifications be designed and implemented
properly to maintain the structural integrity of the tank or vessel for seismic loads as well as the design operating loads.
The petroleum steel tank industry has developed specific guidelines in API 653 that are statutory requirements in some states.
It is recommended that the provisions of API 653 also be applied to other liquid storage tanks (water, wastewater, chemical,
etc.) as it relates to repairs, modifications, or relocation that affects the pressure boundary or lateral forceresisting system of
the tank or vessel.
C15.7.7 Water Storage and Water Treatment Tanks and Vessels. The AWWA design requirements for groundsupported
steel water storage structures use allowable stress design procedures that conform to the requirements of the
standard.
C15.7.8 Petrochemical and Industrial Tanks and Vessels Storing Liquids
C15.7.8.1 Welded Steel. The American Petroleum Institute (API) uses an allowable stress design procedure that conforms
to the requirements of the standard.
The most common damage to tanks observed during past earthquakes includes the following:
1. Buckling of the tank shell near the base due to excessive axial membrane forces. This buckling damage is usually
evident as “elephant foot” buckles a short distance above the base or as diamondshaped buckles in the lower ring.
Buckling of the upper ring also has been observed.
2. Damage to the roof due to impingement on the underside of the roof of sloshing liquid with insufficient freeboard.
3. Failure of piping or other attachments that are overly restrained.
4. Foundation failures.
Other than the above damage, the seismic performance of floating roofs during earthquakes has generally been good, with
damage usually confined to the rim seals, gage poles, and ladders. However, floating roofs have sunk in some earthquakes
due to lack of adequate freeboard or the proper buoyancy and strength required by API 650. Similarly the performance of
open tops with top wind girder stiffeners designed per API 650 has been generally good.
C15.7.8.2 Bolted Steel. Bolted steel tanks are often used for temporary functions. Where use is temporary, it may be
acceptable to the jurisdictional authority to design bolted steel tanks for no seismic loads or for reduced seismic loads based
on a reduced return period. For such reduced loads based on reduced exposure time, the owner should include a signed
removal contract with the fixed removal date as part of the submittal to the authority having jurisdiction.
C15.7.9 GroundSupported Storage Tanks for Granular Materials
C15.7.9.1 General. The response of a groundsupported storage tank storing granular materials to a seismic event is highly
dependent on its heighttodiameter (H/D) ratio and the characteristics of the stored product. The effects of intergranular
friction are described in more detail in C15.7.9.3.1 (increased lateral pressure), C15.7.9.3.2 (effective mass), and C15.7.9.3.3
(effective density).
Longterm increases in shell hoop tension due to temperature changes after the product has been compacted also must be
included in the analysis of the shell; Anderson (1966) provides a suitable method.
C15.7.9.2 Lateral Force Determination. Seismic forces acting on groundsupported liquid storage tanks are divided
between impulsive and convective (sloshing) components. However, in a groundsupported storage tank for granular
materials, all seismic forces are of the impulsive type and relate to the period of the storage tank itself. Due to the relatively
short period of a tank shell, the response is normally in the constant acceleration region of the response spectrum, which
relates to S
(C15.72)
where V, S
DS. Therefore, the seismic base shear is calculated as follows:
DS, I, and R have been previously defined, and WEffective is the gross weight of the stored product multiplied by an
effective mass factor and an effective density factor, as described in Sections C15.7.9.3.2 and C15.7.9.3.3, plus the dead
weight of the tank. Unless substantiated by testing, it is recommended that the product of the effective mass factor and the
effective density factor be taken as no less than 0.5 due to the limited test data and the highly variable properties of the stored
product.
C15.7.9.3 Force Distribution to Shell and Foundation
C15.7.9.3.1 Increased Lateral Pressure. In a groundsupported tank storing granular materials, increased lateral pressures
develop as a result of rigid body forces that are proportional to ground acceleration. Information concerning design for such
pressure is scarce. Trahair et al. (1983) describes both a very simple, conservative method and a very difficult, analytical
method using failure wedges based on the MononobeOkabe modifications of the classical Coulomb method.
C15.7.9.3.2 Effective Mass. For groundsupported tanks storing granular materials, much of the lateral seismic load can be
transferred directly into the foundation, via intergranular shear, before it can reach the tank shell. The effective mass that
loads the tank shell is highly dependent on the H/D ratio of the tank and the characteristics of the stored product.
Quantitative information concerning this effect is scarce, but Trahair et al. (1983) describes a very simple, conservative
method to determine the effective mass. That method presents reductions in effective mass, which may be significant, for
H/D ratios less than 2. This effect is absent for elevated tanks.
C15.7.9.3.3 Effective Density. Granular material stored in tanks (both groundsupported and elevated) does not behave as a
solid mass. Energy loss through intergranular movement and graintograin friction in the stored material effectively reduces
the mass subject to horizontal acceleration. This effect may be quantified by an effective density factor less than 1.0.
Based on Chandrasekaran and Jain (1968) and on shaketable tests reported in Chandrasekaran et al. (1968), ACI 313
recommends an effective density factor of not less than 0.8 for most granular materials. According to Chandrasekaran and
Jain (1968), an effective density factor of 0.9 is more appropriate for materials with high moduli of elasticity, such as
aggregates and metal ores. Equation
Effective
DS W
I
R
V S
..
.
..
.
=
C15.7.9.3.4 Lateral Sliding. Most groundsupported steel storage tanks for granular materials rest on a base ring and do not
have a steel bottom. To resist seismic base shear, a partial bottom or annular plate is used in combination with anchor bolts
or a curb angle. An annular plate can be used alone to resist the seismic base shear through friction between the plate and the
foundation, in which case the friction limits of Section 15.7.6.1.5 apply. The curb angle detail serves to keep the base of the
shell round while allowing it to move and flex under seismic load. Various base details are shown in Figure 13 of Kaups and
Lieb (1985).
C15.7.9.3.5 Combined Anchorage Systems. This section is intended to apply to combined anchorage systems that share
loads based on their relative stiffnesses, and not to systems where sliding is resisted completely by one system (such as a steel
annular plate) and overturning is resisted completely by another system (such as anchor bolts).
C15.7.10 Elevated Tanks and Vessels for Liquids and Granular Materials
C15.7.10.1 General. The three basic lateral loadresisting systems for elevated water tanks are defined by their support
structure:
1. Multileg braced steel tanks (trussed towers, as shown in Figure C15.71),
2. Smalldiameter singlepedestal steel tanks (cantilever columns, as shown in Figure C15.72), and
3. Largediameter singlepedestal tanks of steel or concrete construction (loadbearing shear walls, as shown in Figure
C15.73).
Unbraced multileg tanks are uncommon. These types of tanks differ in their behavior, redundancy, and resistance to
overload. Multileg and smalldiameter pedestal tanks have longer fundamental periods (typically greater than 2 seconds)
than the shear wall type tanks (typically less than 2 seconds). The lateral load failure mechanisms usually are brace failure
for multileg tanks, compression buckling for smalldiameter steel tanks, compression or shear buckling for largediameter
steel tanks, and shear failure for largediameter concrete tanks. Connection, welding, and reinforcement details require
careful attention in order to mobilize the full strength of these structures. To provide a greater margin of safety, R factors
used with elevated tanks typically are less than those for other comparable lateral loadresisting systems.
C15.7.10.4 Transfer of Lateral Forces into Support Tower. The vertical loads and shears transferred at the base of a tank
or vessel supported by grillage or beams typically vary around the base due to the relative stiffness of the supports,
settlements, and variations in construction. Such variations must be considered in the design for vertical and horizontal
loads.
C15.7.10.5 Evaluation of Structures Sensitive to Buckling Failure. Nonbuilding structures with little structural
redundancy for lateral loads may exhibit total failure when loaded only slightly beyond the design loads. Tanks and vessels
supported on shell skirts or pedestals that are governed by buckling require evaluation for this critical condition.
The design spectral response acceleration, Sa, used in this evaluation includes site factors. The I/R coefficient is taken as 1.0
for this critical check. The structural capacity of the shell is taken as the critical buckling strength (that is, the factor of safety
is 1.0). Vertical and orthogonal combinations need not be considered for this evaluation, since the probability of peak values
occurring simultaneously is very low.
While the standard requires this evaluation only for structures assigned to Occupancy Category IV, it may be applied to any
bucklingsensitive structure. Where such optional evaluations are performed, an R value of 2 or 3 can be used. In most
cases, the design of the structure will be governed by this additional evaluation.
C15.7.10.7 Concrete Pedestal (Composite) Tanks. A composite elevated waterstorage tank is comprised of a welded
steel tank for watertight containment, a single pedestal concrete support structure, a foundation, and accessories. The lateral
loadresisting system is a loadbearing concrete shear wall. Since the seismic provisions in ACI 371R98 are based on an
older edition of ASCE/SEI 7, appropriate bridging equations are provided in Section 15.7.10.7.
C15.7.11 Boilers and Pressure Vessels. The support system for boilers and pressure vessels must be designed for the
seismic forces and displacements presented in the standard. Such design must include consideration of the support, the
attachment of the support to the vessel (even if “integral”), and the body of the vessel itself, which is subject to local stresses
imposed by the support connection.
C15.7.12 Liquid and Gas Spheres. The commentary in Section C15.7.11 also applies to liquid and gas spheres.
C15.7.13 Refrigerated Gas Liquid Storage Tanks and Vessels. Some refrigerated storage tanks and vessels, such as those
storing LNG, are required to be designed for ground motions and performance goals in excess of those found in the standard,
so such structures are outside the scope of the standard. All other welded steel refrigerated storage tanks and vessels must be
designed in accordance with the requirements of the standard, the requirements of API 620, and the seismic requirements of
API 650. Note that the seismic requirements of API 620 (10th Edition, Addendum 1) are note used as they are inconsistent
with the requirements of the standard.
Figure C15.71 Image of Multileg braced steel tank.
Figure C15.72 Image of Smalldiameter singlepedestal steel tank.
C15.7.14 Horizontal, Saddle Supported Vessels for Liquid or Vapor Storage. Past practice has been to assume that a
horizontal, saddle supported vessel (including its contents) behaves as a rigid structure (with natural period, T, less than 0.06
seconds). For this situation, seismic forces would be determined using the requirements of Section 15.4.2. For large
horizontal, saddlesupported vessels (lengthtodiameter ratio of 6 or more), this assumption can be unconservative, so
Section 15.7.14.3 requires that the natural period be determined assuming the vessel to be a simply supported beam.
Figure C15.71 Multileg braced steel tank.
Figure C15.72 Smalldiameter singlepedestal steel tank.
Figure C15.73 Image of Largediameter singlepedestal tank.
Figure C15.73 Image of Largediameter singlepedestal tank.
(a) Steel
(b) Concrete
Figure C15.73 Largediameter singlepedestal tank.
REFERENCES
American Institute of Steel Construction, Inc. 1986. Load and Resistance Factor Design Specification for Structural Steel
Buildings.
Anderson, P. F. 1966. “Temperature Stresses in Steel GrainStorage Tanks,” ASCE Civil Engineering (January):74.
Chandrasekaran, A. R., and P. C. Jain. 1968. “Effective Live Load of Storage Materials Under Dynamic Conditions,” Indian
Concrete Journal (Bombay), 42(9):364365.
Chandrasekaran, A. R., S. S. Saini, and I. C. Jhamb. 1968. “Live Load Effects on Dynamic Behavior of Structures,” Journal
of the Institution of Engineers (India), 48:850859.
Kaups, Taavi, and John M. Lieb. 1985. A Practical Guide for the Design of Quality Bulk Storage Bins and Silos. Chicago
Bridge & Iron Company, Plainfield, Illinois.
Malhotra, P. K., T. Wenk, and M. Wieland. 2000. “Simple Procedure for Seismic Analysis of LiquidStorage Tanks,”
Journal of Structural Engineering International, IABSE, 10(3):197201.
Malhotra, P. K. 2005. “Sloshing Loads in LiquidStorage Tanks with Insufficient Freeboard,” Earthquake Spectra,
21(4):11851192.
Malhotra, P. K. 2006. “Earthquake Induced Sloshing in Cone and Dome Roof Tanks with Insufficient Freeboard.” Journal
of Structural Engineering International, IABSE, 16(3):222225.
Miller, C. D., S. W. Meier, and W. J. Czaska. 1997. “Effects of Internal Pressure on Axial Compressive Strength of
Cylinders and Cones,” paper presented at Structural Stability Research Council Annual Technical Meeting, June.
Department of Energy. 1963. Nuclear Reactors and Earthquakes, TID 7024. Department of Energy, Atomic Energy
Commission, Division of Reactor Development, Washington, D.C
Trahair, M. S., A. Abel, P. Ansourian, H. M. Irvine, and J. M. Rotter. 1983. Structural Design of Steel Bins for Bulk Solids.
Australian Institute of Steel Construction, Ltd., Sydney.
Troitsky, M. S. 1982. Tubular Steel Structures – Theory and Design. The James F. Lincoln Arc Welding Foundation.
Veletsos, A. S. 1974. “Seismic Effects in Flexible LiquidStorage Tanks,” in Proceedings of the Fifth World Conference on
Earthquake Engineering, Rome, Italy, pp. 630639.
Wozniak, R. S., and W. W. Mitchell. 1978. “Basis of Seismic Design Provisions for Welded Steel Oil Storage Tanks,”
presented at the Session on Advances in Storage Tank Design, American Petroleum Institute, Refining, 43rd Midyear
Meeting, Toronto, Canada, May 9.
Page intentionally left blank.
COMMENTARY TO CHAPTER 16,
SEISMIC RESPONSE HISTORY PROCEDURES
C16.1 LINEAR RESPONSE HISTORY PROCEDURE
The standard does not require the use of linear response history analysis. However, the use of such analysis may be useful in
validation of the results of the analysis methods presented in Chapter 12, or as a step in a series of analyses that culminate in
a nonlinear response history analysis. While not commonly used in the past to design typical structures, this technique is
seeing increased use in the design of some structures including structures that are neither damped nor base isolated.
The purpose of the linear response history procedure is to determine design forces for structural components and to compute
displacements and story drifts, which must be within the limits specified by Table 12.121. In this sense, the linear response
history procedure shares the forcebased philosophy of the Equivalent Lateral Force (ELF) procedure and the Modal
Response Spectrum (MRS) analysis procedure (both of which are specified in Chapter 12). Response history analysis offers
several advantages over modal response spectrum analysis: it is more accurate mathematically, signs of response quantities
(such as tension or compression in a brace) are not lost as a result of the combination of modal responses, and story drifts are
computed more accurately. The principal disadvantages of response history analysis are the need to select and scale an
appropriate suite of ground motions, and the necessity to perform analysis for several (usually seven) such motions. See
Section C16.1.3 for discussion of ground motion selection and scaling techniques.
C16.1.1 Analysis Requirements. In response history analysis, the seismic hazard is characterized by a number of ground
acceleration records. Using these records and a detailed mathematical model of the structure, nodal displacements and
component forces are computed, stepbystep, by integration of the equations of motion. Two basic approaches for solving
the equations may be used. In the first approach, called direct analysis, all the equilibrium equations for the entire system are
solved simultaneously in each step. The number of equations solved equals the number of degrees of freedom in the
structure.
In the second approach, called modal analysis, the equilibrium equations are transformed, by change of coordinates, into a
number of singledegreeoffreedom (SDOF) systems. The maximum number of SDOF systems that can be formed is equal
to the number of mass degrees of freedom in the structure. The SDOF equations are solved individually in time, and then the
computed displacement histories are transformed back to the original coordinates and superimposed to obtain the system
response history. The transformation of coordinates in the modal analysis approach is usually based on the undamped natural
mode shapes of the structure. Other bases, such as a set of orthogonal loaddependent Ritz vectors, may be preferable in
certain cases (Wilson et al., 1982).
Where modal analysis uses the full set of mode shapes and the damping ratios in each mode are identical to those obtained
from the equations of motion used in the direct analysis, the two approaches produce identical results. A distinct advantage
of the modal analysis approach is that a limited number of modes may be used to produce reasonably accurate results. While
some accuracy is sacrificed where fewer modes are used, the computer resources required to perform the analysis are
significantly less than those required for direct analysis. The number of modes required for a “reasonably” accurate analysis
is discussed in Section C12.9.1.
C16.1.2 Modeling. The mathematical model used for linear response history analysis is usually identical to that used for
modal response spectrum analysis, and it often reflects a preliminary design developed using the ELF procedure. The main
modeling difference between response history analysis and modal response spectrum analysis is that the inherent damping
(taken as 5 percent of critical) is included in the design response spectrum for response spectrum analysis, while it must be
assigned explicitly for response history analysis.
In the modal analysis approach to response history analysis, damping is simply assigned to each mode that is included in the
response (Wilson and Penzien, 1970). Although not specified in the standard, the damping used for each mode should be 5
percent of critical for consistency with the design response spectrum.
Direct response history analysis requires an explicit damping matrix. However, such a matrix cannot be formed from first
principles; it is common to use a damping matrix that is proportional to the mass, the stiffness, or a linear combination of the
two:
(C16.11)
where C is the damping matrix, M is the mass matrix, K is the stiffness matrix, and a and ß are scalar constants of
proportionality. Such damping is often referred to as Rayleigh damping. Equation
C =aM +ß K
Figure C16.11 Example of Rayleigh damping.
mass proportional
stiffness
proportional
total
.a
.b
0.00
0.05
0.10
0 10 20 30
Damping ratio, .
Frequency, . (radians/second)
The proportionality constants are determined as follows:
(C16.12)
where and are the desired damping ratios at any two system circular frequencies, and , where > . It is
common, but not necessary, for the two specified frequencies to correspond to two of the system’s lower natural frequencies
(such as the first and third mode frequencies).
If both damping values are the same (. = .
(C16.13)
The advantage of Rayleigh damping is that it is simple to implement because all the analyst has to do is to specify the two
proportionality constants a and ß, and these can be established using Equation C16.12 given the two desired damping ratios
and corresponding frequencies. The disadvantage is that the damping ratios increase with frequency and may cause the
higher mode contributions to response to be overdamped. This effect is shown in Figure C16.11, where the damping ratios
. have been set at 0.05 at frequencies of 4.2 and 12.5 radians per second. The damping at all other frequencies is given by
the curve marked “Total”. For frequencies above approximately 32 radians per second, the damping is greater than 10
percent of critical and may be excessive.
a = .b), which is usually the case, the mass and stiffness proportionality constants
may be determined as follows: Equation
1 1/
2
1/
a a a
b b b
a . . .
ß . . .
 . . . . . .
. . = . . . .
. . . . . . Equation
a . Equation
b . Equation
a . Equation
b . Equation
b . Equation
a . Equation
2
2
a b
a b
a b
. .
a .
. .
ß .
. .
=
+
=
+
Figure C16.11 Example of Rayleigh damping.
C16.1.3 Ground Motion. One of the most demanding aspects of response history analysis is the selection and scaling of an
appropriate suite of ground motions (Anderson and Bertero, 1987). It is considered appropriate to select records that have
magnitudes, fault distances, source mechanisms, and soil conditions that are characteristic of the site. This poses quite a
challenge even for sites in the western United States, where numerous records from largemagnitude earthquakes are
available; it is virtually impossible in the central and eastern United States, where there are no recorded ground motions from
largemagnitude events. (The web site for the Pacific Earthquake Engineering Research Center (PEER) provides a large
number of ground motion acceleration records that may be used in response history analysis. In addition to the ground
motions, the PEER site provides detailed background information on the source characteristics of the ground motions and on
the instrument and site characteristics of the particular station that recorded the acceleration record.)
Because of the scarcity of available recorded motions, use of simulated ground motions is permitted. To this end, available
records may be modified for site distance and soil conditions. Such modification is considered part of the ground motion
selection.
The standard requires that at least three ground motions (or ground motion pairs, in the case of threedimensional analysis) be
used, and it provides an incentive for using at least seven motions (as discussed in Section C16.1.4).
The scaling technique specified in Sections 16.1.3.1 and 16.1.3.2 is one of several that have been proposed. See Shome and
Cornell (1998), Shome et al. (1998), Somerville et al. (1998), Mehrain and Naiem (2003), and Iervolino and Cornell (2005)
for background on ground motion selection and scaling. (Applied Technology Council (ATC) Projects 58 and 63 are also
investigating scaling techniques.)
C16.1.3.1 TwoDimensional Analysis. This scaling method begins with ground motions that have been selected (and
modified as necessary) to have magnitude, distance, and site conditions compatible with the maximum considered
earthquake. The 5 percent damped pseudoacceleration response spectra for these records are scaled for consistency with the
design ground motion spectrum shown in Figure 11.41. For twodimensional analysis, the ground motion spectra must be
scaled such that the average of the spectra is not less than the design spectrum in the period range from 0.2T to 1.5T, where T
is the fundamental period of vibration of the structure being designed. The short period of the range (0.2T) is set to capture
higher mode response, and the long period of the range (1.5T) is set to allow for period lengthening that would be associated
with inelastic response.
C16.1.3.2 ThreeDimensional Analysis. Approaches to scaling ground motions for threedimensional analysis are similar to
those for twodimensional analysis. The two orthogonal components within each pair must have the same scale factor, but
the individual pairs may have different scale factors. Within 10 kilometers of a fault, ground motion components often are
selected to represent faultnormal and faultparallel directions, but this is not required. For certain structures, the response
under both horizontal and vertical ground motions should be considered. It is noted, however, that vertical ground motion
spectra are not readily available, so the scaling of the vertical components of ground motion would be problematic.
The 1.3 factor in the comparison of the average of the SRSS spectra to the design spectrum is intended to compensate for the
increase associated with taking the SRSS of the two components of each ground motion pair. If the two components are
perfectly correlated (identical response spectra in both directions), the SRSS would be larger than the average by the square
root of 2. Because real ground motions are not perfectly correlated, a smaller factor is acceptable. The judgment of the
writers (after two cycles of revision) is to allow a factor of 1.3 and to allow the results to be low by as much as 10 percent
(producing an effective factor of 1.18).
Given a set of appropriate ground motions, there are an infinite number of scaling factors that may be applied to the
individual motions to meet the requirements of Sections 16.1.3.1 and 16.1.3.2. Thus, two analysts, working with the same set
of ground motions, are likely to produce a different set of scale factors. While this difference in scaling would have little
impact in linear analysis, it may lead to vastly different results in nonlinear analysis. For this reason, the process of selection
and scaling of ground motions should be included in the design review (Section 16.2.5 of the standard) that is required
wherever nonlinear response history analysis is used.
Both amplitude scaling and spectral matching procedures can be used to satisfy the scaling technique specified in Sections
16.1.3.1 and16.1.3.2. Both procedures provide reasonable estimates of mean response for the individual response
parameters. Spectral matching can provide mean estimates with a smaller suite of motions, although seven suites are still
required as outlined in Section 16.1.4. Neither scaling approach, however, is adequate to give an accurate estimate of the
variability, although amplitude scaling gives a better understanding of the potential variability than spectral matching.
C16.1.4 Response Parameters. The responses derived from the response history analysis are multiplied by I to provide
enhanced strength and stiffness for more important facilities, and are divided by R to account for inelastic behavior. For
consistency with the ELF procedure and the MRS analysis procedure, the displacements computed from the response
histories that have been further modified by I/R should be multiplied by Cd to obtain the displacement histories to use for
computing the story drift histories. (The requirement to multiply displacements by Cd was incorrectly omitted in the
standard.)
If for any ground motion the peak base shear is less than that computed from Equation 12.85 or 12.86, the entire response
history must be scaled up such that the peak base shear is not less than that computed from Equation 12.85 or 12.86, as
applicable. The base shear typically is computed from component elastic forces. A slightly different shear would be
computed from the total inertial forces, with the difference being due to damping. Note that while the results of MRS
analysis must be scaled up such that the corresponding base shear is not less than 85 percent of the base shear that would be
computed from an ELF analysis (see Section C12.9.4), the scaling for linear response history analysis considers only the
applicable minimum base shear coefficient.
If seven or more ground motions are used, the design values may be taken as the average of the scaled values from the
response history analysis. This provides some difficulty for components for which the capacity depends on multiple values.
For a column, for example, both the axial force and the concurrent bending moment are needed to compare demand and
capacity. In that instance, if seven or more ground motions are used, the column is deemed suitable if the average of the
seven peak demandtocapacity ratios for the column is less than 1.0. Where fewer than seven ground motions are used, the
column is deemed suitable if the maximum demandtocapacity ratio is less than 1.0.
The direction of loading requirements of Section 12.5 and the modeling requirements of Section 12.7 apply to response
history analysis, but Chapter 16 of the standard does not address additional requirements such as accidental torsion,
amplification of accidental torsion, or detailed consideration of Pdelta effects. These effects should be included in a manner
consistent with the requirements of Section 12.9.
C16.2 NONLINEAR RESPONSE HISTORY PROCEDURE
Nonlinear response history analysis is not used as part of the normal design process for typical structures. In some cases,
however, nonlinear analysis is recommended, and in certain cases required, to obtain a more realistic assessment of structural
response and verify the results of simpler methods of analysis. Such is the case for systems with frictionbased passive
energy dissipation devices, nonlinear viscous dampers, seismically isolated systems, selfcentering systems, or systems that
have components with highly irregular forcedeformation relationships.
The principal aim of nonlinear response history analysis is to determine if the computed deformations of the structure are
within appropriate limits. Strength requirements for the designated lateral loadresisting elements do not apply because
element strengths are established prior to the analysis. These initial strengths typically are determined from a preliminary
design using linear analysis.
The nonlinear response history analysis may also provide useful information on the strength requirements for nonstructural
components, which are often assumed to remain elastic in the analysis.
Where displacements computed from the nonlinear response history analysis are excessive, a typical remedy is to increase the
stiffness of the structure, which is likely to affect the computed strength.
Nonlinear response history analysis offers several advantages over linear response history analysis, including the ability to
model a wide variety of nonlinear material behaviors, geometric nonlinearities (including large displacement effects), gap
opening and contact behavior, and nonclassical damping, and to identify the likely spatial and temporal distributions of
inelasticity. Nonlinear response history analysis has several disadvantages, including increased effort to develop the
analytical model, increased time to perform the analysis (which is often complicated by difficulties in obtaining converged
solutions), sensitivity of computed response to system parameters, and the inapplicability of superposition to combine live,
dead, and seismic load effects.
C16.2.1 Analysis Requirements. Nonlinear response history analysis of structures with widely distributed inelastic
behavior is usually carried out using the direct analysis approach (described in Section C16.1.1), wherein all equations are
solved simultaneously at each time step. In some cases, it is possible to use a highly efficient nonlinear modal analysis
approach called Fast Nonlinear Analysis, or FNA (Wilson, 2004). The class of nonlinear structures that may be analyzed by
the FNA approach consists of structures with a very limited number of discrete sources of welldefined nonlinear behavior.
Such structures include seismically isolated structures and structures with damping systems. Because of the limited
applicability of FNA, this commentary discusses only the direct analysis approach.
The sensitivity of nonlinear response history analysis may be evidenced by results that appear to be chaotic or even counterintuitive,
although they may be correct. For example, it is possible for the analysis to predict that a structure collapses when
subjected to a given ground motion, while surviving at higher intensity of the same motion. Similarly, the results from
analyses of the same structure for several ground motions with similar spectral shapes and amplitudes often differ
substantially. A systematic approach to assess the sensitivity of structures to different ground motions and structural system
parameters, using Incremental Dynamic Analysis (IDA), is reported by Vamvatsikos (2002). The IDA method has become
an important tool in earthquake engineering research.
C16.2.2 Modeling. Nonlinear response history analysis requires a mathematical description of the hysteretic behavior of
those portions of the structure that are expected to exhibit inelastic behavior during an earthquake. Such models must reflect
the expected properties, accounting for the following effects as appropriate:
1. Material overstrength and strain hardening
2. Cyclic degradation of stiffness and strength
3. Incycle degradation of stiffness and strength (Applied Technology Council, 2009)
4. Pinching
5. Buckling
6. Axialflexuralshear interaction
Most of the available mathematical models are phenomenological and represent yielding portions as distinct elements (such
as plastic hinges). More exact analysis may be performed by subdividing yielding portions into a number of slices or fibers.
This more exact approach is preferable but is more computationally demanding.
An inelastic threedimensional analysis is particularly useful for buildings that are prone to torsional response in plan, even
where the main seismic forceresisting systems resist loads predominantly in their own plane. If only twodimensional
software is available, a “pseudo” threedimensional analysis may be performed (Mehrain and Naeim, 2003).
In moment resisting steel frames, the elastic and inelastic behavior of beamcolumn joint regions should be modeled
explicitly. Pdelta effects should be considered explicitly in the analysis. Nonstructural components also should be included
in the model if it is expected that their stiffness and strength have a significant effect on the response.
Nonlinear response history analysis requires that inherent damping be set for the structure. As for linear response history
analysis, nonlinear response history analysis typically is performed assuming inherent damping of 5 percent of critical. Some
analysts and designers advocate the use of lower levels of inherent damping (perhaps 2 percent of critical), especially for
steel frames, but there is no widespread agreement on this point.
The mechanism used to include inherent damping in the analytical model is critically important to the accuracy of the
computed response. Most nonlinear analysis programs use a form of Rayleigh damping, wherein the damping matrix (used
for direct integration of the equations of motion) is represented as a linear combination of the mass and stiffness matrices.
(See Section C16.1.2.) If the damping matrix is based on the initial stiffness of the system, artificial damping may be
generated by system yielding. In some cases, the artificial damping can completely skew the computed response (Chrisp,
1980; Carr, 2004; Charney, 2006; Hall, 2006). One method to counter this occurrence is to base the damping matrix on the
mass and the instantaneous tangent stiffness. (Where basing the damping on tangent stiffness, care must be taken so that the
damping is not negative when the tangent stiffness is negative.) Other approaches have been suggested, such as capped
Rayleigh damping (Hall, 2006) and hysteretic damping (Charney, 2006). Several commercial programs, including SAP2000,
Perform 2D, and Ruaomoko, provide for tangent stiffnessbased damping.
Threedimensional analysis must be used where certain plan irregularities are present. For structures composed of twodimensional
seismic forceresisting elements connected by floor and roof diaphragms, the diaphragms should be modeled as
flexible inplane, particularly where the vertical elements of the seismic forceresisting system are of different types (such as
moment frames and walls). Where structures are modeled in three dimensions, axial forcebiaxial bending interaction should
be considered for corner columns, nonrectangular walls, and other similar elements.
As mentioned above, Pdelta effects should be included where significant. The significance of Pdelta effects on the overall
response may be assessed by performing analyses with and without Pdelta effects, and comparing story drift response
histories. Destabilizing effects of gravity loads are often manifested by accumulated residual deformations, and these
deformations, if not controlled, can lead to dynamic instability of the structure.
C16.2.3 Ground Motion and Other Loading. Since linear superposition cannot be used with nonlinear analysis, each
response history analysis must begin with an initial gravity load, consisting of the expected dead load and live load. The live
load may be as little as 25 percent of the unfactored design live load because multiple transient loads are unlikely to attain
their maxima simultaneously.
C16.2.4 Response Parameters. As discussed above, the principal aim of nonlinear response history analysis is to determine
deformation demands in structural and nonstructural components for comparison with accepted limits. Where at least seven
ground motions are used, the member and connection deformations may be taken as the average of the values computed from
the analyses. If fewer than seven motions are used, the maximum values among all analyses must be used. It is very
important to note, however, that assessment of deformations in this manner should not be done without careful inspection of
the story displacement histories of each analysis. It is possible that the maximum displacement or drift may be completely
dominated by the response from one ground motion, and such dominance, when due to ratcheting (increasing deformations in
one direction resulting in a high residual deformation), may be a sign of imminent dynamic instability. Where these kinds of
dynamic instabilities are present, the analyst should attempt to determine the system characteristics that produce such effects.
The ground motion that produces dynamic instability should not be replaced with one that does not.
C16.2.4.1 Member Strength. The strength design load combinations of Section 12.4 need not be assessed because linear
combinations of load are not applicable in nonlinear analysis. Overstrength effects are evaluated directly since hysteretic
forcedeformation relationships are modeled explicitly and the material properties so used include overstrength and strain
hardening (as required by Section 16.2.2).
C16.2.4.2 Member Deformation. This section requires that member and connection deformations be assessed on the basis
of tests performed for similar configurations.
C16.2.4.3 Story Drift. The 25 percent increase in allowable story drift is provided because the nonlinear analysis is
generally more accurate than linear analysis and because member deformations are assessed explicitly.
C16.2.5 Design Review. As discussed above, nonlinear response history analysis is quite complex, and the results may be
strongly influenced by subtle changes in ground motion or system properties. Hence, such analysis must only be conducted
by experienced professionals with training in engineering seismology, earthquake engineering, structural dynamics, stability,
nonlinear analysis, and inelastic behavior of structures. Regardless of the level of expertise of the individual or individuals
who perform the analysis and design, a design (peer) review of the structural system and the nonlinear analysis is required
wherever the design is based on the nonlinear response history procedure.
REFERENCES
Anderson, J. A, and V. V. Bertero. 1987. “Uncertainties in Establishing Design Earthquakes,” Journal of Structural
Engineering, 113(8):17091724.
Applied Technology Council. 2009. The Effects of Strength and Stiffness Degradation on Seismic Response, FEMA P440A.
FEMA, Washington, D.C.
Carr, A. J. 2004. Ruaumoko Users Manual, Volume 1. Department of Civil Engineering, University of Canterbury, New
Zealand.
Charney, F. A. 2006. “Unintended Consequences of Modeling Damping in Structures,” in Proceedings of the 17th Analysis
and Computation Conference, ASCE, St. Louis, Missouri.
Chrisp, D. J. 1980. Damping Models for Inelastic Structures, Master of Engineering Report, University of Canterbury, New
Zealand.
Hall, J. F. 2006. “Problems Encountered from the Use (or Misuse) of Rayleigh Damping,” Earthquake Engineering and
Structural Dynamics, 25(5):525545.
Iervolino, I., and A. Cornell. 2005. “Record Selection for Nonlinear Seismic Analysis of Structures,” Earthquake Spectra,
21(3):685714.
Mehrain, M., and F. Naeim. 2003. “Exact Three Dimensional Linear and Nonlinear Seismic Analysis of Structures Using
TwoDimensional Models,” Earthquake Spectra, 19(4):897912.
Naeim, F., A. Alimoradi, and S. Pezeshk. 2004. “Selection and Scaling of Ground Motion Time Histories for Structural
Design using Genetic Algorithms,” Earthquake Spectra, 20(2):413426.
Shome, N., and A. Cornell. 1998. “Normalization and Scaling Accelerograms for Nonlinear Analysis,” in Proceedings of
the 6th U.S. National Conference on Earthquake Engineering. Earthquake Engineering Research Institute.
Shome, N., A. Cornell, P. Bazzurro, and J. E. Carballo. 1998. “Earthquakes, Records, and Nonlinear Response,” Earthquake
Spectra, 14(3):469500.
Somerville, P., Anderson, D., Sun, J., Punyamurthula, S., and Smith, N., 1998 Generation of Ground Motion Time Histories
for Performance Based Seismic Engineering,” Proceedings of the 6th U.S. National Conference on Earthquake Engineering,
Earthquake Engineering Research Institute.
Vamvatsikos, D. 2002. Seismic Performance, Capacity and Reliability of Structures As Seen Through Incremental Dynamic
Analysis, Ph.D. Dissertation, Department of Civil and Environmental Engineering, Stanford University, Palo Alto,
California.
Wilson, E. L., and J. Penzien. 1970. “Evaluation of Orthogonal Damping Matrices,” International Journal for Numerical
Methods in Engineering, 4:510.
Wilson, E. L., A. Der Kiureghian, and E. Bayo. 1981. “A Replacement for the SRSS Method in Seismic Analysis,”
Earthquake Engineering and Structural Dynamics, 9:192.
Wilson, E. L., M. Yuan, and J. Dickens. 1982. “Dynamic Analysis by Direct Superposition of Ritz Vectors,” Earthquake
Engineering and Structural Dynamics, 10:813823.
Wilson, E. L. 2004. Static and Dynamic Analysis of Structures, 4th Edition. Computers and Structures, Inc., Berkeley,
California.
Figure C17.11 Idealized forcedeflection relationships for isolation systems (stiffness effects of sacrificial windrestraint systems not shown for clarity).
B: Hardening A: Linear
C: Softening
D: Sliding
DD
k
Force
Displacement
COMMENTARY TO CHAPTER 17,
SEISMIC DESIGN REQUIREMENTS FOR
SEISMICALLY ISOLATED STRUCTURES
C17.1 GENERAL
Seismic isolation, commonly referred to as base isolation, is a method used to decouple substantially the response of a
structure from potentially damaging earthquake motions. This decoupling can result in response that is reduced significantly
from that of a conventional, fixedbase building.
The potential advantages of seismic isolation and the recent advancements in isolationsystem technology have led to the
design and construction of a large number of seismically isolated buildings and bridges in the United States.
Design requirements for seismically isolated structures were first codified in the United States as an appendix to the 1991
Uniform Building Code, based on “General Requirements for the Design and Construction of SeismicIsolated Structures”
developed by the Structural Engineers Association of California State Seismology Committee. In the intervening years, those
provisions have developed along two parallel tracks into the design requirements in Chapter 17 of the standard and the
rehabilitation requirements in Section 9.2 of ASCE/SEI 41, Seismic Rehabilitation of Existing Buildings. The design and
analysis methods of both standards are quite similar, but ASCE/SEI 41 permits more liberal design for the superstructure of
rehabilitated buildings. The AASHTO Guide Specification for Seismic Isolation Design provides a systematic approach to
determining bounding values of mechanical properties of isolators for analysis and design. Rather than addressing a specific
method of seismic isolation, the standard provides general design requirements applicable to a wide range of possible seismic
isolation systems. Because the design requirements are general, testing of isolationsystem hardware is required to confirm
the engineering parameters used in the design and to verify the overall adequacy of the isolation system. Use of isolation
systems whose adequacy is not proved by testing is prohibited. In general, acceptable systems: (a) remain stable when
subjected to design displacements, (b) provide increasing resistance with increasing displacement, (c) do not degrade under
repeated cyclic load, and (d) have quantifiable engineering parameters (such as forcedeflection characteristics and damping).
The forcedeflection behavior of isolation systems falls into four categories, as shown in Figure C17.11, where each
idealized curve has the same design displacement, DD. A linear isolation system (Curve A) has an effective period
independent of displacement, and the force generated in the superstructure is directly proportional to the displacement of the
isolation system.
with increasing displacement, the procedures of the standard cannot be applied, and use of the system is prohibited.
Figure C17.11 Idealized forcedeflection relationships for isolation systems
(stiffness effects of sacrificial windrestraint systems not shown for clarity).
A hardening isolation system (Curve B) is soft initially (long effective period) and then stiffens (effective period shortens) as
displacement increases. Where displacements exceed the design displacement, the superstructure is subjected to larger forces
and the isolation system to smaller displacements than for a comparable linear system.
A softening isolation system (Curve C) is stiff initially (short effective period) and then softens (effective period lengthens)
as displacement increases. Where displacements exceed the design displacement, the superstructure is subjected to smaller
forces and the isolation system to larger displacements than for a comparable linear system.
The response of a purely sliding isolation system (Curve D) is governed by the friction force at the sliding interface. For
increasing displacement, the effective period lengthens, and loads on the superstructure remain constant. For isolation
systems governed solely by friction forces, the total displacement due to repeated earthquake cycles is highly dependent on
the characteristics of the ground motion and may exceed the design displacement, DD. Since such systems do not have
increasing resistance
Chapter 17 provides isolator design displacements, shear forces for structural design, and other specific requirements for
seismically isolated structures. All other design requirements, including loads (other than seismic), load combinations,
allowable forces and stresses, and horizontal shear distribution, are the same as those for conventional, fixedbase structures.
C17.1.1 Variations in Material Properties. For analysis, the mechanical properties of seismic isolators generally are based
on values provided by isolator manufacturers. Values of the mechanical properties should be in the range that accounts for
natural variability and uncertainty, and variability of properties among isolater of different manufacturers. Examples may be
found in Constantinou et al. (2007b). Prototype testing is used to confirm the values assumed for design. Unlike conventional
materials whose properties do not vary substantially with time, the materials used in seismic isolators have properties that
generally will vary with time. Because mechanical properties can vary over the life of a structure and the testing protocol of
Section 17.8 cannot account for the effects of aging, contamination, scragging (temporary degradation of mechanical
properties with repeated cycling), temperature, velocity effects, and wear, the designer must account for these effects by
explicit analysis. One approach to accommodate these effects, introduced in Constantinou et al. (1999), is to use property
modification factors. Information on variations in material properties of seismic isolators and dampers is reported in
Constantinou et al. (2007).
C17.2 GENERAL DESIGN REQUIREMENTS
Ideally, most of the lateral displacement of an isolated structure will be accommodated by deformation of the isolation
system rather than distortion of the structure above. Accordingly, the seismicforceresisting system of the structure above
the isolation system is designed to have sufficient stiffness and strength to avoid large, inelastic displacements. Therefore,
the standard contains criteria that limit the inelastic response of the structure above the isolation system. Although damage
control is not an explicit objective of the standard, design to limit inelastic response of the structural system also will reduce
the level of damage that would otherwise occur during an earthquake. In general, isolated structures designed in accordance
with the standard are expected:
1. To resist minor and moderate levels of earthquake ground motion without damage to structural elements, nonstructural
components, or building contents and
2. To resist major levels of earthquake ground motion without failure of the isolation system, significant damage to
structural elements, extensive damage to nonstructural components, or major disruption to facility function.
Isolated structures are expected to perform much better than fixedbase structures during moderate and major earthquakes.
Table C17.21 compares the performance expected for isolated and fixedbase structures designed in accordance with the
standard.
Table C17.21 Performance Expected for Minor, Moderate, and Major Earthquakesa
Performance Measure
Earthquake Ground Motion Level
Minor
Moderate
Major
Life safety: loss of life or serious injury is not expected
F, I
F, I
F, I
Structural damage: significant structural damage is not expected
F, I
F, I
I
Nonstructural damage: significant nonstructural or contents damage
is not expected
F, I
I
I
a F indicates fixed base; I indicates isolated.
Loss of function is not included in Table C17.21. For certain fixedbase facilities, loss of function would not be expected
unless there is significant structural damage causing closure or restricted access to the building. In other cases, a facility with
only limited or no structural damage would not be functional as a result of damage to vital nonstructural components or
contents. Isolation would be expected to mitigate structural and nonstructural damage and to protect the facility against loss
of function.
C17.2.4 Isolation System
C17.2.4.1 Environmental Conditions. Environmental conditions that may adversely affect isolation system performance
must be investigated thoroughly. Related research has been conducted since the 1970s in Europe, Japan, New Zealand, and
the United States.
C17.2.4.2 Wind Forces. Lateral displacement over the depth of the isolator zone resulting from wind loads must be limited
to a value similar to that required for other story heights.
C17.2.4.3 Fire Resistance. While fire may adversely affect the lateral performance of the isolation system, its gravityload
resistance must be maintained as required for other elements of the structure.
C17.2.4.4 Lateral Restoring Force. The restoringforce requirement is intended to limit residual displacement as a result of
an earthquake, so that the isolated structure will survive aftershocks and future earthquakes.
C17.2.4.5 Displacement Restraint. The use of a displacement restraint is discouraged. Where a displacement restraint
system is used, explicit analysis of the isolated structure for maximum considered earthquake response is required to account
for the effects of engaging the displacement restraint.
C17.2.4.6 Verticalload Stability. The vertical loads to be used in checking the stability of any given isolator should be
calculated using bounding values of dead load and live load and the peak earthquake demand of the maximum considered
earthquake. Since earthquake loads are reversible in nature, peak earthquake load should be combined with bounding values
of dead and live load in a manner which produces both the maximum downward force and the maximum upward force on
any isolator. Stability of each isolator should be verified for these two extreme values of vertical load at peak maximum
considered earthquake displacement of the isolation system.
C17.2.4.7 Overturning. The intent of this requirement is to prevent both global structural overturning and overstress of
elements due to local uplift. Isolator uplift is acceptable so long as the isolation system does not disengage from its
horizontalresisting connection detail. The connection details used in some isolation systems are such that tension is not
permitted on the system. Where the tension capacity of an isolator is used to resist uplift forces, design and testing in
accordance with Sections 17.2.4.6 and 17.8.2.5 must be performed to demonstrate the adequacy of the system to resist
tension forces at the total maximum displacement.
C17.2.4.8 Inspection and Replacement. Although most isolation systems will not need to be replaced after an earthquake,
access for inspection and replacement must be provided, and periodic inspection is required. After an earthquake, the
isolation system should be inspected and any damaged elements replaced or repaired.
C17.2.4.9 Quality Control. A testing and inspection program is necessary for both fabrication and installation of the
isolator units. Because seismic isolation is a rapidly evolving technology, it may be difficult to reference standards for
testing and inspection. Reference can be made to standards for some materials, such as elastomeric bearings (ASTM D
4014). Similar standards are yet to be developed for other isolation systems. Special inspection procedures and load testing
to verify manufacturing quality must be developed for each project. The requirements will vary depending on the type of
isolation system used.
C17.2.5 Structural System
C17.2.5.2 Building Separations. A minimum separation between the isolated structure and rigid obstructions is required to
allow free movement of the superstructure in all lateral directions during an earthquake.
C17.2.6 Elements of Structures and Nonstructural Components. To accommodate the differential movement between
the isolated building and the ground, flexible utility connections are required. In addition, stiff elements crossing the
isolation interface (such as stairs, elevator shafts, and walls) must be detailed to accommodate the total maximum
displacement without compromising life safety.
C17.3 GROUND MOTION FOR ISOLATED STRUCTURES
C17.3.1 Design Spectra. Seismically isolated structures located on Site Class F sites and on sites with S1 = 0.6 must be
analyzed using response history analysis. For those cases, the response spectra must be sitespecific in order to account, in
the analysis, for nearfault effects and for soft soil conditions, both of which are known to be important in the assessment of
displacement demands in seismically isolated structures.
C17.3.2 Ground Motion Histories. The selection and scaling of ground motions for response history analysis requires
fitting to the response spectra in the period range of 0.5TD to 1.25TM, a range that is different from that for conventional
structures 0.2T to 1.5T. The following sections provide background on the two period ranges:
1. Period Range – Isolated Structures. The effective (fundamental) period of an isolated structure is based on
amplitudedependent, nonlinear (pushover) stiffness properties of the isolation system. The effective periods, TD
and TM, correspond to design earthquake displacement and maximum considered earthquake displacement,
respectively, in the direction under consideration. Values of effective (fundamental) periods, TD and TM, are
typically in the range of 2 to 4 seconds, and the value of the effective period, TD, typically is 15 to 25 percent less
than the corresponding value of effective period, TM.
The response of an isolated structure is dominated by the fundamental mode in the direction of interest. The
specified period range, 0.5TD to 1.25TM, conservatively bounds amplitudedependent values of the effective
(fundamental) period of the isolated structure in the direction of interest, considering that individual earthquake
records can affect response at effective periods somewhat longer than TM, or significantly shorter than TD.
2. Period Range – Conventional, FixedBase Structures. The fundamental period, T, of a conventional, fixedbase
structure is based on amplitudeindependent, linearelastic stiffness properties of the structure. In general, response
of conventional, fixedbase structures is influenced by both the fundamental mode and higher modes in the direction
under consideration. The period range, 0.2T to 1.5T, is intended to bound the fundamental period, considering some
period lengthening due to nonlinear response of the structure (that is, inelastic periods up to 1.5T) and periods
corresponding to the more significant higher modes (that is, second and possibly third modes in the direction of
interest).
C17.4 ANALYSIS PROCEDURE SELECTION
Three different analysis procedures are available for determining designlevel seismic loads: the equivalent lateral force
procedure, the response spectrum procedure, and the response history procedure. For the first procedure simple, lateralforce
formulas (similar to those for conventional, fixedbase structures) are used to determine peak lateral displacement and design
forces as a function of spectral acceleration and isolatedstructure period and damping. For the second and third procedures,
which are required for geometrically complex or especially flexible buildings, dynamic analysis (either the response spectrum
procedure or the response history procedure) is used to determine peak response of the isolated structure.
The three procedures are based on the same level of seismic input and require a similar level of performance from the
building. Where more complex analysis procedures are used, slightly lower design forces and displacements are permitted.
The design requirements for the structural system are based on the design earthquake, taken as twothirds of the maximum
considered earthquake. The isolation system—including all connections, supporting structural elements, and the “gap”—is
required to be designed (and tested) for 100 percent of maximum considered earthquake demand. Structural elements above
the isolation system are not required to be designed for the full effects of the design earthquake but may be designed for
slightly reduced loads (that is, loads reduced by a factor of up to 2) if the structural system is able to respond inelastically
without sustaining significant damage. A similar fixedbase structure would be designed for loads reduced by a factor of 8
rather than 2.
This section delineates the requirements for the use of the equivalent lateral force procedure and dynamic methods of
analysis. The limitations on the simplified lateralforce design procedure are quite restrictive. Limitations relate to the site
location with respect to major, active faults; soil conditions of the site; the height, regularity, and stiffness characteristics of
the building; and selected characteristics of the isolation system. Responsehistory analysis is required to determine the
design displacement of the isolation system (and the structure above) for the following isolated structures:
1. Isolated structures with a “nonlinear” isolation system including, but not limited to, isolation systems with effective
damping values greater than 30 percent of critical, isolation systems incapable of producing a significant restoring force,
and isolation systems that restrain or limit extreme earthquake displacement; and
2. Isolated structures located on a Class E or Class F site (that is, a soft soil site that amplifies longperiod ground motions).
Lowerbound limits on isolation system design displacements and structuraldesign forces are specified by the standard in
Section 17.6 as a percentage of the values prescribed by the equivalent lateral force procedure, even where dynamic analysis
is used as the basis for design. These lowerbound limits on key design parameters provide consistency in the design of
isolated structures and serve as a “safety net” against gross underdesign. Table C17.41 provides a summary of the lowerbound
limits on dynamic analysis specified by the standard.
C17.5 EQUIVALENT LATERAL FORCE PROCEDURE
C17.5.3 Minimum Lateral Displacements. The lateral displacement given by Equation 17.51 approximates peak design
earthquake displacement of a singledegreeoffreedom, linearelastic system of period, TD, and equivalent viscous damping,
ß D. Similarly, the lateral displacement given by Equation 17.53 approximates peak maximum considered earthquake
displacement of a singledegreeoffreedom, linearelastic system of period, TM, and equivalent viscous damping, ß M.
Table C17.41 LowerBound Limits on Dynamic Procedures Specified in Relation to
ELF Procedure Requirements
Design Parameter
ELF Procedure
Dynamic Procedure
Response
Spectrum
Response
History
Design displacement – DD
DD = (g/4p2)(SD1TD/BD)
—
—
Total design displacement  DTD
DTD 1.1DD Equation
=
0.9DTD Equation
=
0.9DTD Equation
=
Maximum displacement – DM
DM = (g/4p2)(SM1TM/BM)
—
—
Total maximum displacement  DTM
DTM 1.1DM Equation
=
0.8DTM Equation
=
0.8DTM Equation
=
Design shear – Vb
(at or below the isolation system)
Vb = kDmaxDD
0.9Vb Equation
=
0.9Vb Equation
=
Design shear – Vs
(“regular” superstructure)
Vs = kDmaxDD/RI
0.8Vs Equation
=
0.6Vs Equation
=
Design shear – Vs
(“irregular” superstructure)
Vs = kDmaxDD/RI
1.0Vs Equation
=
0.8Vs Equation
=
Drift (calculated using RI for Cd)
0.015hsx
0.015hsx
0.020hsx
Equation 17.51 is an estimate of peak displacement in the isolation system for the design earthquake. In this equation, the
spectral acceleration term, SD1, is the same as that required for design of a conventional, fixedbase structure of period, TD.
A damping term, BD, is used to decrease (or increase) the computed displacement where the equivalent damping coefficient
of the isolation system is greater (or smaller) than 5 percent of critical damping. Values of coefficient BD (or BM for the
maximum considered earthquake) are given in Table 17.51 for different values of isolation system damping, ß D (or ß M).
A comparison of values obtained from Equation 17.51 and those obtained from nonlinear timehistory analyses are given in
Kircher et al. (1988) and Constantinou et al. (1993).
Consideration should be given to possible differences in the properties used for design of the isolation system and those of
the isolation system as installed in the structure. Similarly, consideration should be given to possible changes in isolation
system properties due to different design conditions or load combinations. If the true deformational characteristics of the
isolation system are not stable or if they vary with the nature of the load (being rate, amplitude, or timedependent), the
design displacements should be based on deformational characteristics of the isolation system that give the largest possible
deflection (kDmin), the design forces should be based on deformational characteristics of the isolation system that give the
largest possible force (kDmax), and the damping level used to determine design displacements and forces should be based on
deformational characteristics of the isolation system that represent the minimum amount of energy dissipated during cyclic
response at the design level.
The isolation system for a seismically isolated structure should be configured to minimize eccentricity between the center of
mass of the superstructure and the center of rigidity of the isolation system. In this way, the effect of torsion on the
displacement of isolation elements will be reduced. As for conventional structures, allowance must be made for accidental
eccentricity in both horizontal directions. Figure C17.51 illustrates the terminology used in the standard. Equation 17.55
(or Equation 17.56 for the maximum considered earthquake) provides a simplified formula for estimating the response due
to torsion in lieu of a more refined analysis. The additional component of displacement due to torsion increases the design
displacement at the corner of a structure by about 15 percent (for one perfectly square in plan) to about 30 percent (for one
very long and rectangular in plan) if the eccentricity is 5 percent of the maximum plan dimension. These calculated torsional
Figure C17.51 Displacement terminology.
Total maximum displacement
(maximum considered earthquake
corner of building)
Maximum displacement
(maximum considered earthquake
center of building)
Design displacement
(design earthquake
center of building)
TM
M
D
D
D
D
Plan view
of building
displacements are for structures with an isolation system whose stiffness is uniformly distributed in plan. Isolation systems
that have stiffness concentrated toward the perimeter of the structure, or certain sliding systems that minimize the effects of
mass eccentricity, will have smaller torsional displacements. The standard permits values of DTD as small as 1.1DD, with
proper justification.
Figure C17.51 Displacement terminology.
C17.5.4 Minimum Lateral Forces. Figure C17.52 illustrates the terminology for elements at, below, and above the
isolation system. Equation 17.57 specifies the peak seismic shear for design of all structural elements at or below the
isolation system (without reduction for ductile response). Equation 17.58 specifies the peak seismic shear for design of
structural elements above the isolation system. For structures that have appreciable inelasticdeformation capability, this
equation includes an effective reduction factor of up to 2 for response beyond the strengthdesign level.
The reduction factor is based on use of strengthdesign procedures. A factor of at least 2 is assumed to exist between the
designforce level and the trueyield level of the structural system. An investigation of 10 specific buildings indicated that
this factor varied between 2 and 5 (ATC, 1982). Thus, a reduction factor of 2 is appropriate to produce a structural system
that remains essentially elastic for the design earthquake.
In Section 17.5.4.3, the limits given on VS provide at least a factor of 1.5 between the nominal yield level of the
superstructure and (a) the yield level of the isolation system, (b) the ultimate capacity of a sacrificial windrestraint system
that is intended to fail and release the superstructure during significant lateral load, or (c) the breakaway friction level of a
sliding system.
These limits are needed so that the superstructure will not yield prematurely before the isolation system has been activated
and significantly displaced.
Figure C17.52 Isolation system terminology.
Structure above the
isolation system
Structural elements that transfer
force between isolator units
Isolator
unit
Isolator
unit
interface
Isolation
Figure C17.52 Isolation system terminology.
The design shear force, VS, specified in this section results in an isolated structural system being subjected to significantly
lower inelastic demands than a conventionally designed structural system. Further reduction in VS, such that the inelastic
demand on a seismically isolated structure would be the same as the inelastic demand on a conventionally designed structure,
was not considered during development of these requirements but may be considered in the future.
Using a smaller value of RI in Equation 17.58 will reduce or eliminate inelastic response of the superstructure for the designbasis
event, thus further improving the structural performance.
C17.5.5 Vertical Distribution of Forces. Equation 17.59 produces a vertical distribution of lateral forces consistent with a
triangular profile of seismic acceleration over the height of the structure above the isolation interface. Kircher et al. (1988)
and Constantinou et al. (1993) show that Equation 17.59 provides a conservative estimate of the distributions obtained from
more detailed, nonlinear analysis studies for the type of structures for which use of Equation 17.59 is allowed.
C17.5.6 Drift Limits. The maximum story drift permitted for design of isolated structures is constant for all Occupancy
Categories, as shown in Table C17.51. For comparison, the drift limits prescribed by the standard for fixedbase structures
also are summarized in that table.
Table C17.51 Comparison of Drift Limits for FixedBase and Isolated Structures
Structure
Occupancy Category
FixedBase
Isolated
Buildings (other than masonry)
four stories or less in height with
component drift design
I or II
0.025hsx/(Cd/R)
0.015hsx
III
0.020hsx/(Cd/R)
0.015hsx
IV
0.015hsx/(Cd/R)
0.015hsx
Other (nonmasonry) buildings
I or II
0.020hsx/(Cd/R)
0.015hsx
III
0.015hsx/(Cd/R)
0.015hsx
IV
0.010hsx/(Cd/R)
0.015hsx
Drift limits in Table C17.51 are divided by Cd /R for fixedbase structures since displacements calculated for lateral loads
reduced by R are multiplied by Cd before checking drift. The Cd term is used throughout the standard for fixedbase
structures to approximate the ratio of actual earthquake response to response calculated for “reduced” forces. Generally, Cd
is 1/2 to 4/5 the value of R. For isolated structures, the RI factor is used both to reduce lateral loads and to increase
displacements (calculated for reduced lateral loads) before checking drift. Equivalency would be obtained if the drift limits
for both fixedbase and isolated structures were based on their respective R factors. It may be noted that the drift limits for
isolated structures generally are more conservative than those for conventional, fixedbase structures, even where fixedbase
structures are assigned to Occupancy Category IV.
C17.6 DYNAMIC ANALYSIS PROCEDURES
This section specifies the requirements and limits for dynamic procedures. The design displacement and force limits on
response spectrum and response history procedures are shown in Table C17.41.
A more detailed or refined study can be performed in accordance with the analysis procedures described in this section. The
intent of this section is to provide procedures that are compatible with the minimum requirements of Section 17.5. Reasons
for performing a more refined study include:
1. The importance of the building.
2. The need to analyze possible structure/isolationsystem interaction where the fixedbase period of the building is greater
than onethird of the isolated period.
3. The need to explicitly model the deformational characteristics of the lateralforceresisting system where the structure
above the isolation system is irregular.
4. The desirability of using sitespecific groundmotion data, especially for very soft or liquefiable soils (Site Class F) or
for structures located where S1 is greater than 0.60.
5. The desirability of explicitly modeling the deformational characteristics of the isolation system. This is especially
important for systems that have damping characteristics that are amplitudedependent, rather than velocitydependent,
since it is difficult to determine an appropriate value of equivalent viscous damping for these systems.
Section C17.4 discusses other conditions that require use of the response history procedure. As shown in Table C17.41, the
drift limit for isolated structures is relaxed where story drifts are computed using nonlinear response history analysis.
Where response history analysis is used as the basis for design, the design displacement of the isolation system and design
forces in elements of the structure above are computed from not fewer than three separate analyses, each using a different
ground motion selected and scaled in accordance with Section 17.3.2. Where the configuration of the isolation system or of
the superstructure is not symmetric, additional analyses are required to satisfy the requirement of Section 17.6.3.4 to consider
the most disadvantageous location of eccentric mass. As appropriate, nearfield phenomena may also be incorporated. As in
the nuclear industry, where at least seven ground motions are used for nonlinear response history analysis, it is considered
appropriate to base design of seismically isolated structures on the average value of the response parameters of interest.
C17.7 DESIGN REVIEW
Review of the design and analysis of the isolation system and design review of the isolator testing program is mandated by
the standard for two key reasons:
1. The consequences of isolator failure could be catastrophic.
2. Isolator design and fabrication technology is evolving rapidly and may be based on technologies unfamiliar to many
design professionals.
The standard requires review to be performed by a team of registered design professionals that are independent of the design
team and other project contractors. The review team should include individuals with special expertise in one or more aspects
of the design, analysis, and implementation of seismic isolation systems.
The review team should be formed prior to the development of design criteria (including sitespecific ground shaking criteria)
and isolation system design options. Further, the review team should have full access to all pertinent information and the
cooperation of the design team and regulatory agencies involved with the project.
C17.8 TESTING
The design displacements and forces determined using the standard assume that the deformational characteristics of the
isolation system have been defined previously by comprehensive testing. If comprehensive test data are not available for a
system, major design alterations in the structure may be necessary after the tests are complete. This would result from
Figure C17.81 The effect of stiffness on an isolation bearing.
Force
Displacement
Fmax
+
F min
+
Kmax
Kmin
. I .+I
F min

Fmax

K m a x =
K m in =
F m a x F
+
max

F m i n F
+
min

.+ I  .I
.+ I  .I
variations in the isolationsystem properties assumed for design and those obtained by test. Therefore, it is advisable that
prototype systems be tested during the early phases of design, if sufficient test data are not available on an isolation system.
Typical forcedeflection (or hysteresis) loops are shown in Figure C17.81; also illustrated are the values defined in Section
17.8.5.1.
Figure C17.81 The effect of stiffness on an isolation bearing.
The required sequence of tests will verify experimentally the following:
1. The assumed stiffness and capacity of the windrestraining mechanism;
2. The variation of the isolator’s deformational characteristics with amplitude (and with vertical load, if it is a vertical loadcarrying
member);
3. The variation of the isolator’s deformational characteristics for a realistic number of cycles of loading at the design
displacement; and
4. The ability of the system to carry its maximum and minimum vertical loads at the maximum displacement.
Forcedeflection tests are not required if similarly sized components have been tested previously using the specified sequence
of tests.
The variations in the vertical loads required for tests of isolators which carry vertical, as well as lateral, load are necessary to
determine possible variations in the system properties with variations in overturning force.
C17.8.5 Design Properties of the Isolation System
C17.8.5.1 Maximum and Minimum Effective Stiffness. The effective stiffness is determined from the hysteresis loops as
shown in Figure C17.81. Stiffness may vary considerably as the test amplitude increases but should be reasonably stable
(within 15 percent) for more than three cycles at a given amplitude.
The intent of these requirements is that the deformational properties used in design result in the maximum design forces and
displacements. For determining design displacement, this means using the smallest damping and effective stiffness values.
For determining design forces, this means using the smallest damping value and the largest stiffness value.
C17.8.5.2 Effective Damping. The determination of equivalent viscous damping is reasonably reliable for systems whose
damping characteristics are velocity dependent. For systems that have amplitudedependent energydissipating mechanisms,
significant problems arise in determining an equivalent viscousdamping value. Since it is difficult to relate velocity and
amplitudedependent phenomena, it is recommended that where the equivalentviscous damping assumed for the design of
amplitudedependent energydissipating mechanisms (such as puresliding systems) is greater than 30 percent, the designbasis
force and displacement be determined using the response history procedure, as discussed in Section C17.4.
REFERENCES
Applied Technology Council. 1982. An Investigation of the Correlation between Earthquake Ground Motion and Building
Performance, ATC Report 10. ATC, Redwood City, California.
Association of State Highway and Transportation Officials. 1999. Guide Specification for Seismic Isolation Design.
AASHTO, Washington, D.C.
Constantinou, M. C., C. W. Winters, and D. Theodossiou. 1993. “Evaluation of SEAOC and UBC analysis procedures, Part
2: Flexible superstructure,” in Proceedings of a Seminar on Seismic Isolation, Passive Energy Dissipation and Active
Control, ATC Report 171. ATC, Redwood City, California.
Constantinou, M. C., P. Tsopelas, A. Kasalanati, and E. D. Wolff. 1999. “Property modification factors for seismic isolation
bearings,” MCEER990012. Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
Constantinou, M. C., A. S. Whittaker, Y. Kalpakidis, D. M. Fenz, and G. P. Warn. 2007. “Performance of seismic isolation
hardware under service and seismic loading,” MCEER070012. Multidisciplinary Center for Earthquake Engineering
Research, Buffalo, New York.
International Code Council. 2006. International Building Code. ICC, Washington, D.C.
Kircher, C. A., B. Lashkari, R. L. Mayes, and T. E. Kelly. 1988. “Evaluation of nonlinear response in seismically isolated
buildings,” in Proceedings of a Symposium on Seismic, Shock and Vibration Isolation, ASME PVP Conference.
Lashkari, B., and C. A. Kircher. 1993. “Evaluation of SEAOC & UBC analysis procedures, Part 1: stiff superstructure,” in
Proceedings of a Seminar on Seismic Isolation, Passive Energy Dissipation and Acti.: ATC.
COMMENTARY TO CHAPTER 18,
SEISMIC DESIGN REQUIREMENTS FOR STRUCTURES
WITH DAMPING SYSTEMS
C18.1 GENERAL
The requirements of this chapter apply to all types of damping systems including both displacementdependent damping
devices of hysteretic or friction systems and velocitydependent damping devices of viscous or viscoelastic systems (Soong
and Dargush, 1997; Constantinou et al., 1998; Hanson and Soong, 2001). Compliance with these requirements is intended to
produce performance comparable to that for a structure with a conventional seismicforceresisting system, but the same
methods can be used to achieve higher performance.
The damping system (DS) is defined separately from the seismicforceresisting system (SFRS), although the two systems
may have common elements. As illustrated in Figure C18.11, the damping system may be external or internal to the
structure and may have no shared elements, some shared elements, or all elements in common with the seismicforceresisting
system. Elements common to the damping system and the seismicforceresisting system must be designed for a
combination of the two loads of the two systems. When the DS and SFRS have no common elements, the damper forces must
be collected and transferred to members of the SFRS.
C18.2 GENERAL DESIGN REQUIREMENTS
C18.2.2 System Requirements. Structures with a damping system must have a seismicforceresisting system that provides
a complete load path. The seismicforceresisting system must comply with all of the height, Seismic Design Category, and
redundancy limitations and with the detailing requirements specified in this standard for the specific seismicforceresisting
system. The seismicforceresisting system without the damping system (as if damping devices were disconnected) must be
designed to have not less than 75 percent of the strength required for undamped structures having that type of seismicforceresisting
system (and not less than 100 percent if the structure is horizontally or vertically irregular). The damping systems,
however, may be used to meet the drift limits (whether the structure is regular or irregular). Having the SFRS designed for a
minimum of 75 percent of the strength required for undamped structures provides safety in the event of damping system
malfunction and produces a composite system with sufficient stiffness and strength to have controlled lateral displacement
response.
The damping system must be designed for the actual (unreduced) earthquake forces (such as, peak force occurring in
damping devices) and deflections. For certain elements of the damping system ( such as the connections or the members into
which the damping devices frame ), other than damping devices, limited yielding is permitted provided such behavior does
not affect damping system function or exceed the amount permitted for elements of conventional structures by the standard.
C18.2.4 Procedure Selection. Linear static and response spectrum analysis methods can be used for design of structures
with damping systems that meet certain configuration and other limiting criteria (for example, at least two damping devices
at each story configured to resist torsion). In such cases, additional nonlinear response history analysis shall be used to
confirm peak responses when the structure is located at a site with S1 greater than or equal to 0.6. The analysis methods
damperd structures are based on nonlinear static “pushover” characterization of the structure and calculation of peak response
using effective (secant) stiffness and effective damping properties of the first (pushover) mode in the direction of interest.
These are the concepts used in Chapter 17 to characterize the forcedeflection properties of isolation systems, modified to
incorporate explicitly the effects of ductility demand (postyield response) and highermode response of structures with
dampers. Like conventional structures, dampered structures generally yield during strong ground shaking, and their
performance can be influenced strongly by response of higher modes.
The response spectrum and equivalent lateral force procedures presented in the standard have several simplifications and
limits, as outlined below:
1. A multidegreeoffreedom (MDOF) structure with a damping system can be transformed into equivalent singledegreeof
freedom (SDOF) systems using modal decomposition procedures. This assumes that the collapse mechanism for the
structure is a singledegreeoffreedom mechanism so that the drift distribution over height can be estimated reasonably
using either the first mode shape or another profile, such as an inverted triangle. Such procedures do not strictly apply to
either yielding buildings or buildings that are nonproportionally damped.
2. The response of an inelastic singledegreeoffreedom system can be estimated using equivalent linear properties and a
5percentdamped response spectrum. Spectra for damping greater than 5 percent can be established using damping
Figure C18.11 Damping system (DS) and seismicforceresisting system (SFRS) configurations.
Internal damping devices common elements
Internal damping devices some shared elements
Internal damping devices no shared elements
External damping devices
SFRS
SFRS
SFRS
SFRS
DS
DS
DS
DS
Damper
Damper
Damper
Damper
coefficients, and velocitydependent forces can be established either by using the pseudovelocity and modal information
or by applying correction factors to the pseudovelocity.
3. The nonlinear response of the structure can be represented by a bilinear hysteretic relationship with zero postelastic
stiffness (elastoplastic behavior).
4. The yield strength of the structure can be estimated either by performing simple plastic analysis or by using the specified
minimum seismic base shear and values of R, O0, and Cd.
5. Higher modes need to be considered in the equivalent lateral force procedure in order to capture their effects on velocitydependent
forces. This is reflected in the residual mode procedure.
Figure C18.11 Damping system (DS) and seismicforceresisting system (SFRS) configurations.
FEMA 440 (Applied Technology Council, 2005) presents a review of simplified procedures for the analysis of yielding
structures. The combined effects of the simplifications mentioned above are reported by Ramirez et al. (2001) and Pavlou
and Constantinou (2004) based on studies of 3story and 6story buildings with damping systems designed by the procedures
of the standard. The response spectrum and equivalent lateral force procedures of the standard are found to provide
conservative predictions of drift and predictions of damper forces and member actions that are of acceptable accuracy when
compared to results of nonlinear dynamic response history analysis. When designed in accordance with the standard,
structures with damping systems are expected to have structural performance at least as good as that of structures without
damping systems. Pavlou and Constantinou (2006) report that structures with damping systems designed in accordance with
the standard provide the benefit of reduced secondary system response, although this benefit is restricted to systems with
added viscous damping.
C18.3 NONLINEAR PROCEDURES
For designs in which the seismicforceresistingsystem is essentially elastic (assuming an overstrength of 50 percent), the
only nonlinear characteristics that must be modeled in the analysis are those of the damping devices. For designs in which
the seismicforceresisting system will yield, the postyield behavior of the structural elements must be modeled explicitly.
C18.4 RESPONSE SPECTRUM PROCEDURES and C18.5 EQUIVALENT LATERAL FORCE PROCEDURE
Effective Damping
In the standard the reduced response of a structure with a damping system is characterized by the damping coefficient, B,
based on the effective damping, ß , of the mode of interest. This is the same approach as that used for isolated structures.
Like isolation, effective damping of the fundamentalmode of a damped structure is based on the nonlinear forcedeflection
properties of the structure. For use with linear analysis methods, nonlinear properties of the structure are inferred from the
overstrength factor, O 0, and other terms.
Figure C18.41 illustrates reduction in design earthquake response of the fundamental mode due to increased effective
damping (represented by coefficient, B1D). The capacity curve is a plot of the nonlinear behavior of the fundamental mode in
spectral accelerationdisplacement coordinates. The reduction due to damping is applied at the effective period of the
fundamental mode of vibration (based on the secant stiffness).
In general, effective damping is a combination of three components:
1. Inherent Damping ( ßI
)—Inherent damping of the structure at or just below yield, excluding added viscous damping
(typically assumed to be 5 percent of critical for structural systems without dampers).
2. Hysteretic Damping (ß H)—Postyield hysteretic damping of the seismicforceresisting system and elements of the
damping system at the amplitude of interest (taken as 0 percent of critical at or below yield).
3. Added Viscous Damping (ß V)—Viscous component of the damping system (taken as 0 percent for hysteretic or frictionbased
damping systems).
Both hysteretic damping and added viscous damping are amplitudedependent, and the relative contributions to total effective
damping change with the amount of postyield response of the structure. For example, adding dampers to a structure
decreases postyield displacement of the structure and, hence, decreases the amount of hysteretic damping provided by the
seismicforceresisting system. If the displacements are reduced to the point of yield, the hysteretic component of effective
damping is zero, and the effective damping is equal to inherent damping plus added viscous damping. If there is no damping
system (as in a conventional structure), effective damping simply equals inherent damping (typically assumed to be 5 percent
of critical for most conventional structures).
Linear Analysis Methods
The section specifies design earthquake displacements, velocities, and forces in terms of design earthquake spectral
acceleration and modal properties. For equivalent lateral force (ELF) analysis, response is defined by two modes: the
fundamental mode and the residual mode. The residual mode is a new concept used to approximate the combined effects of
higher modes. While typically of secondary importance to story drift, higher modes can be a significant contributor to story
velocity and, hence, are important for design of velocitydependent damping devices. For response spectrum analysis, higher
modes are explicitly evaluated.
For both the ELF and the response spectrum analysis procedures, response in the fundamental mode in the direction of
interest is based on assumed nonlinear (pushover) properties of the structure. Nonlinear (pushover) properties, expressed in
terms of base shear and roof displacement, are related to building capacity, expressed in terms of spectral coordinates, using
mass participation and other fundamentalmode factors shown in Figure C18.42. The conversion concepts and factors
shown in Figure C18.42 are the same as those defined in Chapter 9 of Seismic Rehabilitation of Existing Buildings
(ASCE/SEI 41), which addresses seismic rehabilitation of a structure with damping devices.
Figure C18.41 Effective damping reduction of design demand.
SD1/T1
SDE
SD1/T1D
SD1/(T1DB1D)
SD1D
Spectral acceleration
Spectral displacement
BV+I
B1D
Effective damping:
(added viscous,
inherent, and hysteretic)
Design earthquake demand spectrum
(5% damping)
Design earthquake demand spectrum
(ßV + ßI
damping)
Capacity
curve
T1
T1D
1 1
1 2
1
2
1
2
1
4
4
D D
D
D
DS D
D
g S T SD
B
g S T
B
p
p
. .
=. .
. .
. .
=. .
. . Figure C18.42 Pushover and capacity curves.
(SD1D, SA1D)
(D1D, F1/W)
Acceleration
Displacement
Capacity
curve
T1
T1D
Pushover curve
(normalized by
weight)
2
1 4 2 1 1 D D D
SD g SA T
p
. .
=. .
. .
1 1 1
1
1
1
1
D D
n
i i
i
D SD
W
wf
=
= G
G =
S
1 1
1
2
1
1
1
2
1
1
D
n
i i
i
n
i i
i
F W
SA
W W
w
W
w
f
f
=
=
=
. .
. .
= . .
S
S
Figure C18.41 Effective damping reduction of design demand.
Figure C18.42 Pushover and capacity curves.
Figure C18.43 Showing Idealized elastoplastic pushover curve used for linear analysis.
V1
VY
DY D1D
Base shear
Roof displacement
Pushover curve
Idealized elastoplastic
pushover curve
2
1 1 1
1 2 1 2 1
1 1 4 4
D D DS D
D
D D
g S T g S T D
p B p B
. . . .
= . .G = . .G
. . . .
0 d C
R
O
D µ
2
1 1
2 max
1
D D
D
Y
D T
D T
µ = ˜ = µ
Where using linear analysis methods, the shape of the fundamentalmode pushover curve is not known, so an idealized
elastoplastic shape is assumed, as shown in Figure C18.43. The idealized pushover curve is intended to share a common
point with the actual pushover curve at the design earthquake displacement, D1D. The idealized curve permits definition of
the global ductility demand due to the design earthquake, µ D, as the ratio of design displacement, D1D, to yield displacement,
DY. This ductility factor is used to calculate various design factors; it must not exceed the ductility capacity of the seismicforce
resisting system, µ max, which is calculated using factors for conventional structural response. Design examples using
linear analysis methods have been developed and found to compare well with the results of nonlinear time history analysis
(Ramirez et al., 2001).
Elements of the damping system are designed for fundamentalmode design earthquake forces corresponding to a base shear
value of VY (except that damping devices are designed and prototypes tested for maximum considered earthquake response).
Elements of the seismicforceresisting system are designed for reduced fundamentalmode base shear, V1, where force
reduction is based on system overstrength (represented by O 0), multiplied by Cd /R for elastic analysis (where actual
pushover strength is not known). Reduction using the ratio Cd /R is necessary because the standard provides values of Cd
that are less than those for R. Where the two parameters have equal value and the structure is 5 percent damped under elastic
conditions, no adjustment is necessary. Because the analysis methodology is based on calculating the actual story drifts and
damping device displacements (rather than the displacements calculated for elastic conditions at the reduced base shear and
then multiplied by Cd), an adjustment is needed. Since actual story drifts are calculated, the allowable story drift limits of
Table 12.121 are multiplied by R/ Cd before use.
Figure C18.43 Idealized elastoplastic pushover curve used for linear analysis.
C18.6 DAMPED RESPONSE MODIFICATION
C18.6.1 Damping Coefficient
Values of the damping coefficient, B, in Table 18.61 for design of damped structures are the same as those in Table 17.51
for isolated structures at damping levels up to 20 percent, but extend to higher damping levels based on results presented in
Ramirez et al. (2001). Table C18.61 compares values of the damping coefficient as found in the standard and various
resource documents and codes. FEMA 440 and the draft of Eurocode 8 present equations for the damping coefficient, B,
whereas the other documents present values of B in tabular format.
The equation in FEMA 440 is
Equation
4
5.6 ln(100 )
B
ß
=

The equation in Eurocode 8 is
Table C18.61 Values of Damping Coefficient, B Equation
0.05
0.10
B +ß
=
Effective Damping,
(%) Equation
ß
Table 17.51,
1999 AASHTO, 2001
CBC (seismically
isolated structures)
Table 18.61
(structures with
damping systems)
FEMA 440
EUROCODE 8
2
0.8
0.8
0.8
0.8
5
1.0
1.0
1.0
1.0
10
1.2
1.2
1.2
1.2
20
1.5
1.5
1.5
1.6
30
1.7
1.8
1.8
1.9
40
1.9
2.1
2.1
2.1
50
2.0
2.4
2.4
2.3
C18.6.2 Effective Damping. The effective damping is calculated assuming the structural system exhibits perfectly bilinear
hysteretic behavior characterized by the effective ductility demand, µ, as described in Ramirez et al. (2001). Effective
damping is adjusted using the hysteresis loop adjustment factor, qH, which is the actual area of the hysteresis loop divided by
the area of the assumed perfectly bilinear hysteretic loop. In general, values of this factor are less than unity. In Ramirez et
al. (2001) expressions for this factor (which they call Quality Factor) are too complex to serve as a simple rule. Equation
18.65 provides a simple estimate of this factor. The equation predicts correctly the trend in the constant acceleration domain
of the response spectrum, and it is believed to be conservative for flexible structures.
C18.7 SEISMIC LOAD CONDITIONS AND ACCEPTANCE CRITERIA
C18.7.2.5 Seismic Load Conditions and Combination of Modal Responses. Seismic design forces in elements of the
damping system are calculated at three distinct stages: maximum displacement, maximum velocity, and maximum
acceleration. All three stages need to be checked for structures with velocitydependent damping systems. For displacementdependent
damping systems, the first and third stages are identical, whereas the second stage is inconsequential.
Force coefficients CmFD and CmFV are used to combine the effects of forces calculated at the stages of maximum displacement
and maximum velocity to obtain the forces at maximum acceleration. The coefficients are presented in tabular form based on
analytic expressions presented in Ramirez et al. (2001) and account for nonlinear viscous behavior and inelastic structural
system behavior.
REFERENCES
American Association of State Highway and Transportation Officials. 1999. Guide Specifications for Seismic Isolation
Design, Washington, D.C.
Applied Technology Council. 2005. Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440. Federal
Emergency Management Agency, Washington, D.C.
California Buildings Standards Commission. 2007. California Building Code. Sacramento, California.
Constantinou, M. C., T. T. Soong, and G. F. Dargush. 1998. Passive Energy Dissipation Systems for Structural Design and
Retrofit, Monograph 1. Multidisciplinary Center for Earthquake Engineering Research, University of Buffalo, State
University of New York, Buffalo.
European Committee for Standardization. 2005. Design of Structures for Earthquake Resistance. Part 2: Bridges, Eurocode
8, EN19982, draft, August.
Hanson, R. D., and T. T. Soong. 2001. Seismic Design with Supplemental Energy Dissipation Devices, MNO8. Earthquake
Engineering Research Institute, Oakland, California.
Newmark, N. M., and W. J. Hall. 1969. “Seismic Design Criteria for Nuclear Reactor Facilities,” in Proceedings of the 4th
World Conference in Earthquake Engineering, Santiago, Chile.
Pavlou, E., and M. C. Constantinou. 2004. “Response of Elastic and Inelastic Structures with Damping Systems to Near
Field and SoftSoil Ground Motions,” Engineering Structures, 26:12171230.
Pavlou, E., and M. C. Constantinou. 2006. “Response of Nonstructural Components in Structures with Damping Systems,”
ASCE Journal of Structural Engineering, 132(7):11081117.
Ramirez, O. M., M. C. Constantinou, C. A. Kircher, A. Whittaker, M. Johnson, J. D. Gomez and C. Z. Chrysostomou. 2001.
Development and Evaluation of Simplified Procedures of Analysis and Design for Structures with Passive Energy
Dissipation Systems, Technical Report MCEER000010, Revision 1. Multidisciplinary Center for Earthquake Engineering
Research, University of Buffalo, State University of New York, Buffalo.
Ramirez, O. M., M. C. Constantinou, J. Gomez, A. S. Whittaker, and C. Z. Chrysostomou. 2002a. “Evaluation of Simplified
Methods of Analysis of Yielding Structures With Damping Systems,” Earthquake Spectra, 18(3):501530.
Ramirez, O. M., M. C. Constantinou, A. S. Whittaker, C. A. Kircher, and C. Z. Chrysostomou. 2002b. “Elastic and Inelastic
Seismic Response of Buildings with Damping Systems,” Earthquake Spectra, 18(3):531547.
Ramirez, O. M., M. C. Constantinou, A. S. Whittaker, C. A. Kircher, M. W. Johnson, and C. Z. Chrysostomou. 2003.
“Validation of 2000 NEHRP Provisions Equivalent Lateral Force and Modal Analysis Procedures for Buildings with
Damping Systems,” Earthquake Spectra, 19(4):981999.
Soong, T. T., and G. F. Dargush. 1997. Passive Energy Dissipation Systems in Structural Engineering. J. Wiley & Sons,
London, UK.
Whittaker, A.S., M. C. Constantinou, O. M. Ramirez, M. W. Johnson, and C. Z. Chrysostomou. 2003. “Equivalent Lateral
Force and Modal Analysis Procedures of the 2000 NEHRP Provisions for Buildings with Damping Systems,” Earthquake
Spectra, 19(4):959980.
Page intentionally left blank.
COMMENTARY FOR CHAPTER 19,
SOIL STRUCTURE INTERACTION FOR SEISMIC DESIGN
C19.1 GENERAL
The response of a structure to earthquake shaking is affected by interactions between three linked systems: the structure, the
foundation, and the geologic media underlying and surrounding the foundation. A seismic SoilStructure Interaction (SSI)
analysis evaluates the collective response of these systems to a specified freefield ground motion. The term “freefield”
refers to motions not affected by structural vibrations and represents the condition for which the design spectrum is derived
using the procedures given in Chapter 11.
SSI effects are absent for the theoretical condition of rigid foundation and soil conditions. Accordingly, SSI effects reflect
the differences between the actual response of the structure and the response for the theoretical, rigid base condition.
Visualized within this context, three SSI effects can significantly affect the response of building structures:
1. Foundation stiffness and damping. Inertia developed in a vibrating structure gives rise to base shear, moment, and
torsional excitation, and these loads in turn cause displacements and rotations of the foundation relative to the free field.
These relative displacements and rotations are only possible because of compliance in the soilfoundation system, which
can significantly contribute to the overall structural flexibility in some cases. Moreover, the relative foundationfree
field motions give rise to energy dissipation via radiation damping (i.e., damping associated with wave propagation into
the ground away from the foundation, which acts as the wave source) and hysteretic soil damping, and this energy
dissipation can significantly affect the overall damping of the soilfoundationstructure system. Since these effects are
rooted in the structural inertia, they are referred to as inertial interaction effects.
2. Variations between freefield and foundationlevel ground motions. The differences between foundation and freefield
motions result from two processes. The first is known as kinematic interaction and results from the presence of stiff
foundation elements on or in soil, which cause foundation motions to deviate from freefield motion as a result of base
slab averaging, wave scattering, and embedment effects. Procedures for modifying design spectra to account for these
effects are given in FEMA 440 and ASCE/SEI 41. The second process is related to the structure and foundation inertia
and consists of the relative foundationfree field displacements and rotations described above.
3. Foundation deformations. Flexural, axial, and shear deformations of foundation elements occur as a result of loads
applied by the superstructure and the supporting soil medium. Such deformations represent the seismic demand for
which foundation components should be designed. These deformations can also significantly affect the overall system
behavior, especially with respect to damping.
Chapter 19 treats only the inertial interaction effects (the first item above). Inertial interaction in buildings tends to be
important for stiff structural systems (such as shear walls and braced frames), particularly where the foundation soil is
relatively soft (i.e., Site Classes C to E). Kinematic interaction effects are neglected in these provisions. Foundation design
is covered in Section 12.13.
The procedures in Chapter 19 are used to modify the fixedbase properties (period and damping) of a structural system. If
fixedbase properties are obtained from an analytical model of the structure, the fixedbase properties correspond to a
condition without soil springs. If soil springs are included in the analytical model of the structure, then the procedures given
in Chapter 19 should not be used to modify the building period. The damping procedures in Chapter 19 could still be used in
this case if the foundation springs are linear (thus introducing no damping) and there are no dashpots in parallel with the
springs. In the remainder of this commentary, it is assumed that the structural period and damping ratio that are being
modified for SSI effects correspond to a fixedbase condition.
In design procedures that utilize response spectra to establish design values of base shear (i.e., forcebased methods such as
those given in Chapter 12), the effects of inertial SSI on the seismic response of buildings is represented as a function of the
ratio of flexible to fixedbase firstmode natural period, , and system damping, , attributable to foundationsoil
interaction. The flexiblebase firstmode damping ratio, , is calculated using Equation 199. Figure C191 illustrates two
possible effects of inertial SSI on the peak base shear, which is commonly computed from spectral acceleration at the firstmode.
The spectral acceleration for a flexiblebased structure ( ) is obtained by entering the spectrum drawn for
effective damping ratio, , at the corresponding elongated period, . For buildings with periods greater than about 0.5 s,
using in lieu of Sa (=Cs/g) typically reduces base shear demand, whereas in very stiff structures SSI can increase the base Equation
1 1
T~ T Equation
0 ß Equation
ß ~ Equation
S C g a s
~ = ~ Equation
ß ~ Equation
T~ Equation
a S~
Figure C191 Schematic showing effects of period lengthening and foundation damping on design spectral accelerations.
0
0 Period
Spectral acceleration
T T. T T.
a S.
a S.
a S
a S
ß.
ß
, Fixedbase period, damping ratio
(neglects SSI effects)
, Flexiblebase period, damping ratio
(includes SSI effects)
T
T
ß
ß
=
. . =
shear. Most equivalent lateral force methods feature a flat spectral shape at low periods that, when coupled with the
requirement that , results in modeling of inertial SSI that can only decrease the base shear demand. Equation
ß~ > ß
Figure C191 Schematic showing effects of period lengthening and foundation damping on design spectral accelerations.
The method given in Chapter 19 for evaluating inertial SSI effects is optional and has rarely been used in practice. There are
several reasons for this. First, because the guidelines were written such that base shear demand can only decrease through
consideration of SSI, SSI effects are ignored in order to be conservative. Second, many design engineers who have attempted
to apply the method on projects have done so for major, highrise buildings for which they felt evaluating SSI effects could
provide cost savings. Unfortunately, inertial interaction effects are negligible for these tall, flexible structures, and hence the
design engineers realized no benefit for their efforts and thereafter discontinued use of the procedures. The use of the
procedures actually yield the most benefit for shortperiod (T < 1 sec), stiff structures with stiff, interconnected foundation
systems (i.e., mats or interconnected footings) founded on soil.
C19.2 EQUIVALENT LATERAL FORCE PROCEDURE
This procedure considers the response of the structure in its fundamental mode of vibration and accounts for the contributions
of the higher modes to story shears implicitly through the choice of the effective weight of the structure and the vertical
distribution of the lateral forces. The effects of soilstructure interaction are accounted for on the assumption that they
influence only the contribution of the fundamental mode of vibration.
C19.2.1 Base Shear. Base shear is reduced for the effects of SSI as indicated in Equation 19.21 and 19.22. As indicated
in Equation 19.22, the change in base shear is related to the change in seismic coefficient (or spectral acceleration, as shown
in Figure C191). The term (0.05 )
.
C19.2.1.1 Effective Building Period. The fixed base period, T, is lengthened to the flexiblebase period, , using Equation
19.23, which was derived by Veletsos and Meek (1974). Terms Ky and K. represent the translational and rocking stiffnesses
of the foundation, respectively. The standard does not provide guidance on the evaluation of these stiffness terms. Equations
for Ky and K. are given by Gazetas (1991), and a number of practical considerations associated with the analysis of these
terms are reviewed in FEMA 440 (2005). For convenience, simplified guidelines are presented below for these stiffness
terms for use with the standard.
For building foundation systems having lateral continuity, such as mats or footings interconnected with grade beams,
stiffnesses Ky and K. can often be approximated as:
(C192)
0.4 in Equation 19.22 represents the reduction in spectral ordinate associated with a
change of damping from the fixed base value of ß = 0.05 to the flexible base value of Equation
ß. Equation
ß. Equation
T~ Equation
y a K Gr
.
=
2
8
(C193)
where: ra = an equivalent foundation radius that matches the area of the foundation, A0 (i.e., ra = v(A0/p)); rm = an equivalent
foundation radius that matches the moment of inertia of the foundation in the direction of shaking (i.e., ); G = the
straindependent shear modulus, as defined in the standard; . = the soil Poisson’s ratio (generally taken as 0.3 for sands and
0.45 for clays); and a. = a dimensionless coefficient that depends on the period of excitation, the dimensions of the
foundation, and the properties of the supporting medium (Luco, 1974; Veletsos and Verbic, 1973; Veletsos and Wei, 1971).
A similar coefficient exists for translation (ay), but can be taken as 1.0 without introducing significant error, and hence is not
shown in Equation C192.
As noted in the standard, shear modulus G is evaluated from smallstrain shear wave velocity as G = (G/Go)Go =
(G/Go).v
< 0.05 1.0
0.15 0.85
0.35 0.7
0.5 0.6
Foundation embedment has the effect of increasing the stiffnesses Ky and K.. For embedded foundations for which there is
positive contact between the side walls and the surrounding soil, Ky and K. may be determined from the following
approximate formulas (Kausel, 1974):
(C194)
(C195)
Experimental studies and field performance data (Stokoe and Erden, 1975; Stewart et al., 1999) indicate that the effects of
foundation embedment are sensitive to the condition of the backfill and that judgment must be exercised in using Equations
C194 and C195. For example, if contact is lost between the soil and basement walls, stiffnesses Ky and K. should be
determined from the formulas for surfacesupported foundations. More generally, the quantity d above should be interpreted
as the effective depth of foundation embedment for the conditions that would prevail during the design earthquake ground
motion.
The formulas for Ky and K. presented above can be applied to most soil profiles in which soil shear wave velocity, vs0,
changes with depth. However, if the soil profile consists of a surface stratum of soil underlain by a much stiffer deposit with
a shear wave velocity more than twice that of the surface layer, Ky and K. may be determined from the following two
generalized formulas in which G is the shear modulus of the surface soil and Ds is the total depth of the stratum:
(C196)
(C197)
2
so/g (all terms defined in the standard). Shear wave velocity, vs0, should be evaluated as the average smallstrain
shear wave velocity within the effective depth of influence below the foundation. The effective depth should be taken as
0.75ra for horizontal vibrations of the foundation and 0.75rm for rocking vibrations (Stewart et al., 2003). Methods for
measuring vs0 (preferred) or estimating it from other soil properties are summarized elsewhere (e.g., Kramer, 1996).
The dynamic modifier for rocking, a., can significantly affect the computed response of some building structures. In the
absence of more detailed analyses, for ordinary building structures with an embedment ratio d/rm < 0.5 (where d = depth of
embedment, measured from ground surface to base of foundation), the factor a. can be estimated as follows (Stewart et al.,
2003):
Equation
. ( ) . a
.
3
3 1
8
m K Gr

= Equation
4
0 4 mr = I p Equation
r (v T ) m s 0 Equation
. a Equation
8 1 2
2 3
a
y
a
K Gr d
. r
. . .. .. = +.. .. .. . . .. .. Equation
( )
8 3 1 2
3 1
m
m
K Gr d
r . .
. . ..
= . + . ..  . . .. Equation
..
.
..
.
. ..
.
. ..
.
..
.
..
+ . ..
.
..
.
. ..
.
. ..
.
..
.
..
+ . ..
.
.. .
. ..
.
. ..
.
..
.
..
+ .

=
s s
a
a
a
y D
d
D
r
r
K Gr d
4
1 5
2
1 1
3
1 2
2
8
. Equation
( ) ..
.
..
.
. ..
.
. ..
.
+ ..
.
..
.
. ..
.
. ..
.
..
.
..
+ . ..
.
..
.
. ..
.
. ..
.
+

=
s s
m
m
m
D
d
D
r
r
K Gr d 1 0.7
6
1 2 1 1
3 1
8 3
. .
symbol
ß ~ symbol
ß ~ symbol
ß ~ symbol
ß ~
The above formulas are based on analyses of a stratum supported on a rigid base (Elsabee et al., 1977; Kausel and Roesset,
1975) and apply for r/Ds < 0.5 and d/r < 1 (r taken as either ra or rm). The applicability of those rigid base solutions to
practical situations (nonrigid geologic media) was evaluated by Stewart et al. (2003), resulting in the recommendations
provided above.
For buildings supported on footing foundations, the above formulas can generally be used with ra and rm calculated using the
full building footprint dimensions, provided that the footings are interconnected with grade beams. An exception can occur
for buildings with both shear walls and frames, for which the rotation of the foundation beneath the wall may be independent
of that for the foundation beneath the column (this is referred to as weak rotational coupling). In such cases, rm is often best
calculated using the dimensions of the wall footing. Very stiff foundations, which provide strong rotational coupling, are
best described using an rm value that reflects the full foundation dimension. Regardless of the degree of rotational coupling,
ra should be calculated using the full foundation dimension if foundation elements are interconnected or continuous. Further
discussion can be found in FEMA (2005). The use of discrete (noninterconnected) spread footing foundations in seismic
regions is not recommended.
For buildings supported on pile foundations, lateral stiffness, Ky, can be taken as the sum of the lateral head stiffnesses of the
supporting piles. These stiffness values are generally calculated using a beam on Winkler foundation model, which is
discussed in detail elsewhere (e.g., Salgado, 2006). Rotational stiffness, K., can be calculated from the vertical stiffness of
the individual piles, kzi, as follows:
(C198)
where yi = horizontal distance from the foundation centroidal axis to pile i measured in the direction of shaking. The
approximation in Equation C198 assumes an infinitely rigid pile cap and neglects the rotational stiffness of individual piles,
which is typically a small contribution. Quantity kzi can be calculated for an individual pile using wellestablished methods,
such as discrete element modeling with tz curves (e.g., Salgado, 2006).
The alternate approach in the standard, represented by Equation 19.25, was derived using Poisson’s ratio . = 0.4, and is
generally sufficient for nonembedded foundations that are laterally continuous across the building footprint and for which
there is no “rigid” layer at depth in the profile (which would require the use of Equations C196 and C197 to calculate
foundation stiffness). The value of relative weight parameter, a (defined in the standard), can be taken as approximately 0.15
for typical buildings. Equation
˜S
i
zi i K k y2
.
C19.2.1.2 Effective Damping. Bielak (1975, 1976) and Veletsos and Nair (1975) expressed the flexiblebase firstmode
damping ratio, , as indicated in Equation 19.29. This equation is based on analyses of the harmonic response of singledegree
offreedom oscillators supported on a viscoelastic medium with hysteretic damping. Foundation damping factor ß0
incorporates the effects of energy dissipation into the soil due to radiation damping and hysteretic damping in the soil.
Figure 19.21 shows ß0 as a function of period lengthening ratio and was derived from the analytical solution presented in
Veletesos and Nair (1975) for the condition of zero foundation embedment. Additional damping can be realized for
embedded foundations, and the use of damping values from Figure 19.21 is conservative for such conditions. More exact
solutions can be obtained using procedures given in FEMA (2005).
Equation 19.29, in combination with the information presented in Figure 19.21, may lead to damping factors for the soilfoundation
structure system, , that are smaller than the fixed base structural damping, ß (assumed to be 0.05). However, it
is recommended that never be taken as less than 0.05 for design applications. The use of values of > ß is welljustified
from field casehistory data (Stewart et al., 1999, 2003).
The presence of a stiff layer at depth in the soil profile can impede radiation damping, rendering the values in Figure 19.21
too high. If a site consists of a relatively uniform layer of depth, Ds, overlying a very stiff layer with a shear wave velocity
more than twice that of the surface layer, damping values should be reduced as indicated by Equation 19.212.
C19.2.2 Vertical Distribution of Seismic Forces. The vertical distributions of the equivalent lateral forces for flexibly and
rigidly supported structures are similar, and it is recommended that the same distribution be used in both cases, changing only
the magnitude of the forces to correspond to the appropriate base shear. A greater degree of refinement in this step would be
inconsistent with the approximations embodied in the requirements for rigidly supported structures.
With the vertical distribution of the lateral forces established, the overturning moments and the torsional effects about a
vertical axis are computed as for rigidly supported structures. The above procedure is applicable to planar structures and,
with some extension, to threedimensional structures.
C19.2.3 Other Effects. In addition to its effect on base shear, inertial SSI also can increase the horizontal displacements of
the structure relative to its base (because of rocking). This can increase the required spacing between structures and
secondary design forces associated with Pdelta effects. Such effects can be significant for stiff structural systems (e.g., walls
and braced frames).
C19.3 MODAL ANALYSIS PROCEDURE
The procedure outlined above in Section C19.2 is applicable to a modal analysis by adjusting the modal period and damping
ratio of the fundamental mode only. Higher modes are relatively unaffected by SSI (e.g., Bielak, 1976; Chopra and
Gutierrez, 1974; Veletsos, 1977). Hence, the contributions of higher modes are computed as if the structure were fixed at the
base, and the maximum value of a response quantity is determined as for fixedbase structures but with the adjusted firstmode
responses.
REFERENCES
American Society of Civil Engineers/Structural Engineering Institute. 2006. Seismic Rehabilitation of Existing Buildings,
ASCE/SEI 41. ASCE/SEI, Reston, Virginia.
Bielak, J. 1975. "Dynamic Behavior of Structures with Embedded Foundations," Earthquake Engineering and Structural
Dynamics, 3:259274.
Bielak, J. 1976. "Modal Analysis for BuildingSoil Interaction," Journal of the ASCE Engineering Mechanics
Division 102(EM5):771786.
Chopra, A. K., and J. A. Gutierrez. 1974. "Earthquake Analysis of Multistory Buildings Including Foundation Interaction,"
Journal of Earthquake Engineering and Structural Dynamics, 3:6567.
Elsabee, F., I. Kausel, and J. M. Roesset. 1977. "Dynamic Stiffness of Embedded Foundations," in Proceedings of the ASCE
Second Annual Engineering Mechanics Division Specialty Conference, pp. 4043.
Federal Emergency Management Agency. 2005. Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440.
Federal Emergency Management Agency, Washington, D.C.
Gazetas, G. 1991. “Formulas and Charts for Impedances of Surface and Embedded Foundations,” Journal of Geotechnical
Engineering, 117(9):13631381.
Kausel, E. 1974. Force Vibrations of Circular Foundations on Layered Media, Report R7411. Department of Civil
Engineering, Massachusetts Institute of Technology, Cambridge.
Kausel, E., and J. M. Roesset. 1975. "Dynamic Stiffness of Circular Foundations," Journal of the Engineering Mechanics
Division 101(EM6):771785.
Kramer, S.L. 1996. Geotechnical Earthquake Engineering. Prentice Hall, Upper Saddle River, New Jersey.
Luco, J. E. 1974. "Impedance Functions for a Rigid Foundation on a Layered Medium," Nuclear Engineering and Design,
(31):204217.
Salgado, R. 2006. The Engineering of Foundations. McGrawHill.
Stewart, J. P., R. B. Seed, and G. L. Fenves. 1999. "Seismic SoilStructure Interaction in Buildings. II: Empirical
Findings,” ASCE Journal of Geotechnical & Geoenvironmental Engineering, 125(1):3848.
Stewart, J. P., S. Kim, J. Bielak, R. Dobry, and M. Power. 2003. "Revisions to Soil Structure Interaction Procedures in
NEHRP Design Provisions," Earthquake Spectra, 19(3):677696.
Stokoe, II, K. H., and S. M. Erden. 1975. “Torsional Response of Embedded Circular Foundations,” in Proceedings of the
5th European Conference on Earthquake Engineering.
Veletsos, A. S., and V. V. Nair. 1975. "Seismic Interaction of Structures on Hysteretic Foundations," Journal of the ASCE
Structural Division, 101(ST1):109129.
Veletsos, A. S. 1977. "Dynamics of StructureFoundation Systems," in Structural and Geotechnical Mechanics, A Volume
Honoring N. M. Newmark, edited by W. J. Hall, pp. 333361. PrenticeHall, Englewood Cliffs, New Jersey.
Veletsos, A. S., and J. W. Meek. 1974. "Dynamic Behavior of building Foundation Systems," Earthquake Engineering and
Structural Dynamics, 3(2):121138.
Veletsos, A. S., and B. Verbic. 1973. "Vibration of Viscoelastic Foundations," Earthquake Engineering and Structural
Dynamics, 2(1):87105.
Veletsos, A. S., and Y. T. Wei. 1971. "Lateral and Rocking Vibration of Footings," Journal of the ASCE Soil Mechanics
and Foundations Division, 97(SM9):12271248.
COMMENTARY FOR CHAPTER 20,
SITE CLASSIFICATION PROCEDURE FOR SEISMIC DESIGN
C20.1 SITE CLASSIFICATION
Site classification procedures are given in Chapter 20 for the purpose of classifying the site and determining site coefficients
and siteadjusted maximum considered earthquake ground motions in accordance with Section 11.4.3. Site classification
procedures are also used to define the site conditions for which sitespecific site response analyses are required to obtain site
ground motions in accordance with Section 11.4.7 and Chapter 21.
C20.3 SITE CLASS DEFINITIONS
C20.3.1 Site Class F. Site conditions for which the site coefficients Fa and Fv in Tables 11.41 and 11.42 may not be
applicable and for which siteresponse analyses are required by Section 11.4.7. For shortperiod structures it is permissible to
determine values of Fa and Fv assuming that liquefaction does not occur, because ground motion data obtained in liquefied
soil areas during earthquakes indicate that shortperiod ground motions generally are attenuated due to liquefaction whereas
longperiod ground motions may be amplified. This exception does not affect the requirements in Section 11.8 to assess
liquefaction potential as a geologic hazard and to develop hazard mitigation measures as required.
C20.3.2 through C20.3.5. These sections and Table 20.31 provide definitions for Site Classes A through E. Except for the
additional definitions for Site Class E in Section 20.3.2, the site classes are defined fundamentally in terms of the average
smallstrain shear wave velocity in the top 100 feet (30 meters) of the soil or rock profile. If shear wave velocities are
available for the site, they should be used to classify the site. However, recognizing that in many cases shear wave velocities
are not available for the site, alternative definitions of the site classes also are included. These definitions are based on
geotechnical parameters: standard penetration resistance for cohesionless soils and rock, and standard penetration resistance
and undrained shear strength for cohesive soils. The alternative definitions are intended to be conservative since the
correlation between site coefficients and these geotechnical parameters is more uncertain than the correlation with shear wave
velocity. That is, values of Fa and Fv will tend to be smaller if the site class is based on shear wave velocity rather than on
the geotechnical parameters. Also, the site class definitions should not be interpreted as implying any specific numerical
correlation between shearwave velocity and standard penetration resistance or undrained shear strength.
Although the site class definitions in Sections 20.3.2 through 20.3.5 are straightforward, there are aspects of these
assessments that may require additional judgment and interpretation. Highly variable subsurface conditions beneath a
building footprint could result in overly conservative or unconservative site classification. Isolated soft soil layers within an
otherwise firm soil site may not affect the overall site response if the predominant soil conditions do not include such strata.
Conversely, site response studies have shown that continuous, thin, soft clay strata may affect the site amplification.
The site class should reflect the soil conditions that will affect the ground motion input to the structure or a significant portion
of the structure. For structures receiving substantial ground motion input from shallow soils (for example, structures with
shallow spread footings, with laterally flexible piles, or with basements where substantial ground motion input to the
structure may come through the side walls), it is reasonable to classify the site on the basis of the top 100 feet (30 meters) of
soils below the ground surface. Conversely, for structures with basements supported on firm soils or rock below soft soils, it
may be reasonable to classify the site on the basis of the soils or rock below the mat, if it can be justified that the soft soils
contribute very little to the response of the structure.
Buildings on sites with sloping bedrock or having highly variable soil deposits across the building area require careful study
since the input motion may vary across the building (for example, if a portion of the building is on rock and the rest is over
weak soils). Sitespecific studies including two or threedimensional modeling may be used in such cases to evaluate the
subsurface conditions and site and superstructure response. Other conditions that may warrant sitespecific evaluation
include the presence of low shear wave velocity soils below a depth of 100 feet (30 meters), location of the site in a
sedimentary basin, or subsurface or topographic conditions with strong two and threedimensional siteresponse effects.
Individuals with appropriate expertise in seismic ground motions should participate in evaluations of the need for and nature
of such sitespecific studies.
C20.4 DEFINITION OF SITE CLASS PARAMETERS
Section 20.4 provides formulas for defining Site Classes in accordance with definitions in Section 20.3 and Table 20.31.
Equation 20.41 is for determining the effective average smallstrain shearwave velocity, , to a depth of 100 feet (30 Equation
v s
meters) at a site. This equation defines as 100 feet (30 meters) divided by the sum of the times for a shear wave to travel
through each layer within the upper 100 feet (30 meters), where travel time for each layer is calculated as the layer thickness
divided by the smallstrain shear wave velocity for the layer. It is important that this method of averaging be used as it may
result in a significantly lower effective average shear wave velocity than the velocity that would be obtained by directly
averaging the velocities of the individual layers. Equation
v s
For example, consider a soil profile having four 25footthick layers with shear wave velocities of 500, 1,000, 1,500, and
2,000 ft/s. The arithmetic average of the shear wave velocities is 1250 ft/s (corresponding to Site Class C), but Equation
20.41 produces a value of 960 ft/s (corresponding to Site Class D). The Equation 20.41 value is appropriate as the four
layers are being represented by one layer with the same wave passage time.
Equation 20.42 is for classifying the site using the average standard penetration resistance blow count, , for cohesionless
soils, cohesive soils, and rock in the upper 100 feet (30 meters). A method of averaging analogous to the method of Equation
20.41 for shear wave velocity is used. The maximum value of N that may be used for any depth of measurement in soil or
rock is 100 blows/foot. For the common situation where rock is encountered, the standard penetration resistance, N, for rock
layers is taken as 100. Equation
N
Equations 20.43 and 20.44 are for classifying the site using the standard penetration resistance of cohesionless soil layers,
Nch, and the undrained shear strength of cohesive soil layers, su, within the top 100 feet (30 meters). These equations are
provided as an alternative to using Equation 20.42 for which Nvalues in all geologic materials in the top 100 feet (30
meters) are used. Where using Equations 20.43 and 20.44, only the respective thicknesses of cohesionless soils and
cohesive soils within the top 100 feet (30 meters) are used.
COMMENTARY FOR CHAPTER 21,
SITESPECIFIC GROUND MOTION PROCEDURES
FOR SEISMIC DESIGN
GENERAL
Sitespecific procedures for computing earthquake ground motions include dynamic site response analyses and probabilistic
and deterministic seismic hazard analyses (PSHA and DSHA), which may include dynamic site response analysis as part of
the calculation. Use of sitespecific procedures may be required in lieu of the general procedure in Sections 11.4.1 through
11.4.6; Section C11.4.7 explains the conditions under which the use of these procedures is required. Such studies must be
comprehensive and incorporate current scientific interpretations. Because there is typically more than one scientifically
credible alternative for models and parameter values used to characterize seismic sources and ground motions, it is important
to formally incorporate these uncertainties in a sitespecific analysis. For example, uncertainties may exist in seismic source
location, extent and geometry; maximum earthquake magnitude; earthquake recurrence rate; groundmotion attenuation; local
site conditions, including soil layering and dynamic soil properties; and possible two or threedimensional wavepropagation
effects. The use of peer review for a sitespecific groundmotion analysis is encouraged.
Sitespecific groundmotion analysis can consist of one of the following approaches: (a) PSHA and possibly DSHA if the site
is near an active fault, (b) PSHA/DSHA followed by dynamic siteresponse analysis, and (c) dynamic site response analysis
only. The first approach is used to compute ground motions for bedrock or stiff soil conditions (not softer than Site Class D).
In this approach, if the site consists of stiff soil overlying bedrock, for example, the analyst has the option of either (a)
computing the bedrock motion from the PSHA/DSHA and then using the sitecoefficient (Fa and Fv) tables in Section 11.4.3
to adjust for the stiff soil overburden or (b) computing the response spectrum at the ground surface directly from the
PSHA/DSHA. The latter requires the use of attenuation equations for computing stiff soilsite response spectra (instead of
bedrock response spectra).
The second approach is used where softer soils overlie the bedrock or stiff soils. The third approach assumes that a sitespecific
PSHA/DSHA is not necessary, but that a dynamic site response analysis should or must be performed. This analysis
requires the definition of an outcrop ground motion, which can be based on the 5 percent damped response spectrum
computed from the PSHA/DSHA or obtained from the general procedure in Section 11.4. A representative set of acceleration
time histories are selected and scaled to be compatible with this outcrop spectrum. Dynamic site response analyses using
these acceleration histories as input are used to compute motions at the ground surface. The response spectra of these surface
motions are used to define a maximum considered earthquake (MCE) ground motion response spectrum.
The approaches described above have advantages and disadvantages. In many cases, user preference governs the selection,
but geotechnical conditions at the site may dictate the use of one approach over the other. On the one hand, if bedrock is at a
depth much greater than the extent of the site geotechnical investigations, the direct approach of computing the groundsurface
motion in the PSHA/DSHA may be more reasonable. On the other hand, if bedrock is shallow and a large impedance
contrast exists between it and the overlying soil (i.e., density times shearwave velocity of bedrock is much greater than that
of the soil), the twostep approach might be more appropriate.
Use of peak ground acceleration as the anchor for a generalized sitedependent response spectrum is discouraged because
sufficiently robust groundmotion attenuation relations are available for computing response spectra in western United States
and eastern United States tectonic environments.
C21.1 SITE RESPONSE ANALYSIS
C21.1.1 Base Ground Motions. Ground motion acceleration histories that are representative of horizontal rock motions at
the site are required as input to the soil model. Where a sitespecific ground motion hazard analysis is not performed, the
MCE response spectrum for Site Class B (rock) is defined using the general procedure described in Section 11.4.1. If the
model is terminated in material of Site Class A, C, or D, the input MCE response spectrum is adjusted in accordance with
Section 11.4.3. The United States Geological Survey national seismic hazard mapping project website
(http://earthquake.cr.usgs.gov/research/hazmaps/) includes hazard deaggregation options that can be used to evaluate the
predominant types of earthquake sources, magnitudes, and distances contributing to the probabilistic groundmotion hazard.
Sources of recorded acceleration time histories include the databases of the Consortium of Organizations for Strong Motion
Observation Systems (COSMOS) Virtual Data Center website (db.cosmoseq.org) and the Pacific Earthquake Engineering
Research Center (PEER) Strong Motion Data Base website
(http://peer.berkeley.edu/products/strong_ground_motion_db.html/), and the United States National Center for Engineering
Strong Motion Data (NCESMD) website (http://www.strongmotioncenter.org). Ground motion acceleration histories at these
sites generally were recorded at the ground surface and hence apply for an outcropping condition and should be specified as
such in the input to the site response analysis code (see Kwok et al., 2007, for additional details).
C21.1.2 Site Condition Modeling. Modeling criteria are established by sitespecific geotechnical investigations that
should include: (a) borings with sampling, (b) standard penetration tests (SPTs), cone penetrometer tests (CPTs), and/or
other subsurface investigative techniques, and (c) laboratory testing to establish the soil types, properties, and layering. The
depth to rock or stiff soil material should be established from these investigations. Investigation should extend to bedrock or,
for very deep soil profiles, to material in which the model will be terminated. While it is preferable to measure shear wave
velocities in all soil layers, it is also possible to estimate shear wave velocities based on measurements available for similar
soils in the local area or through correlations with soil types and properties. A number of such correlations are summarized
by Kramer (1996).
Typically, a onedimensional soil column extending from the ground surface to bedrock is adequate to capture firstorder site
response characteristics. For very deep soils, the model of the soil columns may extend to very stiff or very dense soils at
depth in the column. Two or threedimensional models should be considered for critical projects when two or threedimensional
wave propagation effects may be significant (for example, sloping ground sites). The soil layers in a onedimensional
model are characterized by their total unit weights and shear wave velocities from which lowstrain (maximum)
shear moduli may be obtained, and by relationships defining the nonlinear shear stressstrain behavior of the soils. The
required relationships for analysis are often in the form of curves that describe the variation of soil shear modulus with shear
strain (modulus reduction curves) and by curves that describe the variation of soil damping with shear strain (damping
curves). In a two or threedimensional model, compression wave velocities or moduli or Poisson ratios also are required. In
an analysis to estimate the effects of liquefaction on soil site response, the nonlinear soil model also must incorporate the
buildup of soil pore water pressures and the consequent reductions of soil stiffness and strength. Typically, modulus
reduction curves and damping curves are selected on the basis of published relationships for similar soils (for example,
Vucetic and Dobry, 1991; Electric Power Research Institute, 1993; Darendeli, 2001; Menq, 2003; Zhang et al., 2005). Sitespecific
laboratory dynamic tests on soil samples to establish nonlinear soil characteristics can be considered where published
relationships are judged to be inadequate for the types of soils present at the site. Shear and compression wave velocities and
associated maximum moduli should be selected based on field tests to determine these parameters or, if such tests are not
possible, on published relationships and experience for similar soils in the local area. The uncertainty in the selected
maximum shear moduli, modulus reduction and damping curves, and other soil properties should be estimated (see
Darendeli, 2001; and Zhang et al., 2008). Consideration of the range of stiffnesses prescribed in Section 12.13.3 (increasing
and decreasing by 50 percent) is recommended.
C21.1.3 Site Response Analysis and Computed Results. Analytical methods may be equivalent linear or nonlinear.
Frequently used computer programs for onedimensional analysis include the equivalent linear program SHAKE (Schnabel et
al., 1972; Idriss and Sun, 1992) and the nonlinear programs FLAC (Itasca, 2005), DESRA2 (Lee and Finn, 1978), MARDES
(Chang et al., 1991), SUMDES (Li et al., 1992), DMOD_2 (Matasovic, 2006), DEEPSOIL (Hashash and Park, 2001), TESS
(Pyke, 2000), and OpenSees (Ragheb, 1994; Parra, 1996; Yang, 2000). If the soil response induces large strains in the soil
(such as for high acceleration levels and soft soils), nonlinear programs may be preferable to equivalent linear programs. For
analysis of liquefaction effects on site response, computer programs incorporating pore water pressure development (effective
stress analyses) should be used (for example, FLAC, DESRA2, SUMDES, DMOD, TESS, DEEPSOIL, and OpenSees).
Response spectra of output motions at the ground surface are calculated as the ratios of response spectra of groundsurface
motions to input outcropping rock motions. Typically, an average of the response spectral ratio curves is obtained and
multiplied by the input MCE response spectrum to obtain the MCE groundsurface response spectrum. Alternatively, the
results of siteresponse analyses can be used as part of the PSHA using procedures described by Goulet et al. (2007) and
programmed for use in OpenSHA (www.opensha.org; Field et al., 2005). Sensitivity analyses to evaluate effects of soilproperty
uncertainties should be conducted and considered in developing the final MCE response spectrum.
C21.2 GROUND MOTION HAZARD ANALYSIS
Uncertainties in the characterizations of the key seismic sources (tectonic provinces, zones of seismicity, and active faults),
with respect to location, earthquake recurrence, and maximum earthquake magnitude, must be considered in the ground
motion hazard analysis. Uncertainties in the groundmotion models are typically included by incorporating more than one
groundmotion attenuation equation. However, these equations may underestimate the intermediate and longperiod motion
from large earthquakes on nearby active faults due to directivity and directionality effects mentioned in C11.4.7. The
probabilistic seismic hazard analysis code can be modified to account for these effects in a consistent probabilistic manner, or
a deterministic adjustment can be made to the probabilistic MCE response spectrum using methods in Somerville et al.
(1997) and Abrahamson (2000) or more recent procedures. If the deterministic adjustment is used, then judgment must be
exercised in selecting the parameters comprising these methods. The worstcase scenario yielding the maximum possible
increase in motion from directivity/directionality effects is acknowledged to be conservative, but it offers an upperbound
solution to help gauge the appropriate level for the MCE response spectrum.
Siteresponse effects in PSHA generally should be evaluated by using the site term in the groundmotion prediction
equations. This term is generally a scale factor or a function of Vs30 = average shearwave velocity in the upper 30 meters.
Sitespecific dynamic response analyses can also be performed as described in Section C21.1.
C21.2.1 Probabilistic MCE. PSHA methods are sufficient to define the MCE ground motion at all locations except those
near highly active faults. Descriptions of current PSHA methods can be found in McGuire (2004).
C21.2.2 Deterministic MCE. Ground motions for the deterministic MCE shall be based on characteristic earthquakes on all
known active faults in a region. The magnitude of a characteristic earthquake on a given fault should be a best estimate of
the maximum magnitude capable for that fault but not less than the largest magnitude that has occurred historically on the
fault. The maximum magnitude should be estimated considering all seismicgeologic evidence for the fault, including fault
length and paleoseismic observations. For faults characterized as having more than a single segment, the potential for rupture
of multiple segments in a single earthquake should be considered in assessing the characteristic maximum magnitude for the
fault.
For consistency, the same attenuation equations used in the PSHA should be used in the DSHA. Adjustments for
directivity/directional effects should also be made, when appropriate. In some cases, groundmotion simulation methods may
be appropriate for the estimation of longperiod motions at sites in deep sedimentary basins or from great (M = 8) or giant
(M = 9) earthquakes, for which recorded groundmotion data are lacking.
As a point of clarification, the deterministic lower limit spectrum on the MCE (Figure 21.21) extends to zero period in the
same manner as the design response spectrum of Figure 11.41. The spectrum in Figure 21.21 is simply a schematic
illustrating the lower bounds for the constant spectral acceleration (SaM = 1.5Fa) and constant spectral velocity (SaM = 0.6Fv/T)
portions of the spectrum. The transition in the deterministic lower limit spectrum from the 1.5Fa plateau to zero period
occurs at a period (in seconds) of 0.08Fv/Fa which is derived in the same manner as T0 in Section 11.4.5. From this period to
zero period, where the ordinate is 0.6Fa, the deterministic lower limit spectrum is a straight line, similar to the design
response spectrum in the period band, 0 to T0.
C21.3 DESIGN RESPONSE SPECTRUM
Eighty percent of the design response spectrum determined in accordance with Section 11.4.5 was established as the lower
limit to prevent the possibility of sitespecific studies generating unreasonably low ground motions from potential
misapplication of sitespecific procedures or misinterpretation or mistakes in the quantification of the basic inputs to these
procedures. Even if sitespecific studies were correctly performed and resulted in groundmotion response spectra less than
the 80 percent lower limit, the uncertainty in the seismic potential and groundmotion attenuation across the United States
was recognized in setting this limit. Under these circumstances, the allowance of up to a 20 percent reduction in the design
response spectrum based on sitespecific studies was considered reasonable.
C21.4 DESIGN ACCELERATION PARAMETERS
The 90 percent lower limit rule, which can affect the determination of SDS, was inserted because it was recognized that sitespecific
studies could produce response spectra with ordinates at periods greater than 0.2 second that were significantly
greater than those at 0.2 second. Similarly, the rule that requires that SD1 be taken as the larger of the spectral acceleration at
a period of 1 second and two times the spectral acceleration at a period of 2 seconds accounts for the possibility that the
assumed 1/T proportionality for the constant velocity portion of the design response spectrum begins at periods greater than 1
second or is actually 1/T n (where n < 1). Thus, this rule leads to more accurate spectral ordinates at periods around 2 seconds
and conservative estimates at shorter periods. However, the conservatism is unlikely to be excessive.
REFERENCES
Abrahamson, N. A. 2000. “Effects of Rupture Directivity on Probabilistic Seismic Hazard Analysis,” in Proceedings of the
Sixth International Conference on Seismic Zonation, Palm Springs, California.
Chang, C.Y., C. M. Mok, M. S. Power, and Y. K. Tang. 1991. Analysis of Ground Response at Lotung LargeScale Soil
Structure Interaction Experiment Site, Report NP7306SL. Electric Power Research Institute, Palo Alto, California.
Darendeli, M. 2001. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves,”
Ph.D. Dissertation, Department of Civil Engineering, University of Texas, Austin.
Electric Power Research Institute. 1993. Guidelines for Determining Design Basis Ground Motions, Report EPRI TR
102293. EPRI, Palo Alto, California.
Field, E. H., N. Gupta, V. Gupta, M. Blanpied, P. Maechling, and T. H. Jordan. 2005. “Hazard Calculations for the
WGCEP2002 Forecast Using OpenSHA and Distributed Object Technologies,” Seism. Res. Letters, 76:161167.
Goulet, C. A., J. P. Stewart, P. Bazzurro, and E. H. Field. 2007. “Integration of SiteSpecific Ground Response Analysis
Results into Probabilistic Seismic Hazard Analyses,” Paper 1486 in Proceedings of the 4th International Conference on
Earthquake Geotechnical Engineering, Thessaloniki, Greece.
Hashash, Y. M. A. and D. Park. 2001. "NonLinear OneDimensional Seismic Ground Motion Propagation in the
Mississippi Embayment," Engineering Geology, 62(13):185206.
Idriss, I. M., and J. I. Sun. 1992. User's Manual for SHAKE91. Center for Geotechnical Modeling, Department of Civil and
Environmental Engineering, University of California, Davis.
Itasca Consulting Group. 2005. FLAC, Fast Langrangian Analysis of Continua, Version 5.0. Itasca Consulting Group,
Minneapolis, Minnesota.
Kramer, S. L. 1996. Geotechnical Earthquake Engineering. Prentice Hall.
Kwok, A. O., J. P. Stewart, Y. M. A. Hashash, N. Matasovic, R. Pyke, Z. Wang, and Z. Yang. 2007. “Use of Exact
Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis
Procedures,” ASCE Journal of Geotechnical & Geoenvironmental Engineering, 133(11):13851398.
Lee, M. K. W., and W. D. L. Finn. 1978. DESRA2, Dynamic Effective Stress Response Analysis of Soil Deposits with
Energy Transmitting Boundary Including Assessment of Liquefaction Potential, Soil Mechanics Series 36. Department of
Civil Engineering, University of British Columbia, Vancouver, Canada.
Li, X. S., Z. L. Wang, and C. K. Shen. 1992. SUMDES, A Nonlinear Procedure for Response Analysis of Horizontally
Layered Sites Subjected to MultiDirectional Earthquake Loading. Department of Civil Engineering, University of
California, Davis.
Matasovic, N. 2006. “DMOD_2 – A Computer Program for Seismic Response Analysis of Horizontally Layered Soil
Deposits, Earthfill Dams, and Solid Waste Landfills,” User’s Manual. GeoMotions, LLC, Lacey, Washington, p. 20 (plus
Appendices).
McGuire, R. K. 2004. Seismic Hazard and Risk Analysis, Monograph, MNO10. Earthquake Engineering Research
Institute, Oakland, California, p. 221.
Menq, F. 2003. Dynamic Properties of Sandy and Gravely Soils, Ph.D. Dissertation, Department of Civil Engineering,
University of Texas, Austin.
Parra, E. 1996. Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and
Dilation Response in Soil Systems, Ph.D. Dissertation, Department of Civil Engineering, Rensselaer Polytechnic Institute,
Troy, NY.
Pyke, R. M. 2000. TESS: A Computer Program for Nonlinear Ground Response Analyses. TAGA Engineering Systems &
Software, Lafayette, California.
Ragheb, A. M. 1994. Numerical Analysis of Seismically Induced Deformations in Saturated Granular Soil Strata, Ph.D.
Dissertation, Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, New York.
Schnabel, P. B., J. Lysmer, and H. B. Seed. 1972. SHAKE: A Computer Program for Earthquake Response Analysis of
Horizontally Layered Sites, Report EERC 7212. Earthquake Engineering Research Center, University of California,
Berkeley.
Somerville, P. G., N. F. Smith, R. W. Graves, and N. A. Abrahamson. 1997. “Modification of Empirical Strong Ground
Motion Attenuation Relations to include the Amplitude and Duration Effects of Rupture Directivity” Seismological Research
Letters, 68:199222.
Vucetic, M., and R. Dobry. 1991. “Effect of Soil Plasticity on Cyclic Response,”
ASCE/SEI Journal of Geotechnical Engineering, 117(1):89107.
Yang, Z. 2000. Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction, Ph.D. Dissertation,
Department of Civil Engineering and Engineering Mech., Columbia University, New York, New York.
Zhang, J., R. D. Andrus, and C. H. Juang. 2005. “Normalized Shear Modulus and Material Damping Ratio Relationships,”
ASCE Journal of Geotechnical and Geoenvironmental Engineering, 131(4):453464.
Zhang, J., R. D. Andrus, and C. H. Juang. 2008. “Model Uncertainty in Normalized Shear Modulus and Damping
Relationships,” ASCE Journal of Geotechnical and Geoenvironmental Engineering, 134(1).
COMMENTARY TO CHAPTER 22,
SEISMIC GROUND MOTION AND
LONGPERIOD TRANSITION MAPS
SEISMIC GROUND MOTION MAPS
ASCE/SEI 705 continues to use contour maps of spectral response acceleration (Figures 221 through 2214). The spectral
acceleration design maps were prepared by the U.S. Geological Survey (USGS) based on USGS probabilistic maps of the 48
conterminous states (2002), Alaska (1998), Hawaii (1998), and Puerto Rico/Virgin Islands (2003) with modifications based
on the 1997 recommendations of the Building Seismic Safety Council. The maps of the 48 states and Puerto Rico/Virgin
Islands have been updated from the 2002 edition of the standard but the maps of Alaska, Hawaii, Guam, and Tutuila are
unchanged. The USGS also has developed a companion software program that calculates locationspecific spectral values
based on latitude and longitude or zip code; use of zip codes is discouraged in regions where groundmotion values vary
substantially over a short distance. The calculated values are based on the data used to prepare the maps. The spectral values
should be adjusted for Site Class effects using the Site Classification Procedure in Section 20 and the site coefficients in
Section 11.4. Latitude and longitude for a given address can be found at a variety of websites. The companion software
program may be accessed at the USGS website (http://earthquake.usgs.gov/designmaps). The software program should be
used to establish spectral values for design because the maps found in ASCE/SEI 705 are too small to provide accurate
spectral values for many sites.
LONGPERIOD TRANSITION MAPS
The maps of the longperiod transition period, TL, (Figures 2215 through 2220) were introduced in ASCE/SEI 705. They
were prepared by the USGS in response to BSSC recommendations and subsequently included in the 2003 edition of the
Provisions. See Section C11.4.5 for a discussion of the technical basis of these maps. The value of TL obtained from these
maps is used in Equation 11.47 to determine values of Sa for periods greater than TL.
The exception in Section 15.7.6.1, regarding the calculation of Sac, the convective response spectral acceleration for tank
response, is intended to provide the user the option of computing this acceleration with three different types of sitespecific
procedures: (a) the procedures in Chapter 21, provided they cover the natural period band containing Tc, the fundamental
convective period of the tankfluid system, (b) groundmotion simulation methods using seismological models, and (c)
analysis of representative accelerogram data. Elaboration of these procedures is provided below.
With regard to the first procedure, attenuation equations have been developed for the western United States (Next Generation
Attenuation, Power et al., 2006, 2008) and for the central and eastern United States (e.g., Somerville et al., 2001) that cover
the period band, 0 to 10 seconds. Thus, for Tc = 10 seconds, the fundamental convective period range for nearly all storage
tanks, these attenuation equations can be used in the same PSHA/DSHA procedures described in Chapter 21 to compute Sa
(Tc). The 1.5 factor in Equation 15.711, which converts a 5 percent damped spectral acceleration to a 0.5 percent damped
value, could then be applied to obtain Sac. Alternatively, this factor could be established by statistical analysis of 0.5 percent
damped and 5 percent damped response spectra of accelerograms representative of the ground motion expected at the site.
In some regions of the United States, such as Pacific Northwest and southern Alaska, where subductionzone earthquakes
dominate the groundmotion hazard, attenuation equations for these events only extend to periods between 3 and 5 s,
depending on the equation. Thus, for tanks with Tc greater than these periods, other sitespecific methods are required.
The second sitespecific method to obtain Sa at long periods is simulation through the use of seismological models of fault
rupture and wave propagation (Graves and Pitarka, 2004; Hartzell and Heaton, 1983; Hartzell et al., 1999; Liu et al., 2006;
Zeng et al., 1994). These models could range from simple seismic sourcetheory and wavepropagation models, which
currently form the basis for many of the attenuation equations used in the central and eastern United States for example, to
more complex numerical models that incorporate finite fault rupture for scenario earthquakes and seismic wave propagation
through 2D or 3D models of the regional geology, which may include basins. These models are particularly attractive for
computing longperiod ground motions from great earthquakes (Mw = ~ 8) because groundmotion data are limited for these
events. Furthermore, the models are more accurate for predicting longerperiod ground motions because: (a) seismographic
recordings may be used to calibrate these models and (b) the general nature of the 2D or 3D regional geology is typically
fairly well resolved at these periods and can be much simpler than would be required for accurate prediction of shorter period
motions.
A third sitespecific method is the analysis of the response spectra of representative accelerograms that have accurately
recorded longperiod motions to periods greater than Tc. As Tc increases, the number of qualified records decreases.
However, as digital accelerographs continue to replace analog accelerographs, more recordings with accurate longperiod
motions will become available. Nevertheless, a number of analog and digital recordings of large and great earthquakes are
available that have accurate longperiod motions to 8 seconds and beyond. Subsets of these records, representative of the
earthquake(s) controlling the groundmotion hazard at a site, can be selected. The 0.5 percent damped response spectra of the
records can be scaled using seismic source theory to adjust them to the magnitude and distance of the controlling earthquake.
The levels of the scaled response spectra at periods around Tc can be used to determine Sac. If the subset of representative
records is limited, then this method should be used in conjunction with the aforementioned simulation methods.
REFERENCES
Graves, R. W., and A. Pitarka. 2004. “Broadband Time History Simulation using a Hybrid Approach,” Paper 1098 in
Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada.
Hartzell, S., and T. Heaton. 1983. "Inversion of Strong Ground Motion and Teleseismic Waveform Data for the Fault
Rupture History of the 1979 Imperial Valley, California Earthquake," Bulletin of the Seismological Society of America,
73:15531583.
Hartzell, S., S. Harmsen, A. Frankel, and S. Larsen. 1999. "Calculation of Broadband Time Histories of Ground Motion:
Comparison of Methods and Validation Using Strong Ground Motion from the 1994 Northridge Earthquake," Bulletin of the
Seismological Society of America, 89:14841504.
Liu, P., R. J. Archuleta, and S. H. Hartzell. 2006. “Prediction of Broadband GroundMotion Time Histories: Hybrid
Low/HighFrequency Method with Correlated Random Source Parameters,” Bulletin of the Seismological Society of
America, 96:2118–2130.
Power, M., B. Chiou, N. Abrahamson, Y. Bozorgnia, T. Shantz, and C. Roblee. 2008. “An Overview of the NGA Project,”
Earthquake Spectra Special Issue on the Next Generation of Ground Motion Attenuation (NGA) Project.” Earthquake
Engineering Research Institute, March.
Power, M., B. Chiou, N. Abrahamson, and C. Roblee. 2006. “The Next Generation of Ground Motion Attenuation Models,”
in Proceedings of the 100th Anniversary Earthquake Conference Commemorating the 1906 San Francisco Earthquake, San
Francisco, California.
Somerville, P. G., N. Collins, N. Abrahamson, R. Graves, and C. Saikia. 2001. Earthquake Source Scaling and Ground
Motion Attenuation Relations for the Central and Eastern United States, Final Report to the USGS under Contract
99HQGR0098.
Zeng, Y., J. G. Anderson, and G. Yu. 1994. "A Composite Source Model for Computing Synthetic Strong Ground
Motions," Geophys. Research Letters, 21:725728.
2009 NEHRP Recommended Seismic Provisions
for New Buildings and Other Structures:
PART 3,
RESOURCE PAPERS (RP) ON SPECIAL
TOPICS IN SEISMIC DESIGN
This part of the 2009 NEHRP Recommended Seismic Provisions consists of a series of resource papers that include:
• Proposals for code and standard changes reflecting new and innovative concepts or technologies that are judged, at the
time of publication of this edition of the Provisions, to require additional exposure to those who use codes and standards
and to possibly require systematic trial use. Some of these potential future changes are formatted for direct adoption
while others discuss only the thrust of the proposed change.
• Discussions of topics that historically have been difficult to adequately codify. These papers provide background
information intended to stimulate further discussion and research and, eventually, code change proposals.
Like Parts 1 and 2 of this volume, these resource papers have been approved for inclusion in this volume by both the 2009
Provisions Update Committee and the BSSC membership.
Comments and questions about the topics treated in these Part 3 resource papers should be addressed to:
Building Seismic Safety Council
National Institute of Building Sciences
1090 Vermont Avenue, N.W., Suite 700
Washington, D.C. 20005
(202) 2897800, Fax: (202) 2891092, Email: bssc@nibs.org
Page intentionally left blank.
Resource Paper 1
ALTERNATE MATERIALS, DESIGN, AND METHODS OF
CONSTRUCTION
Early in its deliberations, the 2009 Provisions Update Committee (PUC) established Issue Team 1, Performance Criteria, to
develop a proposal that would encourage the development of construction equivalent to that provided by prescriptive
provisions but possibly offering economic, performance, or construction speed advantages. The PUC took this step in light
of an ongoing FEMAfunded project to develop a recommended methodology for reliably quantifying building system
performance and response parameters for use in seismic design, in response to growing interest in performancebased
design and its use to develop alternate designs equivalent to prescriptive code provisions, and in recognition of the fact that a
lack of guidance on methods of approval for such submittals might discourage the creation of needed review processes in
some jurisdictions.
This paper was initially prepared by BSSC 2009 Issue Team 1 as a proposal for a Provisions Part 1 modification to Section
11.1.4 of ASCE/SEI 705. The voting by the BSSC member organizations, however, resulted in many comments about: use
of the new methodology prior to completion of the FEMA project and/or prior to complete vetting of the project
recommendations, approval methods for components and products on a smaller scale than full building systems, and the lack
of specificity in the suggested approval processes. Although the issue team developed complete responses to these comments,
the majority of the team recommended interim placement in Part 3 of the Provisions. Due to the high interest and need for
guidance on approval of submittals under the Alternate Means section, it is recommended that this or a similar change be
considered for inclusion in ASCE/SEI 705 as soon as possible.
PROPOSED CHANGE
Rearrange ASCE/SEI 705 Section 11.1.4.1 and add new Sec 11.1.4.2 as shown below (additions underlined).
11.1.4 Alternate Materials, Design, and Methods of Construction.
11.1.4.1 General. The provisions of this standard are not intended to prevent the use of any material, alternate design
method, or alternate method of construction not specifically prescribed, provided that any such alternate has been approved
and its use authorized by the authority having jurisdiction. The authority having jurisdiction may approve any such alternate,
provided that the authority finds that the alternate is satisfactory and complies with the intent of the provisions of this
standard, and that the alternate is, for the purpose intended, at least the equivalent of that prescribed in this standard in
suitability, effectiveness, durability, and seismic resistance.
11.1.4.2 Approval of Proposals Under Sec 11.1.4. Nothing in this section shall limit the ability of the authority having
jurisdiction to develop or accept general requirements for proposals under Section 11.1.4 or specific requirements for
particular components or systems, such as acceptance of reports from evaluation services or other demonstration of
equivalence as specified in Section 11.1.4.1. In the absence of such criteria, the approval process shall include the following
elements:
11.1.4.2.1 Peer Review. Peer review of the preliminary submittal, final design, and/or construction documents.
11.1.4.2.2 Preliminary Submittal. A submittal of a detailed description and, if applicable, design criteria for the alternate
material or method, for approval by the authority having jurisdiction, prior to application for a building permit.
11.1.4.2.3 Structural Design Criteria. For submittals requesting use of alternate materials, alternate design methods or
alternate methods of construction for the complete seismicforceresisting system, a structural design criteria shall be
included based on the seismic performance for the Performance Category, as described in the 2006 International Code
Council Performance Code, that is equivalent to the Occupancy Category of the building.
The design criteria submittal shall demonstrate how the required seismic performance will be met by generally following one
of the two methods described below:
1. Nonlinear procedures described in ASCE/SEI 4106, Seismic Rehabilitation of Existing Buildings.
2. Probabilistic nonlinear analysis methods of Quantification of Building Seismic Performance Factor, FEMA P695.
Using these methods, it shall be demonstrated that for the required performance objectives there is an acceptably low
probability of not reaching the specified performance level, given the specified ground motion.
11.1.4.2.4 Nonstructural Design Criteria. For seismic protection of nonstructural components not part of a designated
seismic system, the design shall demonstrate that the components and systems are capable of remaining secured to the
structure and will not generate lifethreatening debris under the Design Earthquake Ground Motion. For designated seismic
systems and components of such systems, the design shall demonstrate that the components and systems will be capable of
remaining functional following design level shaking. The procedures of Section 13.2.5 and 13.2.6 may be applied as
satisfactory fulfillment of these requirements.
Resource Paper 2
NONLINEAR STATIC PROCEDURE
This resource paper was prepared by Technical Subcommittee 2, Design Criteria and Analysis and Advanced Technologies,
as a replacement for the Appendix to Chapter 5 of the 2003 edition of the NEHRP Recommended Provisions. It revises the
information on the nonlinear static procedure (NSP) to allow its use in design of regular buildings less than 40 feet in height.
The principal value of this approach as currently presented is for the design of buildings that are controlled by drift limits.
Such buildings can be designed to have sufficient stiffness without using the equivalent lateral force (ELF) procedure and to
have sufficient strength without conducting detailed member evaluations (Rd < R/O 0). In the future, the height limitation
may be relaxed if, for example, the NSP is used in conjunction with a nonlinear dynamic analysis.
Because requirements for the nonlinear static procedure are now specified in ASCE/SEI 4106, it is simpler to refer to that
document than to write applicable requirements into the Provisions. Modifications to the ASCE/SEI 705 requirements are
introduced here to maintain consistency with the nonlinear static procedure information presented in the 2003 Provisions.
The 40foot height limit was selected based on the accuracy of response quantities determined for a threestory momentframe
structure; no height limit was identified in the FEMAfunded Applied Technology Council project on the evaluation of
inelastic seismic analysis procedures (Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440). Although
higher modes will have a similar influence on ELF quantities, the higher base shear strengths and story shears of the ELF
procedure will tend to result in smaller member ductility demands. Thus, precision in the NSP estimates is especially
important when system strengths are lower than those resulting from use of the ELF approach, which evaluates member
deformation demands in detail.
This resource paper simplifies the language used to establish whether lateral strength is nominally less than that required by
the ELF procedure. This is now stated succinctly as Rd > R/O o. Section references have been harmonized with ASCE/SEI 7
05 section numbers. If adopted for ASCE/SEI 710 or subsequent editions, the chapter number assigned to the requirements
portion of this paper will have to be substituted where “X” appears below.
REQUIREMENTS
X Nonlinear Static Procedure
X.1 Definitions
Target Displacement. An estimate of the maximum expected displacement of the control node, determined according to
Section 3.3.3.3.2 of ASCE/SEI 41 Supplement1 using Sa defined as a design earthquake spectral response acceleration
according to the 2009 NEHRP Recommended Seismic Provisions at the effective period.
X.2 Notation
QEi Force in ith member determined according to Section 12.15.8.
Rd The system strength ratio as determined by Equation X1.
Rmax The maximum strength ratio, defined by Equation 316 of ASCE/SEI 41 Supplement 1.
.i The deformations for member i.
O0 See Section 11.3.
X.3 Applicability. Regular structures less than 40 feet in height in Occupancy Categories I and II may be designed using
the nonlinear static procedure following the requirements of this chapter.
X.4 Seismicforceresisting System. The seismicforceresisting system shall conform to one of the types in Tables 12.21
and 15.41 and shall be in accordance with the seismic design category and height limitations indicated in these tables. The
appropriate response modification coefficient, R, and system overstrength factor, O0, identified in these tables shall be used,
subject to the additional requirements of this chapter.
X.5 Modeling and Analysis. Modeling and analysis shall conform to Section 3.3.3 of ASCE/SEI 41 Supplement 1 except
that: (a) Sa shall be defined as a design earthquake spectral response acceleration according to the NEHRP Recommended
Seismic Provisions at the effective period and (b) the analysis shall be conducted for seismic actions occurring
simultaneously with the effects of dead load in combination with not less than 25 percent of the required design live loads,
reduced as permitted for the area of a single floor. Pdelta effects shall be included in the analysis model, and dead and live
loads acting on the entire structure shall be represented in the model.
X.6 Maximum Strength Ratio. The system strength ratio, R
(X1)
where C
d, is given by Equation X1 as follows:
m, Vy, and W are as defined in Section 3.3.3.3.2 of ASCE/SEI 41 Supplement 1 and Sa is defined as a design
earthquake spectral response acceleration according to the 2009 NEHRP Recommended Seismic Provisions at the effective
period. Use of the nonlinear static procedure is not permitted when Rd exceeds Rmax.
X.7 Story Drift. The design story drift, ., taken as the value obtained for each story at the step at which the target
displacement is reached, shall not exceed the drift limit specified in Section 12.12.1 multiplied by 0.85R/Cd.
X.8 Member Strength. In addition to satisfying the requirements of Section 12.15.9, member strengths also shall satisfy the
requirements of Section 2.3 using E = 0, except that Section 12.4.3.2 shall apply when the effect of structural overstrength on
the design seismic force must be considered. When the effect of structural overstrength is considered, the value of the
individual member forces, QEi, obtained from the analysis at the target displacement shall be taken in place of the quantity
O0QE.
X.9 Detailed Evaluation. Detailed evaluation satisfying Sections X.9.1and X.9.2 is required if Rd exceeds R/O0.
X.9.1 Required Member Force and Deformation. For each nonlinear static analysis, the design response parameters,
including the individual member forces, QEi, and member deformations, .i, shall be taken as the values obtained from the
analysis at the step at which the target displacement is reached. Equation
/
a
d m
y
R S C
V W
=
X.9.2 Member Capacity. The adequacy of individual members and their connections to withstand the member forces, QEi,
and member deformations, .i, shall be evaluated based on laboratory test data for similar components. The effects of gravity
and other loads on member deformation capacity shall be considered in these evaluations. The deformation of a member
supporting gravity loads shall not exceed: (a) twothirds of the deformation that results in loss of ability to support gravity
loads and (b) twothirds of the deformation at which the member strength has deteriorated to less than the 70 percent of the
peak strength of the component model. The deformation of a member not required for gravity load support shall not exceed
twothirds of the value at which member strength has deteriorated to less than 70 percent of the peak strength of the
component model. Alternatively, it shall be permissible to deem member deformation to be acceptable if the deformation
does not exceed the value provided in ASCE/SEI 41 Supplement 1 for the Life Safety performance level.
Member forces shall be deemed acceptable if not in excess of expected capacities.
X.10 Design Review. A review of the design of the seismicforceresisting system and the supporting structural analyses
shall be performed by an independent team having experience in seismic analysis methods and the theory and application of
nonlinear seismic analysis and structural behavior under earthquake loading. The team shall be composed of at least two
members including at least one registered design professional. The design review shall include:
1. Review of any sitespecific seismic criteria employed in the analysis including the development of sitespecific spectra
and
2. Review of the determination of the target displacement and effective yield strength of the structure.
For those structures with Rd exceeding R/O0, the design review shall further include, but need not be limited to, the
following:
1. Review of acceptance criteria used to demonstrate the adequacy of structural elements and systems to withstand the
calculated force and deformation demands together with the laboratory and other data used to substantiate such criteria.
Review of the acceptance criteria for nonlinear procedures given in ASCE/SEI 41 Supplement 1 shall be at the discretion
of the design review team.
2. Review of the final design of the entire structural system and all supporting analyses.
The design review team shall issue a report that identifies, within the scope of the review, significant concerns and any
departures from general conformance with the NEHRP Recommended Provisions.
COMMENTARY
This resource paper presents proposed requirements for nonlinear static analysis, a seismic analysis procedure also sometimes
known as pushover analysis, for review and comment and for adoption into a subsequent edition of the NEHRP
Recommended Provisions.
Although nonlinear static analysis has only recently been included in design provisions for new building construction, the
procedure itself is not new and has been used for many years in both research and design applications. For example,
nonlinear static analysis has been used for many years as a standard methodology in the design of the offshore platform
structures for hydrodynamic effects and has been adopted recently in several standard methodologies for the seismic
evaluation and rehabilitation of building structures, including the Recommended Seismic Design Criteria for New Steel
MomentFrame Buildings (FEMA 350, 2000), Seismic Rehabilitation of Existing Buildings (ASCE/SEI 4106, 2007), and
Seismic Evaluation and Retrofit of Concrete Buildings (Applied Technology Council, 1996). Nonlinear static analysis also
forms the basis for earthquake loss estimation procedures contained in the earthquake module of the multihazard software
application HAZUSMH MR2 (FEMA, 2006) and its Advanced Engineering Building Module (FEMA, 2002). A critical
review of and improvement to nonlinear static analysis methods, Improvement of Nonlinear Static Seismic Analysis
Procedures, was published as FEMA 440 in 2005. Although it does not explicitly appear in the Provisions, the nonlinear
static analysis methodology also forms the basis for the equivalent lateral force procedures contained in the provisions for
baseisolated structures and structures with dampers.
One of the controversies surrounding the introduction of this methodology into the Provisions relates to the determination of
the limit deformation (sometimes called a target displacement). Several methodologies for estimating the amount of
deformation induced in a structure as a result of earthquake ground shaking have been proposed and are included in various
adoptions of the procedure. The approach presented in this paper is based on statistical correlations of the displacements
predicted by linear and nonlinear dynamic analyses of structures recommended in the FEMA 440 report (2005) on the
evaluation of inelastic seismic analysis procedures.
A second controversy relates to the limited availability of consensusbased acceptance criteria to be used to determine the
adequacy of a design once the forces and deformations produced by design earthquake ground shaking are estimated. It
should be noted that this limitation applies equally to the nonlinear response history approach, which already has been
adopted into building codes.
A third controversy relates to the effects of higher modes (or multidegreeoffreedom effects for structures responding
nonlinearly) on response quantities. FEMA 440 identifies significant disparities between response quantities determined by
nonlinear static analysis and those determined by nonlinear dynamic analysis for all but lowrise structures; therefore, use of
the nonlinear static procedure for the design of members proposed here is limited to structures 40 feet or less in height. This
limitation has resulted in the nonlinear static procedure being located in Part 3 of the Provisions. The nonlinear static
procedure may be used to ensure that structures designed according to the equivalent lateral force procedure achieve strengths
comparable to code expectations. Interstory drifts are compared with tabulated allowable story drifts to maintain consistency
with past practice, although it is recognized that larger interstory drifts should be anticipated due to higher mode or multidegree
offreedom effects.
Nonlinear static analysis provides a simplified method of directly evaluating nonlinear response of structures to strong
earthquake ground shaking that can be an attractive alternative to the more complex procedures of nonlinear response history
analysis. It may be useful for characterizing system strength and stiffness and for establishing that the structure develops a
desirable inelastic mechanism.
REFERENCES
American Society of Civil Engineers/Structural Engineering Institute. 2006. Seismic Rehabilitation of Existing Buildings,
ASCE/SEI 4106, with Supplement 1. American Society of Civil Engineers, Reston, Virginia.
Applied Technology Council. 1996. Seismic Evaluation and Retrofit of Concrete Buildings, SSC Report 9601. Seismic
Safety Commission, State of California, Sacramento, California.
Applied Technology Council. 2005. Improvement of Nonlinear Static Seismic Analysis Procedures, FEMA 440. FEMA,
Washington, D.C.
Building Seismic Safety Council. 2003. NEHRP Recommended Provisions for the Development of Seismic Regulations for
New Buildings and Other Structures, FEMA 450. FEMA, Washington, D.C.
Federal Emergency Management Agency. 2006. HAZUSMH MR2 Multihazard Loss Estimation Methodology, Earthquake
Model, Technical Manual. Prepared for FEMA by the National Institute of Building Sciences. FEMA, Washington, D.C.
Federal Emergency Management Agency. 2002. Earthquake Loss Estimation Methodology, HAZUS99SR2, Advanced
Engineering Building Module, Technical and User’s Manual. Prepared for FEMA by National Institute of Building
Sciences. FEMA, Washington, D.C.
Federal Emergency Management Agency. 2000. Recommended Seismic Design Criteria for New Steel MomentFrame
Buildings, FEMA 350. FEMA, Washington, D.C.
Resource Paper 3
SEISMICRESPONSEHISTORY ANALYSIS
This resource paper was developed by Technical Subcommittee 2, Design Criteria and Analysis and Advanced Technologies,
as a replacement for ASCE/SEI 705 Chapter 16, Seismic ResponseHistory Analysis. It reorganizes the chapter to eliminate
redundancy as well as inconsistencies and duplication of ASCE/SEI 705 Chapter 12 analysis requirements. When responsehistory
analyses (RHA) are used, they are commonly used as an maximum considered earthquake verification after a
preliminary design has been completed. This paper adds a number of important requirements for RHA conducted at the
risktargeted maximum considered earthquake level. Feedback will be appreciated.
PROPOSED REPLACEMENT FOR ASCE/SEI 705 CHAPTER 16,
SEISMICRESPONSEHISTORY ANALYSIS
16.1 GENERAL REQUIREMENTS
A responsehistory analysis (RHA) shall consist of an analysis of a mathematical model of the structure to determine, through
methods of numerical integration, its response to suites of ground motion acceleration histories. The analysis shall be
performed in accordance with the requirements of this chapter. Structures with elements of the seismicforceresisting
system responding significantly beyond their elastic limit shall satisfy Section 16.3.12. When the analysis is used to validate
a design that uses the exceptions in Section 16.1.1, the ground motions shall be scaled to the risktargeted maximum
considered earthquake (MCER) ground motion level in accordance with Section 16.2 and the acceptance criteria shall meet
Section 16.4.
16.1.1 Design Requirements. The design of the structure shall meet all requirements for equivalent lateral force or modal
response spectrum analysis in accordance with Section 12.6 except that specific exceptions to such requirements are
permitted to be taken, provided the exceptions are:
1. Identified clearly in the documentation submitted for design review and
2. Justified through rational application of the RHA.
16.1.2 Level of Ground Motion. The analysis shall be based on the MCER ground motions defined in Section 11.4.
16.1.3 Occupancy Categories III and IV. For Occupancy Categories III and IV, the ground motion is in accordance with
Section 16.1.2, but the acceptance criteria in accordance with Section 16.4 are more restrictive compared to values applicable
to Occupancy Categories I and II. When alternative acceptance criteria are used, they shall be demonstrated to be consistent
with the importance factor, I, in accordance with Section 11.5. Nonstructural elements shall be designed in accordance with
Chapter 13 using Ip as required by Section 13.1.3.
16.2 GROUND MOTION
A suite of not less than seven appropriate ground motions shall be used in the analysis.
Appropriate ground motion acceleration histories shall be obtained from records of events having magnitudes, fault distances,
and source mechanisms that are consistent with those that control the MCER. If a sufficient number of appropriate recorded
ground motion records is not available, appropriate simulated or modified ground motion records are permitted to be used to
as part of the total number required.
When applicable, the ground motion acceleration histories shall include near fault and directivity effects including direction
of fault rupture and velocity pulses as appropriate.
16.2.1 Duration. Each responsehistory analysis shall be run for the full duration of the ground motion except that the first
or last portion of the record is permitted to be truncated provided that the truncation does not significantly modify either the
frequency content or the number of cycles of ground motion with an amplitude sufficient to induce nonlinear response.
16.2.2 Twodimensional Analysis. When twodimensional analyses are performed, each ground motion shall consist of a
horizontal acceleration history. The ground motions shall be scaled such that the average value, over all ground motions, of
the 5percentdamped response spectra for the suite of motions is not less than the MCER response spectrum for the site for
periods ranging from 0.2T to 1.5T where T is the natural period of the structure in the fundamental mode for the direction of
response being analyzed.
16.2.3 Threedimensional Analysis. When threedimensional analysis is performed, ground motions shall consist of pairs
of appropriate horizontal ground motion acceleration components. For each pair of horizontal ground motion components, a
square root of the sum of the squares (SRSS) spectrum shall be constructed by taking the SRSS of the 5percentdamped
response spectra for the scaled components (for direct scaling, an identical scale factor is applied to both components of a
pair). Each pair of motions shall be scaled such that for each period between 0.2T and 1.5T, the average, over all component
pairs, of the SRSS spectra does not fall below 1.3 times the corresponding ordinate of the MCER response spectrum by more
than 10 percent.
16.3 MODELING AND ANALYSIS
Mathematical models shall conform to the requirements of Section 12.7. Design review requirements are described in
Section 16.5.
16.3.1 Interaction of Elements. The analysis shall consider the interaction of all structural and nonstructural elements that
can adversely affect the response of the structure to earthquake ground motions, including elements not designated as part of
the seismicforceresisting system.
16.3.2 Identification of Nonlinear Response. Documentation submitted for design review shall identify the elements in the
seismicforceresisting system (SFRS) designed for nonlinear seismic response. All other elements in the SFRS shall be
demonstrated by analysis to remain essentially elastic (refer to Section 16.4.3).
16.3.3 Twodimensional Analysis. A twodimensional analysis model is permitted to be used if Section 12.7.3 does not
require a threedimensional model or if documentation submitted for design review demonstrates that the twodimensional
analysis captures all significant threedimensional effects including plan torsion, nonorthogonal earthquake response,
engagement of overturning resistance through flange effects or transverse coupling, and nonorthogonal effects on strongcolumn
weakbeam behavior.
16.3.4 Direction of Loading. Twodimensional modeling shall account for direction of loading effects in accordance with
Section 12.5.
16.3.5 Diaphragm Modeling. Floor and roof diaphragms responding linearly shall be modeled according to Section 12.3.1.
Diaphragms responding beyond the linear range shall be modeled using nonlinear forcedeformation relationships if required
by Section 16.3.11
16.3.6 Seismic Mass. The masses used in the analytical model shall be as defined in Section 12.7.2. When modal
computation techniques are used for responsehistory computation, Section 12.9.1 shall be satisfied and the results shall be
multiplied by the ratio of the total mass to the mass participating in the modes included in the analysis.
16.3.7 Gravity Load. The modeling of and demands on elements in the analysis model shall be determined considering
earthquake effects acting in the presence of expected gravity loads. For building structures with ordinary occupancies,
expected gravity loads shall be taken as 1.0D + 0.5L
For live loads subject to reduction on the basis of area in accordance with Section 4.8, the tributary area shall be permitted to
be taken as the total floor area in the structure subject to that live load and KLL shall be set to 1.0.
For other occupancies or when the expected gravity load is not well represented by 1.0D + 0.5L or is highly variable, the
analysis shall be modified accordingly.
16.3.8 Pdelta Effects. Pdelta effects shall be included in the analysis using the gravity loads defined in Section 16.3.7.
16.3.9 Inherent Plan Torsion. Inherent plan torsion shall be included in accordance with Section 12.8.4.1.
16.3.10 Accidental Plan Torsion. If the accidental torsion requirements of Section 12.8.4.2 are included in the
determination of the strength of the nonlinear elements of the structure and in the analysis used to meet the requirements of
Section 16.1.1, inclusion of accidental torsion in the RHA is not required.
16.3.11 Nonlinear Modeling. The mathematical model shall directly account for the nonlinear hysteretic behavior of the
members and connections that comprise the structural elements.
The hysteretic forcedeformation behavior of elements shall be modeled consistent with applicable laboratory test data and
shall account for all significant yielding, strength degradation, stiffness degradation, hysteretic pinching, and interaction
effects indicated by such test data. Strength of elements shall be based on expected values considering material overstrength,
strain hardening, and hysteretic strength degradation at the expected range of deformation. The behavior model shall not be
extended to deformations beyond levels substantiated by test data.
Linear properties, consistent with the requirements of Section 12.7.3, are permitted to be used for those elements
demonstrated by the analysis to remain within their linear range of response.
16.3.12 Stiffness. To the extent that such effects are significant for the MCER response, element properties shall account for
the following:
1. Stiffness properties of reinforced concrete and reinforced masonry shall account for cracking and other phenomena that
affect effective initial stiffness including strain penetration, bond slip, joint and panel zone deformation, and tension shift
associated with shear cracking.
2. Stiffness properties of steel or other connected elements shall account for connection stiffness and, for moment frames,
the effect of panel zone (beamcolumn joint) deformations.
16.3.13 Damping. The equivalent viscous damping level shall not exceed 5 percent of critical damping for any mode
required to obtain the effective mass according to Section 12.7.2 unless substantiated. Documentation submitted for design
review shall identify how damping effects are included in the RHA to account for energy dissipation that is not considered
directly in the nonlinear analysis model.
16.4 ANALYSIS RESULTS
16.4.1 Design Values. The calculation of design values shall account for the signs of response parameters and the
combinations of response parameters (e.g., axial force and bending moment) that can govern the design.
16.4.2 Analysis Results. The response parameters of interest shall be calculated for each ground motion used for the RHA.
The peak value of each parameter shall be determined for each ground motion. The average of the peaks shall be used for
checking acceptance criteria. When a combination of response parameters is important (e.g., for elements resisting both
flexural and axial forces), these results shall be captured to be consistent with the acceptance criteria.
16.4.3 Acceptance Criteria for Ductile Behavior. Element response that satisfies the definition for deformationcontrolled
actions in Section 2.4.4.3 of ASCE/SEI 41 shall be evaluated on the basis of either nonlinear or linear behavior. If the
calculated force in an element does not exceed 1.5 times its nominal strength, that element is permitted to be considered
linear (essentially elastic).
16.4.3.1 Nonlinear Behavior of Ductile Elements. Member deformation shall not result in deterioration of its attainable
member strength to less than 80 percent of the peak resistance. Deformation capacities shall be based on values tabulated in
ASCE/SEI 41 or from laboratory test data for similar elements. When ASCE/SEI 41 is used, the following performance
levels are to be used:
1. Collapse prevention for Occupancy Categories I and II,
2. Life safety for Occupancy Category IV, and
3. 80 percent of collapse prevention but not less than life safety for Occupancy Category III.
Documentation shall be submitted for design review to substantiate the adequacy of individual elements and their
connections to withstand the deformation demands from the RHA.
16.4.3.2 Linear Behavior of Ductile Elements. Calculated force demands shall not exceed 150 percent of nominal
capacities divided by the importance factor, I.
16.4.4 Acceptance Criteria for Nonductile Behavior. Any type of element response that does not satisfy the definition for
deformationcontrolled actions in Section 2.4.4.3 of ASCE/SEI 41 shall be evaluated on a linear basis. The demands from
Section 16.4.2 shall not exceed the expected strength. Nominal strength is permitted to be used in lieu of expected strength.
16.4.5 Story Drift. The story drift ratio shall not exceed 1.5 times the limits of Section 12.12.1 for any story unless those
elements not designated as part of the seismicforceresisting system are capable of undergoing the calculated story drift for
each RHA without collapse of the portion of the structure supported by those elements.
16.4.6 Stability. The structure shall be shown to be stable for the MCER ground motions.
16.5 Design Review. A design review of the seismicforceresisting system, the structural analysis, and the documentation
shall be performed by an independent team of registered design professionals in the appropriate disciplines and others
experienced in seismic analysis methods and the theory and application of nonlinear seismic analysis and structural behavior
under extreme cyclic loads. The design review shall include, but need not be limited to, the following:
1. Review of any sitespecific seismic criteria employed in the analysis including the development of sitespecific spectra
and ground motion time histories.
2. Review of acceptance criteria used to demonstrate the adequacy of structural elements and systems to withstand the
calculated force and deformation demands and laboratory and other data that substantiate these criteria.
3. Review of the preliminary design including the selection of structural system and the configuration of structural
elements.
4. Review of the final design of the entire structural system and all supporting analyses.
Resource Paper 4
FOUNDATION GEOTECHNICAL ULTIMATE STRENGTH DESIGN
AND FOUNDATION LOADDEFORMATION MODELING
(2003 Provisions Appendix to Chapter 7, Foundation Design Requirements)
This resource paper originally appeared as the appendix to Chapter 7, Foundation Design Requirements, of the 2003
NEHRP Recommended Provisions. It includes ultimate strength design (USD) procedures for the geotechnical design of
foundations for trial use and evaluation by design professionals prior to adoption into a subsequent edition of the Provisions.
Similarly, the resource paper presents criteria for the modeling of loaddeformation characteristics of the foundationsoil
system (foundation stiffness) for those analysis procedures in Chapter 5 of the 2003 Provisions that permit use of realistic
assumptions for foundation stiffness rather than the assumption of a fixed base. Note that only format changes have been
made and Provisions section numbers cited refer to the 2003 edition of the Provisions.
Practice for geotechnical foundation design has been based on allowable stresses with allowable foundation load capacities
for dead plus live loads based on limiting longterm static settlements and providing a large factor of safety. In current
practice, allowable soil stresses for dead plus live loads are typically increased by onethird for load combinations that
include wind or seismic forces. The allowable stresses for dead plus live loads are often far below ultimate soil capacity.
This resource paper’s Provisions and the associated Commentary provide criteria and guidance for the direct use of ultimate
foundation load capacity for load combinations that include seismic forces. The acceptance criteria cover both the analyses
for fixedbase assumptions and analyses for linear and nonlinear modeling of foundation stiffness for flexiblebase
assumptions.
Although USD for foundations has not previously been included in design provisions for new buildings, the same basic
principles used in this resource paper have been adapted to generate guidelines for the seismic evaluation and retrofit design
of existing buildings (FEMA 273; FEMA 356; Applied Technology Council, 1996). The criteria and procedures presented
herein for the nonlinear modeling of foundation stiffness combine a linear or multilinear stiffness and a limiting load
capacity based on ultimate soil strength and are essentially the same as those presented in the publications cited above.
With respect to the adoption of USD procedures for geotechnical foundation design, the primary issue considered by the
2003 Provisions Update Committee and the BSSC member organizations was the impact of the proposed USD procedures on
the size of foundations and the consequent effect on the potential for foundation rocking and building performance. A
synopsis of two sets of design examples is presented at the end of this resource paper. The example results illustrate the
expected effects of the methodology in that relative foundation sizes from USD vs. ASD are related to the factor of safety on
load capacity under vertical dead plus live loads. When factors of safety are high, smaller foundations result from USD, but
when factors of safety are low, it is possible that foundations may be larger using USD. Additional examples, including
nonlinear dynamic analyses incorporating nonlinear loaddeformation models for foundation soil stiffness and capacity, are
warranted to further evaluate and possibly refine the methodologies and criteria presented in this paper. It is hoped that
trial usage of the methodologies presented herein will allow the necessary consensus to be developed to permit later
incorporation into the Provisions. Feedback will be appreciated.
APPENDIX TO 2003 PROVISIONS CHAPTER 7, FOUNDATION DESIGN REQUIREMENTS
A7.1 General
A7.1.1 Scope. This resource paper includes only those foundation requirements that are specifically related to seismic
resistant construction. It assumes compliance with all other basic requirements which include, but are not limited to,
requirements for the extent of the foundation investigation, fills to be present or to be placed in the area of the structure, slope
stability, subsurface drainage, settlement control, and soil bearing and lateral soil pressure recommendations for loads acting
without seismic forces.
A7.1.2 Definitions
Allowable foundation load capacity: See Section A7.2.2.
Ultimate foundation load capacity: See Section A7.2.2.
A7.1.3 Notation
Qas Allowable foundation load capacity.
Qus Ultimate foundation load capacity.
f The strength reduction, capacity reduction, or resistance factor.
A7.2 General Design Requirements
The resisting capacities of the foundations, subjected to the load combinations prescribed elsewhere in these Provisions, shall
meet the requirements of this resource paper.
A7.2.1 Foundation Components. The strength and detailing of foundation components under seismic loading conditions,
including foundation elements and attachments of the foundation elements to the superstructure, shall comply with the
requirements of Chapters 8, 9, 10, 11, or 12, unless otherwise specified in this chapter. The strength of foundation
components shall not be less than that required for load combinations that do not include seismic load effects.
A7.2.2 Foundation Load Capacities. The vertical capacity of foundations (footings, piles, piers, mats or caissons) as
limited by the soil shall be sufficient to support the structure for all prescribed load combinations without seismic forces,
taking into account the settlement that the structure can withstand while providing an adequate factor of safety against failure.
Such capacities are defined as allowable foundation load capacities, Qas. For load combinations including seismic load
effects as specified in Section 4.2.2, vertical, lateral, and rocking load capacities of foundations as limited by the soil shall be
sufficient to resist loads with acceptable deformations, considering the short duration of loading, the dynamic properties of
the soil, and the ultimate load capacities, Qus, of the foundations under vertical, lateral, and rocking loading.
A7.2.2.1 Determination of Ultimate Foundation Load Capacities. Ultimate foundation load capacities shall be
determined by a qualified geotechnical engineer based on geotechnical site investigations that include field and laboratory
testing to determine soil classification and soil strength parameters, and/or capacities based on insitu testing of prototype
foundations. For competent soils that do not undergo strength degradation under seismic loading, strength parameters for
static loading conditions shall be used to compute ultimate load capacities for seismic design. For sensitive cohesive soils or
saturated cohesionless soils, the potential for earthquake induced strength degradation shall be considered.
Ultimate foundation load capacities, Qus, under vertical, lateral, and rocking loading shall be determined using accepted
foundation design procedures and principles of plastic analysis. Calculated ultimate load capacities, Qus, shall be bestestimated
values using soil properties that are representative average values for individual foundations. Bestestimated
values of Qus shall be reduced by resistance factors (f) to reflect uncertainties in site conditions and in the reliability of
analysis methods. The factored foundation load capacity, fQus, shall then be used to check acceptance criteria, and as the
foundation capacity in foundation nonlinear loaddeformation models.
If ultimate foundation load capacities are determined based on geotechnical site investigations including laboratory or insitu
tests, f factors equal to 0.8 for cohesive soils and 0.7 for cohesionless soils shall be used for vertical, lateral, and rocking
resistance for all foundation types. If ultimate foundation load capacities are determined based on fullscale fieldtesting of
prototype foundations, f factors equal to 1.0 for cohesive soils and 0.9 for cohesionless soils are permitted.
A7.2.2.2 Acceptance Criteria. For linear analysis procedures (Sections 5.2, 5.3, and 5.4), factored foundation load
capacities, fQus, shall not be exceeded for load combinations that include seismic load effects.
For the nonlinear response history procedure (Section 5.5) and the nonlinear static procedure (Appendix to Chapter 5), if the
factored foundation load capacity, fQus, is reached during seismic loading, the potential significance of associated transient
and permanent foundation displacements shall be evaluated. Foundation displacements are acceptable if they do not impair
the continuing function of Seismic Use Group III structures or the life safety of any structure.
For nonlinear analysis procedures, an additional evaluation of structural behavior shall be performed to check potential
changes in structural ductility demands due to higher than anticipated foundation capacity. For this additional evaluation,
values of Qus shall be increased by the factor 1/f.
A7.2.3 Foundation Loaddeformation Modeling. When permitted for the analysis procedures in Chapter 5 and the
Appendix to Chapter 5, the loaddeformation characteristics of the foundationsoil system (foundation stiffness), if included
in the analysis, shall be modeled in accordance with the requirements of this section. For linear analysis methods, the linear
loaddeformation behavior of foundations shall be represented by an equivalent linear stiffness using soil properties that are
compatible with the soil strain levels associated with the design earthquake motion. The straincompatible shear modulus, G,
and the associated straincompatible shear wave velocity, vS, needed for the evaluation of equivalent linear stiffness shall be
determined using the criteria in Section 5.6.2.1.1 or based on a sitespecific study. Parametric variations of not less than 50
percent increase and decrease in stiffness shall be incorporated in dynamic analyses unless smaller variations can be justified
based on field measurements of dynamic soil properties or direct measurements of dynamic foundation stiffness.
For nonlinear analysis methods, the nonlinear loaddeformation behavior of the foundationsoil system may be represented
by a bilinear or multilinear curve having an initial equivalent linear stiffness and a limiting foundation capacity. The initial
equivalent linear stiffness shall be determined as described above for linear analysis methods. The limiting foundation
capacity shall be taken as the factored foundation load capacity, fQus. Parametric variations in analyses shall include: (1) a
reduction in stiffness of 50 percent combined with a limiting foundation capacity, fQus, and (2) an increase in stiffness of 50
percent combined with a limiting foundation capacity equal to Qus increased by a factor 1/f.
COMMENTARY
CA7.2 General Design Requirements
CA7.2.2 Foundation Load Capacities. In current geotechnical engineering practice, foundation design is based on
allowable stresses, with allowable foundation load capacities, Qas, for dead plus live loads based on limiting static settlements
and providing a large factor of safety against exceeding ultimate capacities. In current practice, allowable soil stresses for
dead plus live loads are increased by onethird for load combinations that include wind or seismic forces. The onethird
increase is overly conservative if the allowable stresses for dead plus live loads are far below ultimate soil capacity. This
resource paper provides guidance for the direct use of ultimate foundation load capacity, Qus, for load combinations including
seismic effects. It is required that foundations be capable of resisting loads with acceptable deformations considering the
short duration of seismic loading, the dynamic properties of the soil, and the ultimate load capacities, Qus, of the foundations
under vertical, lateral, and rocking loading.
CA7.2.2.1. Determination of Ultimate Foundation Load Capacities. For competent soils that are not expected to
degrade in strength during seismic loading (e.g., due to partial or total liquefaction of cohesionless soils or strength reduction
of sensitive clays), use of static soil strengths is recommended for determining ultimate foundation load capacities, Qus. Use
of static strengths is somewhat conservative for such soils because rateofloading effects tend to increase soil strengths for
transient loading. Such rate effects are neglected because they may not result in significant strength increase for some soil
types and are difficult to confidently estimate without special dynamic testing programs. The assessment of the potential for
soil liquefaction or other mechanisms for reducing soil strengths is critical, because these effects may reduce soil strengths
greatly below static strengths in susceptible soils.
The bestestimated ultimate vertical load capacity of footings, Qus, should be determined using accepted foundation
engineering practice. In the absence of moment loading, the ultimate vertical load capacity of a rectangular footing of width
B and length L may be written as Qus = qcBL where qc = ultimate soil bearing pressure.
For rigid footings subject to moment and vertical load, contact stresses become concentrated at footing edges, particularly as
footing uplift occurs. The ultimate moment capacity, Mus, of the footing as limited by the soil is dependent upon the ratio of
the vertical load stress, q, to the ultimate soil bearing pressure qc. Assuming that contact stresses are proportional to vertical
displacements and remain elastic up to qc, it can be shown that uplift will occur prior to plastic yielding of the soils when q/qc
is less than 0.5. If q/ qc is greater than 0.5, then the soil at the toe will yield prior to uplift. This is illustrated in Figure CA7.2.2
1. In general the ultimate moment capacity of a rectangular footing may be expressed as:
where P = vertical load, q = P/BL, B = footing width, and L = footing length in direction of rotation.
The ultimate lateral load capacity of a footing may be assumed equal to the sum of the bestestimated ultimate soil passive
resistance against the vertical face of the footing plus the bestestimated ultimate soil friction force on the footing base. The
determination of ultimate passive resistance should consider the potential contribution of friction on the face of the footing on
the passive resistance.
For piles, the bestestimated ultimate vertical load capacity (for both axial compression and axial tensile loading) should be
determined using accepted foundation engineering practice. When evaluating axial tensile load capacity, consideration
should be given to the capability of pile cap and splice connections to take tensile loads. Equation
1
us 2
M LP q
qc
. .
= .  .
. .
The ultimate moment capacity of a pile group should be determined assuming a rigid pile cap, leading to an initial triangular
distribution of axial pile loading from applied overturning moments. However, full axial capacity of piles may be mobilized
when computing ultimate moment capacity, in a manner analogous to that described for a footing in Figure CA7.2.21. The
ultimate lateral capacity of a pile group may be assumed equal to the bestestimated ultimate passive resistance acting against
the edge of the pile cap and the additional passive resistance provided by piles.
Resistance factors, f, are provided to factor ultimate foundation load capacities, Qus, to reduced capacities, fQus, used to
check foundation acceptance criteria. The values of f recommended in the Provisions are higher than those recommended in
some codes and specifications for longterm static loading. The development of resistance factors for static loading has been
based on detailed reliability studies and on calibrations to give designs and factors of safety comparable to those given by
allowable stress design. As indicated in the first paragraph of this section, mobilized strengths for seismic loading conditions
are expected to be somewhat higher than the static strengths specified for use in obtaining values of Qus, especially for
cohesive soils. In the absence of any detailed reliability studies for seismic loading conditions, values of f equal to 0.8 and
0.7 were selected for cohesive and cohesionless soils, respectively, when geotechnical site investigations, including
laboratory or insitu tests, are conducted, and values of f equal to 1.0 and 0.9 were selected when fullscale field tests of
prototype foundations are conducted. These values are comparable to the values of 0.8 (for soil strengths determined based
on a comprehensive site soil investigation including soil sampling and testing) and 0.9 (for soil strengths determined by site
loading testing using plate bearing or near full scale foundation element testing) recommended by the SEAOC Seismology
Committee Ad Hoc Foundation Committee (2001).
CA7.2.2.2 Acceptance Criteria. The factored load capacity, fQus, provides the basis for the acceptance criteria,
particularly for the linear analysis procedures. The mobilization of ultimate capacity in the nonlinear analysis procedures
does not necessarily mean unacceptable performance as structural deformations due to foundation displacements may be
tolerable, as discussed by Martin and Lam (2000). For the nonlinear analysis procedures, it is also prudent to evaluate
structural behavior utilizing parametric increases in foundation load capacities above Qus by a factor of 1/f, to check potential
changes in structural ductility demands.
CA7.2.3 Foundation Loaddeformation Modeling. Analysis methods described in Section 5.3 (response spectrum
procedure) and Section 5.4 (linear response history procedure), permit the use of realistic assumptions for foundation
stiffness, as opposed to the assumption of a fixed base. In addition, the nonlinear response history procedure (Section 5.5)
and the nonlinear static procedure (Appendix to Chapter 5) permit the use of realistic assumptions for the stiffness and loadcarrying
characteristics of the foundations. Guidance for flexible foundation (nonfixed base) modeling for the above
analysis procedures are described herein.
Figure CA7.2.21.
Foundation loaddeformation behavior characterized by stiffness and load capacity may significantly influence the seismic
performance of a structure, with respect to both load demands and distribution among structural elements (ATC 1996,
NEHRP 1997a, 1997b). This is illustrated schematically in Figure CA 7.2.31. While it is recognized that the loaddeformation
behavior of foundations is nonlinear, an equivalent elastoplastic representation of loaddeformation behavior is
often assumed as illustrated in Figure CA 7.2.32. To allow for variability and uncertainty in the selection of soil parameters
Figure CA7.2.31 showing stiff/strong foundation and flexible/weak foundation and Figure CA7.2.32 showing loaddeformation
255
Figure CA7.2.32
and analysis methods used to determine stiffness and capacity, a range of parameters for foundation modeling should be used
to permit sensitivity evaluations.
Figure CA7.2.31
Figure CA7.2.32.
Consider the spread footing shown in Figure CA 7.2.33 with an applied vertical load (P), lateral load (H), and moment (M).
The soil characteristics might be modeled as two translational springs and a rotational spring, each characterized by a linear
elasticstiffness and a plastic capacity. The use of a Winkler spring model acting in conjunction with the foundation to
eliminate the rotational spring may also be used, as shown in Figure CA7.2.34. The Winkler model can capture more
accurately progressive mobilization of plastic capacity during rocking behavior. Note the lateral action is normally
uncoupled from the vertical and rotational action. Many foundation systems are relatively stiff and strong in the horizontal
direction, due to passive resistance against the face of footings or basement walls, and friction beneath footings and floor
slabs. Comparisons of horizontal stiffness of the foundation and the structure can provide guidance on the need to include
horizontal foundation stiffness in demand or capacity analyses. In general, foundation rocking has the most influence on
structural response. Slender shear wall structures founded on strip footings, in particular, are most sensitive to the effects of
foundation rocking.
Assuming a shallow footing foundation may be represented by an embedded rigid plate in an elastic halfspace, classical
elastic solutions may be used to compute the uncoupled elastic stiffness parameters. Representative solutions are described
in Commentary to Section 5.6. Solutions developed by Gazetas (1991) are also often used, as described in ATC (1996).
Dynamic soil properties (i.e. properties consistent with seismic wave velocities and associated moduli of the soils as opposed
to static soil moduli) should be used in dynamic soil solutions. The effects of nonlinearity on dynamic soil properties should
be incorporated using the reduction factors in Section 5.6.2.1.1 or based on a sitespecific study.
In the case of pile groups, the uncoupled spring model shown in Figure CA 7.2.33 also may be used, when the footing
represents the pile cap. In the case of the vertical and rotational springs, it can be assumed that the contribution of the pile
cap is relatively small compared to the contribution of the piles. In general, mobilization of passive pressures by either the
pile caps or basement walls will control lateral spring stiffness. Hence, estimates of lateral spring stiffness can be computed
using elastic solutions as for footings. In instances when piles may contribute significantly to lateral stiffness (i.e., very soft
soils, battered piles), solutions using beamcolumn pile models are recommended.
Axial pile group stiffness spring values, ksv, are generally in the range given by:
ksv = to
where A = crosssectional area of a pile, E = modulus of elasticity of piles, L = Length of piles, and N = number of piles in
group. Equation
0.5
1
N AE
n L
S
= Equation
2
1
N AE
n L
S
=
Values of axial stiffness depend on complex nonlinear interaction of the pile and soil (NEHRP, 1997b). For simplicity, best
estimate values of AE/L and 1.5 AE/L are recommended for piles when axial capacity is primarily controlled by end bearing
and side friction, respectively.
Figure CA7.2.33. Figure CA7.2.34.
The rocking spring stiffness values, ksr, about each horizontal pile cap axis may be computed by assuming each axial pile
spring acts as a discrete Winkler spring. The rotational spring constant (moment per unit rotation) is then given by:
where kvn = axial stiffness of the nth pile and Sn = distance between nth pile and axis of rotation. The effects of group action
and the influence of pile batter are not accounted for in the above equations. These effects should be evaluated if judged
significant.
Design Examples. In order to study and illustrate the effects of the change from allowable stress to ultimate strength design
of foundations a series of examples were generated. The examples compared the size of foundations resulting from ultimate
strength designs (USD) according to the new procedures with those that would be obtained from conventional allowable
stress designs (ASD). Equation
2
1 sr
N
k kvnSn n
= S
=
Figure CA7.2.35 Example building.
The examples were based upon a single sixstory reinforced concrete building with shear walls and gravity frame (see Figure
7.2.35). One set of examples was for a shallow spread footing design beneath a shear wall. The other set applied to deep
castindrilledhole (CIDH) piers placed beneath the same wall. For each set of examples, individual designs reflected a
range of soil strengths and ASD factors of safety. The vertical loads were not changed, but two levels of seismic overturning
demand were imposed.
While is not possible to generalize the results of these examples to apply universally, they are representative of the effects of
the change to USD for a realistic case study. For the spread footing foundation the area of the footing for USD compared to
that for ASD is controlled by the factor of safety applied to the soil strength for vertical loads. This reduction ranged from 0
to 20 percent for a low FOS (2) up to 25 to 40 percent for a high FOS (4). This is not surprising; when ASD uses a high
factor of safety and is thus most conservative, USD results in a smaller footing size. However, the footing size cannot be
smaller than that required for allowable stresses for static design under vertical dead plus live loads. For the pier example, the
required length for USD was actually about 50 percent greater than for ASD for a low FOS (1.5) and up to 40 percent less for
a high FOS (4).
Figure CA7.2.35 Example building.
REFERENCES
Applied Technology Council. 1996. Seismic Evaluation and Retrofit of Concrete Buildings, ATC 40, 2 volumes. Prepared
for the Seismic Safety Commission of the State of California. ATC, Redwood City, California.
Building Seismic Safety Council. 1997a and b. National Earthquake Hazard Reduction Program Guidelines and
Commentary for the Seismic Rehabilitation of Buildings, FEMA 273 and 274. Federal Emergency Management Agency,
Washington, D.C.
Gazetas, G. 1991. “Foundation Vibrations,” Foundation Engineering Handbook, 2nd Edition, Vas Nostrand Reinhold,
Edited by HsaiYang Fang.
Martin, G. R., and I. P. Lam. 2000. “Earthquake Resistant Design of Foundations: Retrofit of Existing Foundations,” in
GeoEng 2000, proceedings of the International Conference on Geological and Geotechnical Engineering, Melbourne,
Australia, November.
Structural Engineers Association of California, Seismology Committee, Ad Hoc Foundations Committee. 2001.
“USD/LRFD/Limit State Approach to Foundation Design,” in Proceedings of the 70th Annual SEAOC Convention, San
Diego, California.
Page intentionally left blank.
Resource Paper 5
ALTERNATIVE PROVISIONS
FOR THE DESIGN OF PIPING SYSTEMS
(2003 Provisions Appendix to Chapter 6, Architectural, Mechanical, and Electrical
Component Design Requirements)
Chapter 6, Architectural, Mechanical, and Electrical Component Design Requirements, of the 2003 NEHRP Recommended
Provisions did not recognize discrete levels of performance that may be relevant to the seismic design of piping systems,
particularly for essential facilities. This appendix was added to the 2003 Provisions to provide preliminary criteria for the
establishment of such performance criteria and their use in the assessment and design of piping systems. The situation has
not changed and this appendix and its commentary are reproduced here as a resource for use in the future. Note that only
format changes have been made and Provisions section numbers cited refer to the 2003 edition of the Provisions. The
performance criteria, from least restrictive to most severe, are: position retention, leak tightness, and operability. In
particular, the interaction of systems and interface with the relevant piping design standards is addressed.
PROVISIONS
A6.1 Definitions
Leak Tightness: The condition of a piping system characterized by containment of contents, or maintenance of a vacuum,
with no discernable leakage.
Operability: The condition of a piping system characterized by leak tightness as well as continued delivery, shutoff or
throttle of pipe contents flow by means of unimpaired operation of equipment and components such as pumps, compressors
and valves.
Position Retention: The condition of a piping system characterized by the absence of collapse or fall of any part of the
system.
A6.2 Design Approach
The seismic design of piping systems is determined on the basis of Seismic Design Category, Ip, and pipe size, as provided in
Table A6.21. For each case in Table A6.21, the procedure for seismic qualification is specified in Section A.6.5.
When IP = 1.0, the piping system is not critical and is required to maintain position retention.
When IP = 1.5, the piping system is critical and is required to exhibit leak tightness and may be required to maintain
operability.
Table A6.21 Seismic Design Requirements
IP = 1.0
IP = 1.5
Seismic
Design
Category
Pipe Size = 4 inch (SI:
102 mm)
Pipe Size > 4 inch (SI:
102 mm)
Pipe Size = 4 inch (SI:
102 mm)
Pipe Size > 4 inch (SI:
102 mm)
B
Interactions (A6.5.2.1)
Interactions (A6.5.2.1)
Bracing (A6.5.2.2)
Restraints (A6.5.2.3)
Operabilitya (A6.5.2.4)
Interactions (A6.5.2.1)
Bracing (A6.5.2.2)
Restraints (A6.5.2.3)
Operabilitya (A6.5.2.4)
Interactions (A6.5.2.1)
C or D
Interactions (A6.5.2.1)
Interactions (A6.5.2.1)
Bracing (A6.5.2.2)
Restraints (A6.5.2.3)
Operabilitya (A6.5.2.4)
Interactions (A6.5.4.2.1)
Analysis (A6.5.2.5)
Restraints (A6.5.2.3)
Operabilitya (A6.5.2.4)
Interactions (A6.5.2.1)
E or F
Bracing (A6.5.2.2)
Restraints (A6.5.2.3)
Interactions (A6.5.2.1)
Bracing (A6.5.2.2)
Restraints (A6.5.2.3)
Operabilitya (A6.5.2.4)
Interactions (A6.5.2.1)
Analysis (A6.5.2.5)
Restraints (A6.5.2.3)
Operabilitya (A6.5.2.4)
Interactions (A6.5.2.1)
Analysis (A6.5.2.5)
Restraints (A6.5.2.3)
Operabilitya (A6.5.2.4)
Interactions (A6.5.2.1)
a Leak tightness is the default requirement. Operability applies only when specified by design.
A6.3 System Coefficients
A6.3.1 Deformability. Piping systems shall be classified as either high, limited, or lowdeformability systems. All
materials in highdeformability piping systems shall have an elongation at rupture of at least 10 percent at the operating
temperature, and pipes and pipe components used in highdeformability systems shall be joined by welding or by bolted
flanges. Systems containing components with an elongation at rupture of less than 10 percent at the operating temperature,
or having joints that rely only on friction, shall be classified as lowdeformability systems. Systems that are neither high nor
lowdeformability systems shall be classified as limited deformability systems. Systems with threaded connections shall be
classified as limited or lowdeformability systems.
A6.3.2 Seismic Coefficients. The seismic coefficients aP and RP are specified in Table 6.4.1 for high, limited, and lowdeformability
piping systems.
A6.4 Seismic Demand
A6.4.1 Seismic demand on a piping system consists of applied forces and relative displacements.
A6.4.2 Seismic forces shall be determined as specified in Section 6.2.6.
A6.4.3 Seismic relative displacements at points of attachments of pipe restraints to the structure shall be determined as
specified in Section 6.2.7.
A6.5 Seismic Qualification
A6.5.1 Elevator system piping shall satisfy the provisions of Section 6.4.9. ASME B31 pressure piping systems shall satisfy
the provisions of the applicable ASME B31 code section. Fire sprinkler systems shall satisfy the provisions of Section
A6.5.2.6.
A6.5.2 The seismic qualification of piping systems depends on the Design Approach selected in Section A6.2.
A6.5.2.1 When interactions are specified they shall be evaluated in accordance with Section 6.2.3.
A6.5.2.2 When bracing is specified, the pipe must be seismically restrained. Lateral restraints shall be provided (a) to limit
the bending stress in the pipe to yield at the operating temperature and (b) to limit the rotations at articulated joints within the
manufacturer limits. Unlike analysis (Section A6.5.2.5), bracing does not require a detailed analysis of the piping system; the
distance between seismic restraints may be established based on beam approximations of the pipe spans. The effect of
seismic restraints on operating loads (thermal expansion and contraction and weight) shall be considered.
A6.5.2.3 When restraints are specified, the pipe seismic restraints as well as their welds and anchorage attachment to the
structure shall comply with the provisions of Chapters 8 to 12 of the 2003 Provisions. Supports shall be constructed so that
support engagement is maintained considering both lateral and vertical seismic forces.
A6.5.2.4 When operability is specified, the equipment and components that must perform an active function that involves
moving parts (such as pumps, compressors, fans and valve operators) shall comply with the requirements of Section2.4.5.
A6.5.2.5 When analysis is specified, the piping system shall be analyzed by static or dynamic methods. The maximum
calculated elastic stress due to the earthquake loads and concurrent weight and pressure shall be limited to 1.5SY (where SY is
the minimum specified material yield stress at normal operating temperature) and the rotations at articulated joints shall be
within the manufacturer limits. The analysis shall include the effects of stress intensification factors as determined in the
ASME B31 pressure piping code, and corrosion effects.
A6.5.2.6 Fire protection sprinkler systems shall meet the following requirements:
A6.5.2.6.1 Fire protection sprinkler systems in Seismic Design Categories A, B and C designed and constructed in
accordance with NFPA13 shall be deemed to satisfy the seismic force and relative displacement requirements of these
Provisions.
A6.5.2.6.2 In Seismic Design Categories D, E and F, fire protection sprinkler systems designed and constructed in
accordance with NFPA 13 shall also meet the following additional criteria:
1. The spacing of longitudinal sway bracing and transverse sway bracing specified in NFPA 13 Section 9.3.5 shall be
reduced by multiplying the maximum brace spacing permitted in NFPA 13 Section 9.3.5 by 0.8Wp/Fp.
2. The value of 0.8Wp/Fp shall not be taken as greater than 1.0.
COMMENTARY
CA6.1 Seismic Interaction. There are two types of seismic interactions: system interactions and spatial interactions. A
system interaction is a spurious or erroneous signal resulting in unanticipated operating conditions, such as the spurious startup
of a pump motor or the unintended closure of a valve. Spatial interactions are interactions caused by the failure of a
structure or component in close proximity. Spatial interactions can in turn be further divided into falling interactions, swing
interactions, and spray interactions. A falling interaction is an impact on a critical component due to the fall of overhead or
adjacent equipment or structure. A swing interaction is an impact due to the swing or rocking of adjacent component or
suspended system. A spray interaction is due to the leakage of overhead or adjacent piping or vessels.
Any interaction involves two components, a source, and a target. An interaction source is the component or structure that
could fail and interact with the seismically designed component. An interaction target is a seismically qualified component
that is being impacted, sprayed or spuriously activated. For an interaction to affect a seismically qualified component, it must
be credible and significant. A credible interaction is one that can take place. For example, the fall of a ceiling panel located
overhead from a motor control center is a credible interaction because the falling panel can reach and impact the motor
control center. The target (the MCC) is said to be within the zone of influence of the source (the ceiling panel). A significant
interaction is one that can result in damage to the target. For example, the fall of a light fixture on a 20inch steel pipe may
be credible (the light fixture being above the pipe) but may not be significant (the light fixture will not damage the steel
pipe). In contrast, the overturning of a rack on an instrument panel is a significant interaction.
The process of considering seismic interactions begins with a interaction review. For new structures, this involves
examination of the design drawings, to identify the interaction targets, and credible and significant sources of interaction. In
many cases, the design documents may only locate components and systems in schematic terms. The actual location of, for
example, piping and ductwork systems is determined in the field. In this case and when work is being performed on an
existing structure, it is necessary to begin the interaction review with a walkdown, typically with a photographic record.
Based on the assembled data, supporting calculations to document credible and significant sources of interactions can be
prepared.
In practice, it is only necessary to document credible and significant sources of interaction. It is not necessary to list and
evaluate every single overhead or adjacent component in the area around the target, only those that could interact and whose
interaction could damage the target. Because only credible and significant sources of interaction are documented, an
important aspect of the interaction review is engineering judgment. The spatial interaction review should therefore be
performed by experienced seismic design engineers.
When system interactions are of importance, the written input of a system engineer is in order.
Page intentionally left blank.
Resource Paper 6
OTHER NONBUILDING STRUCTURES
(2003 Provisions Appendix to Chapter 14, Nonbuilding Structure Design Requirements)
This appendix first appeared in the 2000 NEHRP Recommended Seismic Provisions and was revised for inclusion in the
2003 Provisions. It is intended to serve as a resource document for future voluntary standards and model code development
and to encourage development of uptodate consensus standards for electrical transmission, substation, and distribution
structures, telecommunications towers, and buried structures as well as performance criteria for tanks and vessels. The
guidance presented reflects current industry design practice for these types of nonbuilding structures. Feedback will be
appreciated. Note that only format changes have been made and Provisions section numbers cited refer to the 2003 edition
of the Provisions.
PROVISIONS
A14.1 General
A14.1.1 Scope. This paper includes design requirements for electrical transmission, substation, and distribution structures,
telecommunications towers, and buried structures and performance criteria for tanks and vessels.
A14.1.2 References
IEEE 693 Institute of Electrical and Electronics Engineers, Recommended Practices for Seismic Design of Substations,
Power Engineering Society, Piscataway, New Jersey, 1997.
A14.1.3 Definitions
Base shear: See Section 4.1.3.
Buried structures: Subgrade structures such as tanks, tunnels, and pipes.
Dead load: See Section 4.1.3.
Registered design professional: See Section 2.1.3.
Seismic Use Group: See Section 1.1.4.
Structure: See Section 1.1.4.
A14.1.4 Notation
Cd See Section 4.1.4.
CS See Section 5.1.3.
I See Section 1.1.5.
R See Section 4.1.4.
SD1 See Section 3.1.4.
SDS See Section 3.1.4.
T See Section 4.1.4.
V See Section 5.1.3.
W See Section 1.1.5.
O0
See Section 4.1.4.
A14.2 Design Requirements
A14.2.1 Buried Structures. Buried structures that are assigned to Seismic Use Group II or III, or warrant special seismic
design as determined by the registered design professional, shall be identified in the geotechnical report. Such buried
structures shall be designed to resist minimum seismic lateral forces and expected differential displacements determined from
a properly substantiated analysis using approved procedures.
A14.3 Performance Criteria for Tanks and Vessels
Tanks and vessels shall be designed to meet the minimum postearthquake performance criteria as specified in Table A14.3
1. These criteria depend on the Seismic Use Group and contentrelated hazards of the tanks and vessels being considered.
Table A14.31 Performance Criteria for Tanks and Vessels
Performance
Category a
Minimum Postearthquake Performance
I
The structure shall be permitted to fail if the resulting spill does not pose a threat to the public or to
adjoining Category I, II or III structures.
II
The structure shall be permitted to sustain localized damage, including minor leaks, if (a) such damage
remains localized and does not propagate; and (b) the resulting leakage does not pose a threat to the
public or to adjoining Category I, II or III structures.
III
The structure shall be permitted to sustain minor damage, and its operational systems or components
(valves and controls) shall be permitted to become inoperative, if (a) the structure retains its ability to
contain 100 percent of its contents; and (b) the damage is not accompanied by and does not lead to
leakage.
IVb
The structure shall be permitted to sustain minor damage provided that (a) it shall retain its ability to
contain 100 percent of its contents without leakage; and (b) its operational systems or components shall
remain fully operational.
a Performance Categories I, II, and III correspond to the Seismic Use Groups defined in Section 1.2 and tabulated in Table 14.21.
b For tanks and vessels in Performance Category IV, an Importance Factor, I, of 1.0 shall be used.
COMMENTARY
CA14.1 General
CA14.2.1 Buried Structures. This section is included for the following reasons:
1. The material may serve as a starting point for continued development.
2. The comments stimulated by consideration of this section will provide valuable input so that this section may be further
developed and then incorporated in the Provisions in the future.
3. It was determined by TS 13 and the Provisions Update Committee that it would be premature to incorporate this section
into the Provisions for the 2000 edition.
4. Accepted industry standards are in the process of incorporating seismic design methodology reflecting the Provisions.
It is not the intent of the Provisions Update Committee to discourage incorporation of this section into a building code or to
minimize the importance of this section. Placing this section in the appendix indicates only that this section requires further
development.
Seismic forces on buried structures may include forces due to: soil displacement, seismic lateral earth pressure, buoyant
forces related to liquefaction, permanent ground displacements from slope instability, lateral spread movement, fault
movement, or dynamic ground displacement caused by dynamic strains from wave propagation. Identification of appropriate
seismic loading conditions is dependent upon subsurface soil conditions and the configuration of the buried structure.
Conditions related to permanent ground movement can often be avoided by careful site selection for isolated buried
structures such as tanks and vaults. Relocation is often impractical for long buried structures such as tunnels and pipelines.
Wave propagation strains are a significant seismic force condition for buried structures if local site conditions (for instance,
deep surface soil deposits with low shear wave velocities) can support the propagation of large amplitude seismic waves.
Wave propagation strains tend to be most pronounced at the junctions of dissimilar buried structures (such as a pipeline
connecting with a building) or at the interfaces of different geologic materials (such as a pipeline passing from rock to soft
soil).
Loading conditions related to liquefaction require detailed subsurface information that can be used to assess the potential for
liquefaction and, for long buried structures, the length of structure exposed to liquefaction effects. In addition, the
assessment of liquefaction requires specifying an earthquake magnitude that is consistent with the definition of ground
shaking. It is recommended that one refer to Chapter 7 of this Commentary for additional guidance in determining
liquefaction potential and seismic magnitude. Providing detailed structural design procedures in this area is beyond the scope
of this document.
Loading conditions related to lateral spread movement and slope instability can be defined in terms of lateral soil pressures or
prescribed ground displacements. In both cases, sufficient subsurface investigation in the vicinity of the buried structure is
necessary to estimate the amount of movement, the direction of movement relative to the buried structure, and the portion of
the buried structure exposed to the loading conditions. Definition of lateral spread loading conditions requires special
geotechnical expertise and specific procedures in this area are beyond the scope of this document.
Defining the loading conditions for fault movement requires specific location of the fault and an estimate of the earthquake
magnitude on the fault that is consistent with the ground shaking hazard in the Provisions. Identification of the fault location
should be based on past earthquake movements, trenching studies, information from boring logs, or other accepted fault
identification techniques. Defining fault movement conditions requires special seismological expertise. Additional guidance
can be found in the Chapter 7 Commentary.
It may not be practically feasible to design a buried structure to resist the effects of permanent ground deformation.
Alternative approaches in such cases may include relocation to avoid the condition, ground improvements to reduce the
loads, or implementing special procedures or design features to minimize the impact of damage (such as remote controlled or
automatic isolation valves that provide the ability to rapidly bypass damage or postearthquake procedures to expedite
repair). The goal of providing procedures or design features as an alternative to designing for the seismic loadings is to
change the hazard and function classification of the buried structure such that it is not classified as Seismic Use Group II
or III.
It is recommended that one refer to the Chapter 7 Commentary for additional guidance in determining liquefaction potential
and determining seismic magnitude.
Buried structures are subgrade structures such as tanks, tunnels, and pipes. Buried structures that are designated as Seismic
Use Group II or III, or are of such a size or length to warrant special seismic design as determined by the registered design
professional, must be identified in the geotechnical report.
Buried structures must be designed to resist minimum seismic lateral forces determined from a substantiated analysis using
approved procedures. Flexible couplings must be provided for buried structures requiring special seismic considerations
when changes in the support system, configuration, or soil condition occur.
The requirement for and value of flexible couplings should be determined by the “properly substantiated analysis and
approved procedures.” It is assumed that the need for flexible couplings refers to buried piping or conduits. The prior
wording of Section A14.2.3 was far too broad in requiring flexible couplings when changes in the support system,
configuration or soil condition occur. These broad requirements could result in flexible couplings installed at locations where
permanent ground displacement is expected or at transitions between aboveground supported pipe and buried pipe. As
currently available flexible couplings are not generally designed to match the ultimate strength properties of the piping or
conduit, the prior requirements potentially introduce a weak point in the piping or conduit system. The original focus of the
prior requirements was penetrations of buried service lines into a building or other structure. Properly designed flexible
couplings can be an effective means to limit forces at connections to buried structures. However, special care is needed to
make sure the design loads and displacements are adequately specified. There are several other alternative to providing
sufficient flexibility at connections to buried structures that are more robust in terms of margin above their design levels.
REFERENCES
Agrawal, P. K., and J. M. Kramer. 1976. “Analysis of Transmission Structures and Substation Structures and Equipment for
Seismic Loading,” Sargent and Lundy Transmission and Substation Conference, December 2, 1976.
American Society of Civil Engineers (ASCE). 1997. Design of Latticed Transmission Structures, ANSI/ASCE/SEI 10.
ASCE. 1991. Tubular Pole Design Standard, ASCE/SEI Manual 72.
ASCE. 2000. Guidelines for Electrical Transmission Line Structural Loading, ASCE/SEI Manual 74.
ASCE. 1995. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7.
ASCE. 1997. The Design of Guyed Electrical Transmission Structures, ASCE/SEI Manual 91.
ASCE. 2000. Substation Structure Design Guide.
Li, H.N., S. Wang, M. Lu, and Q. Wang. 1991. “Aseismic Calculations for Transmission Towers,” in ASCE/SEI Technical
Council on Lifeline Earthquake Engineering, Monograph No. 4, August 1991.
Steinhardt, O. W. 1981. “Low Cost Seismic Strengthening of Power Systems,” Journal of The Technical Councils of ASCE,
April.
Amiri, G. G., and G. G. McClure. 1996. “Seismic Response to Tall Guyed Telecommunication Towers,” Paper 1982, in
Proceedings of the Eleventh World Conference on Earthquake Engineering. Elsevier Science Ltd.
Australian Standards Association. 1994. Standard Design of Steel Lattice Towers and Masts, AS 3995.
Canadian Standards Association. 1994. Antennas, Towers, and Masts.
Li, H.N., L. E. Suarez, and M. P. Singh. 1994. “Seismic Effects on HighVoltage Transmission Tower and Cable Systems,”
Fifth U.S. National Conference on Earthquake Engineering.
Federal Emergency Management Agency. 1990. Earthquake Resistant Construction of Electric Transmission and
Telecommunication Facilities Serving the Federal Government, FEMA 202..
Galvez, C. A., and G. G. McClure. 1995. “A Simplified Method for Aseismic Design of SelfSupporting Latticed
Telecommunication Towers,” Seventh Canadian Conference on Earthquake Engineering, Montreal.
Institute of Electrical and Electronics Engineers (IEEE). 1997. National Electrical Safety Code, ANSI C2.
IEEE. 1997. Recommended Practices for Seismic Design of Substations. IEEE 693. Power Engineering Society,
Piscataway, New Jersey.
IEEE. 1991. TrialUse Design Guide for Wood Transmission Structures, IEEE 751. Power Engineering Society,
Piscataway, New Jersey.
Long, L.W. 1973. Analysis of Seismic Effects on Transmission Structures, IEEE Paper T 73 3266.
Lum, W. B., N. N. Nielson, R. Koyanagi, and A. N. L. Chui. 1984. “Damage Survey of the Kasiki, Hawaii Earthquake of
November 16, 1993,” Earthquake Spectra, November.
Lyver, T. D., W. H. Mueller, and L. Kempner, Jr. 1996. Response Modification Factor, Rw, for Transmission Towers.
Portland State University, Portland, Oregon.
National Center for Earthquake Engineering Research. 1995. The HanshinAwaji Earthquake of January 17,
1995CPerformance of Lifelines, Technical Report NCEER950015. State University of New York at Buffalo.
Rural Electrical Administration (REA). 1992. Design Manual for High Voltage Transmission Lines, Bulleton 1724E200.
REA. 1978. Design Guide for Rural Substations, Bulletin 651.
REA. 1982. Mechanical Design Manual for Overhead Distribution Lines, Bulletin 1602.
Telecommunications Industry Association (TIA). 1996. Structural Standards for Steel Antenna Towers and Antenna
Supporting Structures, TIA/EIA 222F.
Resource Paper 7
SPECIAL REQUIREMENTS FOR SEISMIC DESIGN OF
STRUCTURAL GLUED LAMINATED TIMBER (Glulam) ARCH
MEMBERS AND THEIR CONNECTIONS
IN THREEHINGE ARCH SYSTEMS
Glulam arch structures are used with some regularity in churches and other public buildings and assembly areas; however,
ASCE/SEI 705 does not provide guidance regarding the seismic design of these systems. The design recommendations
reflected in this resource paper were drafted by BSSC Technical Subcommittee 7, Design of Wood, with input from the
American Institute of Timber Construction (AITC). This paper provides seismic design coefficients for two classes of onestory
threehinge arch systems: a special glulam arch and a glulam arch not specifically detailed for seismic resistance.
For special glulam arch systems, required detailing enables limited inelastic behavior in connections through either wood
bearing or fastener yielding. This is accomplished by requiring design of wood members at connections for the lesser of
overstrength forces or the forces that can be developed in the connections. Use of glulam arch systems not specifically
detailed for seismic resistance is limited to Seismic Design Categories A, B, and C. This limit is analogous to the approach
taken for steel systems not specifically detailed for seismic resistance and wood shear wall systems with other than wood
structural panel. The value of R = 2.0 is based on a relative comparison of R for special systems. The assumed system
overstrength for both systems is O0=2.5.
To facilitate eventual code/standard adoption of the guidance provided in this paper, requirements are presented first
followed by a commentary section.
PROPOSED REQUIREMENTS FOR ONESTORY THREEHINGE ARCH SYSTEMS
1. Scope. These provisions are intended for use in the design and detailing of structural glued laminated timber (glulam)
arch members and connections that are part of the seismicforceresisting system in onestory threehinge arch systems.
Seismic design coefficients for these systems shall be as specified in the applicable building code or, in the absence of such
information, shall be as indicated in Table 1.
Glulam arch systems not specifically detailed for seismic resistance shall comply with recommended detailing in AITC 104
2003, Typical Construction Details and the requirements of the 2005 National Design Specification. for Wood Construction
(NDS.) including Appendix E, ASCE/SEI 705, Minimum Design Loads for Buildings and Other Structures and the
applicable building code.
Special glulam arch systems shall meet the requirements for glulam arch systems not specifically designed for seismic
resistance. In addition, special glulam arch systems shall meet the requirements of Sections 1.1 through 1.7 below.
Table 1 Seismic Design Coefficients for OneStory Glulam Arch Systems
SeismicForceResisting System
R
O0
Cd
Special glulam arch
2.5
2.5
2.5
Glulam arch not specifically detailed for seismic resistancea
2.0
2.5
2.0
a Limited to Seismic Design Categories A, B, and C only.
1.1 Connection Requirements. Connections that are part of the special glulam arch seismicforceresisting system shall be
in accordance with requirements of NDS Chapter 10 for mechanical connections and the additional requirements of this
section.
1.1.1 Arch Base. Arch base connections shall utilize a steel shoe assembly in accordance with AITC 104. Timber rivets or
doweltype fasteners such as thrubolts or lag screws shall attach the arch to the shoe. Doweltype fasteners shall be chosen
such that the expected yield mode is Mode III or Mode IV as defined in the NDS. Timber rivet connections shall be designed
to ensure that the expected strength limit state is characterized by rivet capacity.
1.1.2 Arch Peak. Connection of the arch at the peak shall utilize shear plates, bolts, steel dowels, or metal side plates or
combination thereof in accordance with AITC 104.
1.2 Nominal Connection Capacity. The nominal capacity of a connection shall be determined in accordance with the
following:
1. For dowel type fasteners  n x Z(KF)(.)(CM)(Ct)(Ceg) where n is the number of fasteners; Z is the reference lateral design
value for a single fastener; and KF, ., CM, Ct, and Ceg are adjustment factors specified in the NDS for format conversion,
time effect, wet service, temperature and end grain, respectively.
2. For timber rivets: (Pr or Qr) x (KF)(.)(CM)(Ct)(Cst) where Pr is parallel to grain reference rivet capacity; Qr is
perpendicular to grain reference rivet capacity; and KF, ., CM, Ct, and Cst are adjustment factors specified in the NDS for
format conversion, time effect, wet service, temperature and metal side plate, respectively.
3. For split ring and shear plate connectors  n x P x (KF)(.)(CM)(Ct)(Cd)(Cst) or n x Q x (KF)(l)(CM)(Ct)(Cd) where n is the
number of fasteners; P is the reference design value parallel to the grain for a single split ring connector unit or shear
plate unit; Q is the reference design value perpendicular to grain for a single split ring connector unit or shear plate unit;
and KF, ., CM, Ct, Cd , and Cst are adjustment factors specified in the NDS for format conversion, time effect, wet service,
temperature, penetration and metal side plate, respectively.
1.3 Member Requirements. Arch members that are part of the special glulam arch seismicforceresisting system shall
meet requirements of the NDS and the requirements of this section.
1.3.1 Slenderness. The ratio of tangent point depth to breadth (dt /b) shall not exceed 6 based on actual dimensions when
one edge of the arch is braced by decking fastened directly to the arch or braced at frequent intervals as by girts or roof
purlins. When such lateral bracing is not present, dt /b shall not exceed 5.
1.3.2 End Grain Bearing. At the arch base, end grain bearing shall be on a metal plate with sufficient strength and stiffness
to distribute the applied load. At moment splices, end grain bearing shall be on a metal plate when fc > (0.75)(Fc
*) as required
in accordance with NDS Section 3.10.1.3.
1.3.3 Compression Perpendicular to Grain. Compression perpendicular to grain induced at the arch base shall be by a
metal plate with sufficient strength and stiffness to distribute the applied load.
1.4 Member Resistance.
1.4.1 Moment, Tension, Compression, and Shear. The arch member for special glulam arch systems shall be designed to
resist moment, tension, compression, shear, and applicable combinations of these induced by seismic forces determined in
accordance with the load combinations of ASCE/SEI 705 Section 12.4.3.2 (load combinations with overstrength) but need
not exceed forces resulting from strength at connections determined in accordance with Section 1.4.2a.
1.4.2 Member Resistance at Connections. The arch member for special glulam arch systems shall be designed for limit
states of net section tension rupture, row tearout, group tearout as defined in NDS Appendix E, and shear in accordance
with NDS Section 3.4.3.3 due to the seismic forces as determined by the lesser of:
1. The nominal connection capacity determined in accordance with Section 1.2 for load resistance factor design (LRFD) or
the nominal connection capacity determined in accordance with Section 1.2 divided by 1.35 for allowable stress design
(ASD).
2. The required capacity resulting from load combinations of ASCE/SEI 705 Section 12.4.3.2 (load combinations with
overstrength).
1.5 Transfer of Forces to the Arch Members. The diaphragm, members, and connections shall be sized to transfer outofplane
wall and roof forces into the arch.
1.6 End Fixity. In accordance with assumed pinned behavior of a threehinge arch, determination of reaction and arch
member forces is based on assumed idealized pin behavior at the arch peak and base. Actual detailing may introduce partial
moment fixity at reactions, and consideration shall be given to the effect of such fixity on member and connection response.
1.7 Arch Moment Splice. Arch moment splices shall utilize a metal bearing plate (when required), metal side plates, shear
plates, bolts, steel dowels, timber rivets, or combination thereof in accordance with AITC 104. Design forces for determining
the size and number of fasteners shall be based on load combinations of ASCE/SEI 705 Section 12.4.3.2 (load combinations
with overstrength) but need not exceed the member design force based on forces resulting from strength at connections (see
Section 1.4.1 and 1.4.2a).
Figure C1.0 showing Threehinge arch configuration.
Figure C1.0 Showing Tudor arch configuration.
COMMENTARY FOR ONESTORY THREEHINGE ARCH SYSTEMS
C1 Scope. Special provisions are provided for the design of arch members and connections to resist seismic forces as part of
a threehinge arch system (see Figure C1.0). Such systems typically employ glued laminated timber Tudor arch members
and are commonly used in church construction and other facilities intended for public assembly. Common features of these
systems are the presence of 2x and 3x tongue and groove roof decking with wood structural panel overlay, longitudinal and
transverse walls of light frame construction, or longitudinal and transverse masonry walls. Transverse end walls may or may
not be designed as shear walls.
Special requirements apply to typical construction details used for over 50 years in threehinged arch systems as outlined in
AITC 104, Typical Construction Details. Typical arch base details in AITC 104 are generally expected to produce good
performance characteristics of connection yielding by either wood bearing or a combination of wood bearing and fastener
yielding and will limit occurrence strength limit states of row tearout, group tearout, and net section tension rupture prior to
connection yielding. The design requirements in this white paper utilize standard details that have been used successfully
and that encourages a combination of wood bearing and metal fastener yielding modes at the base.
Tudor Arch
Three Hinged
Figure C1.0 Threehinge arch and Tudor arch configurations.
C1.1 Connection Requirements for Special Glulam Arch Systems. The ordinary load combinations (load combinations
without overstrength) of ASCE/SEI 705 are used to determine the size and number of fasteners in arch member connections
at the base. Determination of the size and number of fasteners is not subject to special load combinations (load combinations
with overstrength forces) to enable limited inelastic behavior of doweltype fasteners (either by wood bearing or fastener
bending) when coupled with the wood member strength requirements of Section 1.4. This approach recognizes that wood
connection strength is typically governed by wood failure mechanisms, not failure of the metal fasteners. For a given wood
member crosssection, determination of the size and number of fasteners based on the overstrength load combinations may
not be beneficial to overall connection performance due to an increased number of fasteners and a reduction in wood member
net section to accommodate the fasteners.
C1.1.1 Arch Base. The connection at the arch base utilizes a metal shoe (see Figure C1.1.1) and typically employs a thrubolt
loaded in double shear. Placement of the bolt(s) is an important consideration. Inservice drying of the member causes
shrinkage which must be accounted for in the detailing of the connection to prevent splitting due to the development of
tension perpendicular to grain stresses.
It is recommended that the bolt(s) be placed within 6 inches of the back of the arch if standard size holes are used. Where
bolt(s) are placed farther than this from the back of the arch to resist the required loads, the designer should provide detailing
to allow the wood to shrink without pulling away from the bearing seat. This may be accomplished through the use of slotted
holes or oversized holes in the arch member. It is recognized that some movement of the arch at the base will occur before
the bolt is engaged. This practice is used to prevent wood splitting due to occurrence of dimensional change under gravity
loads. In some situations a bearing seat is also used at the inside face of the arch. In such a case, the bolt(s) is generally
placed at the geometric center of the section with the hole(s) detailed to accommodate shrinkage.
Timber rivets as well as lag screws installed at each side of the arch base are expected to produce comparable performance
provided that the controlling yield mechanism is based on dowel yielding or rivet capacity.
Under outward loads, the bending yield capacity of the plate at the back of the metal shoe will typically determine the size of
the bearing area (i.e., the plate will yield before the wood reaches its design compression perpendicular to grain stress).
Figure C1.1.1 (a) Typical arch base with thrubolt and (b) arch base with true hinge.
Bearing
plate
Anchor
bolts
Welded
assembly
Arch
Machine Bolt Figure C1.1.2 Showing Typical arch peak connection detail.
270
Figure C1.1.1 (b) arch base with true hinge.
(a)
(b)
Figure C1.1.1 (a) Typical arch base with thrubolt and (b) arch base with true hinge.
C1.1.2 Arch Peak. The connection at the peak typically employs use of a shear plate or plates with thrubolt(s) and is
typically prefabricated in a manufacturing facility to establish proper fit and alignment. For arches with slopes of 3:12 or
more, typical connections employ shear plates and bolts or a combination of shear plates and bolts and dowels to transfer
both horizontal and vertical forces. For low pitch (low slope) arches, steel side plates on each face are used in combination
with shear plates. Figure C1.1.2 shows one example of a peak connection.
Figure C1.1.2 Typical arch peak connection detail.
The bevel cuts shown at the top of the arch peak connection are used to minimize wood crushing and permit rotation due to
downward deflection of the peak connection of deep members. They are not required for all designs but should be
considered by the designer where significant rotation is expected. Bevel cuts generally are not used on the bottom side of the
connection.
Figure C1.3.3 (a) Mode III and Mode IV yielding for single and double shear connections
Figure C1.3.3 (b) Mode IV yielding from a double shear connection test, and (c) cyclic curve for single shear bolted connection  Mode IIIs (3/8 inch diameter bolt, 4x6 wood member, ¼ inch steel side plate).
4000
3000
2000
1000
0
1000
2000
3000
4000
1.2 0.8 0.4 0 0.4 0.8 1.2
Displacement, in
Load, lbf
271
Figure C1.3.3 (b) Mode IV yielding from a double shear connection test
C1.2 Nominal Connection Capacity. Determination of nominal capacity does not include adjustment factors for group
action and geometry to more conservatively estimate nominal connection capacity. These factors are 1.0 or less in value and
address wood strength limit states that are to be checked explicitly per Appendix E and the shear provisions of the NDS.
C1.3 Member Requirements. Prescriptive limits on d/b match those in the NDS for arches.
C1.3.2 End Grain Bearing. Consistent with typical construction details used for these systems, a metal plate with sufficient
strength and stiffness to distribute the applied load is used at the base (see Figure C1.1.1) regardless of the level of stress in
end grain bearing. This bearing plate also prevents direct contact between the arch and the concrete, thus preventing moisture
from wicking into the arch from the concrete.
C1.3.3 Compression Perpendicular to Grain. Compression stress perpendicular to the grain in the arch member at the
base should be through bearing on a metal plate with sufficient strength and stiffness to distribute the applied load.
C1.4 Member Resistance. The requirements of Section 1.4 are intended provide excess capacity in the member relative to
connections because little or no inelastic deformation is expected from the arch member itself except in bearing modes.
Limited inelastic deformation can occur through wood bearing and fastener yielding in the connection region at the base (see
Figure C1.3.3a and b for examples of Mode III and Mode IV yielding and Figure C1.3.3c for cyclic behavior of a bolted steel
side plate to wood connection).
Double Shear
Single Shear
(a) (b)
(c)
Figure C1.3.3 (a) Mode III and Mode IV yielding
for single and double shear connections, (b)
Mode IV yielding from a double shear connection
test, and (c) cyclic curve for single shear bolted
connection  Mode IIIs (3/8 inch diameter bolt,
4x6 wood member, ¼ inch steel side plate).
LRFD factored
resistance for
seismic loading.
arrow
C1.4.1 Moment, Tension, Compression, and Shear. Arch member design strength must equal or exceed the force based
on the overstrength load combinations of ASCE/SEI 705 but need not exceed nominal forces developed by connections in
accordance with Section 1.4.2a. Design for bending, tension, compression and shear, per Section 1.4.1, is based on applicable
net section or net bearing areas in accordance with the NDS. Member design at connections, including provisions for shear at
connections at member ends and local stresses in fastener groups, is in accordance Section 1.4.2.
C1.4.2 Member Resistance at Connections. This section requires member design at connections for forces that can be
developed in the connections or the ASCE/SEI 705 overstrength load combinations to increase capacity based on wood
strength limit states relative to connection capacity and to provide for limited inelastic behavior at base and peak connections
by either wood bearing or fastener yielding or a combination thereof.
In Section 1.4.2, required design wood strength at connections is taken as the lesser of: (a) the nominal strength of the
connection for LRFD or the nominal strength divided by 1.35 for ASD or (b) the force based on the ASCE/SEI 705
overstrength load combinations. Case b generally will apply when loads other than seismic control the size and number of
fasteners in the arch base. When the connection has design strength in excess of that needed to resist seismic forces (e.g.,
forces from wind exceed calculated seismic forces), it is necessary only to ensure that the wood member has sufficient design
strength to resist loads from special load combinations, not the expected strength of the fasteners.
For ASD, wood strength limit states are checked using the nominal strength of the connection divided by a factor of 1.35.
The 1.35 factor is specified to provide for consistent design whether provisions of ASD or LRFD are used. For member
design (except compression perpendicular to grain) and connection design, the ratio of the LRFD adjusted design value (10
minute basis) to the ASD adjusted design value (10 minute basis) is 2.16/1.6 = 1.35. The factor of 2.16 is the constant in the
format conversion factor, KF, and adjusts the ASD reference design values (10 year basis) to LRFD design values (10 minute
basis) and 1.6 is the load duration factor, CD, which adjusts the ASD reference design values (10 year basis) to the ASD
design values at a 10 minute basis.
C1.5 Transfer of Forces to the Arch Members. Adequate transfer of inplane diaphragm forces and outof plane wall
and roof forces can be addressed by use of the NDS for wood member and connection resistance and the provisions of
ASCE/SEI 7. For anchorage of concrete or masonry structural walls, see ASCE/SEI 7 Sections 12.11 and 12.14.7.5; for
bearing walls and shear walls, see ASCE/SEI 7 Section 12.14.7.6; and for nonstructural components, see ASCE/SEI 7
Section 12.14.7.7.
C1.6 End Fixity. Threehinge arch systems are designed assuming pin behavior when typical construction details of AITC
104 are used; however, it is recognized that limited moment fixity is introduced at the arch base and arch peak connection
regions by the presence of connectors and the bearing of the member cross section. For example, at the arch base, rotation
about the inside face of the arch at the base coupled with the presence of connections in the arch shoe will provide moment
fixity beyond the assumed condition of an ideally pinned joint. The intent of Section 1.6 is to consider the effect of such end
fixity as the arch resists anticipated loading.
It is difficult to generate precise estimates of anticipated deformations that may be detrimental to overall connection and
member performance. Their effect at the base connection is mitigated through: (a) the use of dowel fasteners in yielding
mode, (b) increased strength of dowel fasteners loaded parallel to grain when compared to the same fastener loaded
perpendicular to grain, (c) the presence of localized bearing deformations about the arch base and surrounding the dowel, and
(d) dowel placement. At the arch peak, tapering of the arch member minimizes fixity created by wood bearing as the arch
deforms (see Figure C1.1.2).
Limited cyclic data for single shear, single bolt connections consisting of a steel side plate and a wood main member indicate
an average displacement of 0.8 inch at maximum load (see Anderson). For the particular connection tested, the ratio of
average maximum strength to LRFD factored resistance was approximately 2.6. Displacement at maximum load and ratio of
maximum load to the LRFD factored resistance will vary by connection configuration.
C1.7 Arch Moment Splice. Large arches may employ arch moment splices in locations of reduced moment to facilitate
shipping. Like the connection at the peak, these connections are typically prefabricated in a manufacturing facility to
establish proper fit and alignment. Compression stress in the moment splice region is resisted by end grain bearing on a
metal bearing plate between the connected members. Tension is taken across the splice by steel straps and shear plates, shear
is taken by shear plates in end grain, and side plates are used to hold sides and tops of members in position.
Figure C1.1.3 Showing Typical arch moment splice.
Figure C1.1.3 Typical arch moment splice.
REFERENCES
Anderson, G. T. Experimental Investigation of Group Action Factor for Bolted Wood Connections, Thesis for Master of
Science at Virginia Tech, Blacksburg, Virginia.
American Institute of Timber Construction. 2003. Typical Construction Details, AITC 10403. AITC, Denver, Colorado.
American Forest and Paper Association. 2005. National Design Specification. for Wood Construction (NDS),
ANSI/AF&PA NDS. AF&PA, Washington D.C.
American Society of Civil Engineers. 2005. Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 705.
ASCE, Reston, Virginia.
Page intentionally left blank
Figure 1 Showing Structural elements in series (column, base plate, anchorage, foundation, and soil).
Foundation
Anchorage
Base Plate
Column
Force Force
Resource Paper 8
APPROPRIATE SEISMIC LOAD COMBINATIONS FOR BASE
PLATES, ANCHORAGES, AND FOUNDATIONS
The suitability of existing load combinations has been increasingly questioned as building code provisions have shifted from
an allowable stress design (ASD) basis towards a strength or load and resistance factor design (LRFD) basis. Foundation
design requirements remain grounded in ASD because consensus is lacking on how to convert these requirements to an
ultimate strength basis. Disagreement also exists concerning which requirements for base plates and anchorage are
appropriate in that building designers are inclined to specify use of the special seismic load combination for these elements
whereas designers of nonbuilding structures tend to rely on inelastic behavior and, to some extent, uplift or sliding. This
resource paper presents the findings of a study conducted to determine appropriate load conditions for base plates,
anchorages (via anchor bolts, anchor rods, or other), and foundations (either shallow or deep).
CONTROLLING BEHAVIOR OF STRUCTURAL COMPONENTS IN SERIES
The system created when a structural element is attached to a base plate, anchorage, and foundation is a “series” combination
of structure elements as shown in Figure 1. In the simplest sense, a series combination can be conceptualized as a chain of
components in which the maximum strength and deformation capacity of the combination is controlled by whichever
component is the weakest in the series.
Figure 1 Structural elements in series (column, base plate, anchorage, foundation, and soil).
In actuality, each component has different strength and deformation capacities. Figure 2 illustrates the strength and
deformation capacities of three imaginary components. System 1 is a flexible ductile element; System 2 is a rigid and weaker
but ductile element; and System 3 is a rigid and brittle but strong element.
If these elements are connected into a series, the combined strength and deformation capacity of the system would be
determined by summation of the individual displacements of each element at any given force level (Figure 3). This type of
combination is referred to as a forcedependent structural system.
For the example shown in Figure 2, the combined strength and ductility capacity of the structural system is entirely controlled
by System 2, because both the yield and ultimate strength of System 2 is less than the yield strength of either System 1 or
System 3. For purposes of discussion, the behavior of System 1 might be imagined as that of a building structural element,
System 2 might be the rocking behavior of a shallow foundation, and System 3 might be that of a lowductility base plate and
anchorage. The low ductility of System 3 is not a problem because this element always remains elastic; however, the low
strength of System 2 may be a problem because it prevents the relatively good ductility of System 1 from being utilized.
In order to transition the controlling behavior and mechanism from System 2 to that of System 1, the required strength of
System 2 needs to be increased until the ultimate strength of System 1 is less than that of System 2 as shown in Figure 3.
This demonstrates that appropriate scaling of the seismic component in load combinations is a necessary factor in controlling
structural behavior.
Figure 2 Force versus displacement of seriesconnected elements.
Displacement
Force
Figure 3 Using load factors to increase required strength
of System 2 causes behavior to be controlled by System 1.
Base Plates and Anchorages. Base plates and anchorages are commonly used for: steel structures; lightframe structures;
large nonbuilding structures such as tanks, vessels, and signs; equipment attachments; and nonstructural component
attachments. Design standards and ductility requirements vary considerably for these items. Table 1 summarizes some of the
broad variety of criteria currently used to define the seismic strength requirements and permitted capacity values for various
types of structural elements that typically use some form of anchor rods/bolts and base plates or anchorages.
Current design standards for steel buildings specify use of the special load combination for base plates and anchor rods1 for
steel columns unless the provisions of ASCE/SEI 705 Table 12.21 System (H) are permitted. When anchor rods may be
needed to attach elements other than columns, increased strength requirements are not currently required.
When anchor bolts are required for lightframe construction, current design standards generally do not require any different
strength requirements than for the attached structural component.
1 AISC has introduced the term “anchor rod” to describe a bolt that attaches steel to concrete, but other standards groups continue to use the
term “anchor bolt.” This paper uses the term “anchor rod” when specifically referring to AISC standards and the term “anchor bolt” with
respect to anchorage in general.
Figure 2 Force versus displacement of seriesconnected elements.
0
0
System 3
System 2
Combined
System
Reaches
System 2
Displ. Limit
System 1
Combined System Figure 3 Using load factors to increase required strength of System 2 causes behavior to be controlled by System 1.
0
0 Displacement
Force
System 1
System 2
System 3
Combined System
Ultimate Strength
and Deformation
Controlled by
System 1
Designers of some types of nonbuilding structure have shown a preference for using foundation anchor bolts as a yield
mechanism to provide structural ductility. For example, ASCE/SEI 705 Section 15.7.5 and API standards require that the
vertical vessel structures typically found in oil refineries, which do not have significant ductility, be intentionally designed to
create a plastic mechanism of tensile yielding in the anchor bolts used to attach the vessel to its foundation. The anchor bolts
are specified to use ductile material and to be installed in a manner that facilitates tensile yielding over a significant length of
the bolt. The anchorage used to attach the anchor bolts to the vessel as well as the vessel itself is then designed to mobilize
the full strength of the anchor bolts.
Table 1 Summary of Selected Criteria
System Type
Rmax
Element
Required
Seismic
Load Effect
Design Criteria
Average Anchor or
Attachment Strength
Relative to Supported Item
Steel
Buildings
High seismic;
SDC DF
(AISC definition)
SPSWf
R = 7
Attachments
E
AISC Seismic
Same
Anchorage
Uncertain
ACI D3.3
w/AISC
modifications
Same
Other
system
types,
Rmax = 8
Base plate
Em
AISC Seismic
Same
Anchorage
Em
ACI D3.3
w/AISC
modifications
Same
Low seismic; SDC
AC
(AISC definition)
Systems
with > 3
(Same as highseismic SDC DF requirements)
Systems
with
R = 3.0
Base plate
E
AISC 360
Same or weakerb
Anchorage
E
ACI D3.3
Same or weakerb
LightFrame
Buildings
Shear wall
7.0
Uplift devices
E/1.4
ICCES
Varies
Uplift anchorage
E
ACI D3.3,
SDC CF
Strongera
E
ACI D3.3,
SDC AB
Same
Shear anchorage
E
ACI D3.3, SDC CF
Strongera
E
ACI D3.3, SDC AB
Same
Nonbuilding
Structures
Having buildinglike
structural
systems
8.0
Same as steel buildings including high and low seismic categorization
Other types
3.5
Base plate and
attachments
E
AISC 360e
Same
Anchorage
E
ACI D3.3, SDC CF
other industry
standards may
govern
Strongera
E
ACI D3.3, SDC AB
Same
Nonstructural
Components
Supports and
attachments
for ductwork or
welded piping
Rp = 10.0d
max
Base plate and
attachments
E or E/1.4
Generally from
ICCES ESRs
Same
Supports and
attachments
for other
components
Rp = 6.0
max
Base plate and
attachments
E or E/1.4
Generally from
ICCES ESRs
Same
Anchors
seismicallyqualified
or per
ACI D3.3)
Rp = 6.0
max
Anchorage
per
ASCE 13.4
E
ICCES AC193,
AC308
?
ACI D3.3, SDC CF
Strongera
ACI D3.3, SDC AB
Same
Other nonductile
anchors
Rp = 1.5
Anchorage
per
ASCE 13.4
(1.5/Rp) E
ICCES AC193,
AC308
Stronger
a Presumed stronger because ACI D3.3 applies a 0.75 strength reduction factor to the anchor strength.
b Weaker when supported item strength is determined by drift or other considerations.
c ASD strengths determined using ICCES reports are based on tests.
d Welded piping with Rp =12 is effectively only Rp =10 because of the Fp min requirement.
e API and AWWA requires anchorage to be designed for yield load of anchor.
f SPSW = steel plate shear walls.
Nonstructural components such as fan motors, piping systems, and building facades often have castin or postinstalled
anchors with limited or no ductility for support. In some instances, the anchorage or bracket used to attach the component to
the anchor is the element most capable of providing some degree of ductility in the attachment. In many cases, imposed
displacements are the controlling factor in the anchorage design.
There is too much variety in structure and attachment types to define any single target behavior about which load
combinations might be developed. Considering the wide variety of structures and components that utilize base plates and
anchorages, there exist valid justifications to define ductility requirements for the structural element, the base
plate/anchorage, or the anchor bolt. Recommended future code development should instead target rational rules within the
three basic arenas of yield mechanisms. For each situation, specific design and detailing rules are appropriate to include in
conjunction with the intended yield mechanism.
For the anchor rod/bolt as a yield mechanism:
1. Design the base plate/anchorage to resist the actual (not specified) tensile strength of the anchor bolt.
2. Design the foundation anchorage to resist the actual tensile strength of the anchor bolt.
3. Use ductile steel for the anchor bolt and nuts capable of developing the anchor bolt strength.
4. In the case of castin and postinstalled grouted anchors, consider debonding the anchor bolt from the concrete over a
significant length (inelastic length) to permit development of meaningful displacements.
5. Either use continuously threaded rod to ensure uniform yielding over the inelastic length of the anchor bolt or ensure that
the rod material has sufficient tensile strength relative to its yield strength that the rod is fully yielded before tension
fracture occurs. Upset threads are not considered necessary for anchors resisting seismic loads.
6. Consider use of nuts on both sides of the base plate so that progressive elongation of the anchor bolt is reduced and
cyclic reversals have a chance to cycle rod in compression (however, anchor bolts are not recommended for direct
transfer of shear forces).
7. Provide adequate stretch length in the yielding section of anchor bolts to accommodate maximum expected inelastic
displacements and rotations.
For the anchorage/base plate as a yield mechanism:
1. Design the anchor bolt, particularly if nonductile (e.g., an expansion bolt), to be stronger (elastic strength) than the yield
strength of the anchorage assembly and with adequate displacement capacity to accommodate maximum joint
movements.
2. Qualify postinstalled anchor bolts by appropriate testing to confirm adequate strength and ductility characteristics under
anticipated design conditions.
3. Although using an anchorage or base plate as the intended yield mechanism may be successful at protecting a nonductile
anchor bolt from failure, the total work performed in a small anchorage may not provide adequate hysteresis to reduce
global structural seismic behavior.
For an unyielding anchorage/anchor bolt assembly:
1. Utilize the design requirements for the nonductile structural elements that currently exist.
2. Ensure that the loadamplification provisions for the anchor bolt/rod and base plate which are expected to remain elastic
do not overlap.
FOUNDATIONS
A geotechnical engineer tends to define the ultimate strength of a foundation at a point when either an unstable soil
movement is imminent or a limiting value of displacement is reached. A structural engineer tends to define the ultimate
strength of a foundation at a point when either the occurrence of an unstable mechanism within the structure is imminent
(such as rocking) or a structural capacity is reached. In other words, the geotechnical engineer assumes that the soil will fail
before the structure, and the structural engineer assumes that soil behavior can be simplified to the extent of being a simple
fluid or force; neither assumption is correct.
In conventional design, the geotechnical engineers need to define soil strength values for both seismic and longterm load
conditions early in the design process when the size, shape, and ultimate loading on the foundations are, at best, only rough
estimates. Unless ultimate foundation strengths can be reevaluated by the geotechnical engineer at a later design stage when
the sizes, shapes, and loading of foundations are relatively definite, the geotechnical engineer typically will maintain some
degree of conservatism with respect to potential geotechnical mechanisms.
Figure 4 Showing Progressive settlement during repeated cycling.
1
3 2
The traditional practice of arbitrarily defining a onethird increase in permitted longterm soil pressures for seismic loading
does not adequately reflect what is necessary to transition from ASD to an ultimate strength design. While the onethird
increase might be suitable for checking stresses for a 100year wind event, it is not suitable for determining adequacy for a
limitstate seismic event. It is therefore necessary to separately define design limit values for limitstate and longterm load
conditions.
Table 1804.2 of the 2006 International Building Code (IBC) reproduced below requires substantial revision as part of any
change to strength design procedures.
2006 IBC Table 1804.2 Allowable Foundation and Bearing Pressure
CLASS OF MATERIALS
Allowable
Foundation Pressure
(psf)d
Lateral Bearing
(psf/ft below natural
grade)d
Lateral Sliding
Coefficient of
frictiona
Resistance
(psf)b
1. Crystalline bedrock
12,000
1,200
0.70

2. Sedimentary and foliated rock
4,000
400
0.35

3. Sandy gravel and/or gravel (GW and GP)
3,000
200
0.35

4. Sand, silty sand, clayey sand, silty gravel and
clayey gravel (SW, SP, SM, SC, GM, and GC)
2,000
150
0.25

5. Clay, sandy clay, silty clay, clayey silt, silt and
sandy silt (CL, ML, MH and CH)
1,500c
100

130
aCoefficient to be multiplied by the dead load.
bLateral sliding resistance value to be multiplied by the contact area as limited by Section 1804.3.
cWhere the building official determines that inplace soils with an allowable bearing capacity of less than 1,500 psf are likely to be present at
the site, the allowable bearing capacity shall be determined by a soils investigation.
dAn increase of onethird is permitted when using the alternate load combinations in Section 1605.3.2 that include wind or earthquake loads.
Performance Statement for Soil LimitState Condition. In order to define the soil and foundation strength values
associated with limitstate design, a definitive performance statement for structural and geotechnical conditions at the limit
state needs to be developed.
When structural actions result in repeated cycles of loading at or near the limitstate soil pressure, some degree of progressive
foundation settlement is expected to occur due to compaction and local shear movements of soil materials beneath the
foundation as shown in Figure 4. The total and differential settlements resulting from repeated cycles of loading should be
considered in the light of the performancebased design criteria. Large total settlement may not be detrimental if the
differential settlements between adjacent foundations are within acceptable limits.
Figure 4 Progressive settlement during repeated cycling.
Rotational mechanisms of foundations due to soil shear failures as shown in Figure 5 should not be permitted. Maximum
structure overturning moments should maintain a factor of safety against soil shear failure mechanisms of at least 2;
otherwise foundations should be interconnected by grade beams so that the resulting soil loading will be primarily direct
compression.
Lateral sliding of buildings and other structures may be resisted by both friction and passive soil pressure. Lateral
displacement or sliding of foundations during the design event may be permissible; however, structural stability must be
maintained.
Strength and Overstrength of Shallow Foundations. Past and current code provisions for both shallow and deep
foundations have been based on allowable strength design methodology. FEMA 4501 includes an appendix that has
proposed a new strength design methodology. An evaluation of foundation design provisions must address both
methodologies.
Selected 2006 IBC sections relative to seismic load combination requirements for shallow foundations are:
Figure 5 Showing Foundation rotational mechanism within soil.
1. Section 1605.2.1 – permits use of strength load combinations in conjunction with the maximum 25 percent reduction in
overturning moment permitted in ASCE/SEI 7 Section 12.13.4.
2. Section 1605.3.1 – permits use of ASD load combinations [D + H + F + 0.7E] and [0.6D + 0.7E + H].
3. Section 1605.3.2 – permits use of alternative ASD load combinations [D + L + S + E/1.4] and [0.9D + E/1.4] without
the overturning reduction permitted by ASCE/SEI 705 Section 12.13.4.
4. Table 1804.2, Footnote d, permits a onethird increase in allowable soil pressures when using the alternate load
combinations that include seismic loads.
Figure 5 Foundation rotational mechanism within soil.
Proposed new IBC Table (expected to follow existing Table 1804.2) Limitstate Foundation and Bearing Pressure
(for use with Section xxx, Load Conditions)
Class of Materials
Ultimate
Foundation
Pressure (psf)
Lateral Bearing
(psf/ft below
natural grade)
Lateral Sliding
Coefficient of
friction
Resistance
(psf)
1. Crystalline bedrock
24,000
2,500
0.70

2. Sedimentary and foliated rock
10,000
1,000
0.35

3. Sandy gravel and/or gravel (GW and GP)
8,000
600
0.35

4. Sand, silty sand, clayey sand, silty gravel and
clayey gravel (SW, SP, SM, SC, GM, and GC)
6,000
500
0.25

5. Clay, sandy clay, silty clay, clayey silt, silt and
sandy silt (CL, ML, MH and CH)
4,500
300

400
The load combinations defined in Section 1605.3.2, in combination with the onethird increase permitted in Table 1804.2 are
commonly used in current practice.
An unusual additional load combination provision is found in ACI 318 Section 15.2.2: “Base area of footing or number and
arrangement of piles shall be determined from unfactored forces and moments transmitted by footing to soil or piles and
permissible soil pressure of permissible pile capacity determined through principles of soil mechanics.” Although ACI 318,
Section 21.10 (seismic foundation requirements), does not override this section, it does conflict with IBC Section 1605,
which would govern over the ACI provision.
Traditionally, the structural design of shallow foundations assumes that soil pressure beneath the foundations can be treated
as a linearlyvarying pressure across the length of the foundation, forming a pressure diagram which, depending upon the
degree of eccentricity, e = M/P, can be described as either trapezoidal or triangular in shape. The 2003 NEHRP
Recommended Provisions (FEMA 450) introduced a foundation strength design approach that permits a Whitney stressblock
approach to be used to simulate an ultimate soil pressure condition to be used to design shallow foundations. Appendix 1 of
this paper presents a summary of Equations 1 and 2, which describe the ASD load limits of simple rectangularinplan
foundations. It also includes an Equation 3 that describes the strength limits for the strength design approach introduced in
2003 Provisions and now described in Resource Paper 4 of this volume. Using Equations 1 through 3, simple load vs.
moment interaction curves can be developed for any rectangular foundation shape.
Figure 6 presents an example interaction curve for a 10foot square foundation with an allowable longterm soil pressure of 3
ksf and an assumed ultimate soil strength of 9 ksf. In the figure:
1. The radial line occurs at e = L/6, the transition from trapezoidal to triangular soil pressure distribution.
2. Line 1 represents an interaction curve using ASD design assumptions with an allowable soil pressure of 3 ksf.
3. Line 2 represents the effect of a 33 percent allowable increase in soil pressure for temporary load conditions to 4 ksf.
4. Line 3 represents the effect of using IBC Section 1605.3.2 to design foundations (the reduction of E/1.4 is represented as
an increase in allowable soil pressure by a factor of 1.4).
5. Line 4 represents the interaction curve at the ultimate soil pressure of 9 ksf using traditional triangular/trapezoidal soil
pressure distribution (i.e., the ultimate soil pressure occurs only at the extreme edge of the foundation).
6. Line 5 represents the interaction curve at the ultimate soil pressure of 9 ksf using a equalpressure soil distribution.
The overstrength of the traditional ASD design approach can be expressed as the ratio between the presumed ultimate (Line
5) and the designlevel (Line 3) interaction curves. The amount of overstrength that results using the ASD design approach is
not constant; it varies significantly depending on how much vertical load is on the foundation. Let us define P as the actual
vertical load on a foundation and as the theoretical maximum permitted vertical load capacity of a concentrically loaded
foundation (equal to the maximum permitted soil pressure times the total footing area). For more lightly loaded foundations
(having P/ < 0.5), the amount of overstrength present varies significantly to the extent that when a foundation is at P/ = 0
(such as when a foundation is loaded in direct uplift), the effective factor of safety present is 1.0 (i.e., no overstrength).
Figure 6 Example interaction curve for a shallow foundation.
Although the foundation strength design approach defined in the FEMA 450 Appendix to Chapter 7, introduced in 2003
Provisions and now described in Resource Paper 4 of this volume, defines procedures that can be used to determine an
ultimate strength design such as shown in Line 5 of Figure 6, it is silent regarding which strength load combinations to use
for design. The available alternatives are either the ASCE/SEI 7 seismic load combinations defined in Section 12.4.2.3 or the
special load combinations defined in Section 12.4.3.2.
The basic strength load combinations are not generally appropriate for use in conjunction with ultimate foundation strength
values. Using load combinations incorporating 1.0E together with the ultimate foundation strength means that the design
procedure permits no overstrength to be present at all in the design (i.e., that foundation failure will always be the dominant
controlling mechanism in any structure). It also means that the expected ductility capacity of the resulting foundation
mechanism must equal or exceed the value of R used in the design (whereas for the building structure the expected ductility
demand is Rd = R / RO. If the special load combination is used in conjunction with ultimate foundation strength values,
foundation rocking or sliding mechanisms are unlikely to be a controlling or participating mechanism in the structure
response. While this might be an acceptable or desired characteristic for structures using highR systems or for essential
facilities, it is probably an undesirable characteristic for ordinaryuse structures using moderate or lowR systems. Because
modest levels of foundation nonlinearity generally are considered to be acceptable for ordinary structures using moderate or
lowR systems, the use of the special load combinations would prevent such action and would result in an increase in their
expected construction cost. Figure 6 Example interaction curve for a shallow foundation.
line 2
line 4
line 1
line 5
line 3
Figure 6 Example interaction curve for a shallow foundation.
L = B = 10 ft,
Qa = 3 ksf, Qu
= 9 ksf
Strength of Deep Foundations. Although the ultimate strength of a deep foundation cannot be simplified in the same
manner as a shallow foundation, simplified methods can be used to predict ultimate strength values with a slight resemblance
to reality. Geotechnical engineers can determine allowable ultimate and longterm load capacities of assumed pile groups,
translate that into individualpile ultimate and longterm load values for the structural engineer, and the structural engineer
then can translate those back into predicted ultimate and longterm pier or pilegroup capacities that may or may not resemble
the values originally determined by the geotechnical engineer.
Appendix 2 of this paper presents two examples of how a structural engineer might estimate the ultimate strength of a pile
group based on individualpile capacities. Both of these approaches are vast oversimplifications of the actual interaction and
response that occurs between the structure and soil of a deep foundation, but they are both simple enough for practicing
engineers to adopt as design practice. The first example is a modification of a current common design practice for multipile
foundations that assumes the ultimate strength point is reached when the outermost pile reaches a defined ultimate strength.
The second example is a plasticanalysis approach that assumes all piles in a pile group are eventually able to reach their
defined ultimate strengths. The plastic analysis approach likely overestimates the strength that a multipile group is capable
of developing; however, the 0.7 f factor will provide significant compensation when using either approach. Further, both
approaches require that the pile cap structure have sufficient strength to accommodate the full expected strength of the
foundation capacity that is used, but many engineers probably would prefer the more conventional linearstrain approach in
order to reduce the required strength of pile caps.
More accurate methods to predict the ultimate strength of deep foundations include field testing of individual piles, reducedscale
testing of pile groups, and prediction of strength and deformation states of both foundation and soil through complex
models of the combined foundation and surrounding soil. Analysis of soil seismic behavior in this manner should include the
straindependent strength of the soil materials due to both foundation loading and ongoing seismic deformations.
Overstrength of Deep Foundations. Deep foundations are significantly different from shallow foundations in that deep
foundations can have tensile strength, overturning strength with low gravity loads, and element overstrength properties
similar to superstructure elements. Deep foundations therefore might be capable of internally developing overstrength values
in the range of tabulated O0 values provided that adequate ductility is present in the piles. Thus, for deep foundation, there is
no clear need for specifying a special or increased load combination in order to offset a lack of overstrength in the foundation
system as there is for lightly loaded shallow foundation systems. However, earthquake damage in deep foundations is
difficult to detect and is probably frequently overlooked in postearthquake damage investigations and, even if detected, it is
very costly to repair. This might justify an increase in deep foundation strength for higher Seismic Design Category
structures since foundations for these structures might be expected to experience more than one damaging earthquake during
the foundation’s service life and the potential lossofuse and repair costs are less acceptable.
Recommendations for Foundations. Foundation design including soil pressures for either shallow or deep foundation
systems might utilize ultimate strength design load combinations in which the value of E is as shown in Tables 2 and 3.
Table 2 Buildings and Buildinglike Nonbuilding Structures
R Value from
ASCE/SEI 7 Table 12.2
1,12.141, or 15.41
FixedBase Analysis
Including Foundation Deformations
per
ASCE/SEI41
For R = 5
2.0 E
1.5 E
R 3 to < 5
1.5 E
1.0 E
R = 3
1.0 E
1.0 E
Table 3 Nonbuilding Structures Not Similar to Buildings
R Value from
ASCE/SEI 7
Table 15.42
FixedBase Analysis
Including Foundation
Deformations per
ASCE/SEI 41
R > 3
1.5 E
1.0 E
R = 3
1.0 E
1.0 E
It is likely that this scaling would apply to the full value of E = Eh + Ev used in design with no other reduction permitted;
however, it is recognized that the full effects of design including redundancy factors, importance factors, and the vertical
seismic component have not been studied in depth and that the results of such an indepth study might warrant further
changes. These load factor scaling factors were selected in conjunction with the foundationsoil strength values (including
phifactors) presented in this paper. Inherently, the load factor of 2.0E is intended to result in a structure in which inelastic
response is preferred in the portions of the structure that are above the foundation and base plate while the load factor of 1.0E
was selected with the intent that some inelastic response might be preferred in the foundation of light structures. The load
factor of 1.5E was selected as a value that would provide for inelastic response in the foundation, in the supported structure,
or in both elements.
It is recognized that simple rules often yield imperfect results and that some structural systems might be identified that defy
the logic of this reasoning. For instance, foundations beneath shear panels of lightframe buildings would be required to be
designed using 2.0E suggesting that the foundations beneath these elements should remain relatively elastic while many
engineers might argue that a load factor of 1.5E might be more appropriate. However, until a more rational means of
determining R values prevails, this relatively simple table was judged to be generally effective in providing the preferred
inelastic behavior distribution.
No distinction was made between the load factor recommendations for deep and shallow foundations because the load factors
recommended appear likely to result in at least as much successful behavior for deep as opposed to shallow foundations.
Common ASD methods currently used for seismic design can be approximately matched with the ultimate foundation
strengths discussed herein by dividing calculated ultimate foundation strengths by a factor of safety of 3.0 and using the
earthquake forces recommended above reduced by a factor of 1.4.
REFERENCES
DeVall, Ronald H. April 2003. “Background information for some of the proposed earthquake design provisions for the
2005 edition of the National Building Code of Canada.” NRC Research Press.
Canadian Commission on Building and Fire Codes. 2005. National Building Code of Canada, Vol. 1 and Commentary.
National Research Council of Canada.
International Code Council. 2006. International Building Code.
American Concrete Institute. 2005. Building Code Requirements for Structural Concrete and Commentary, ACI 31805.
American Institute of Steel Construction. 2005. Seismic Provisions for Structural Steel Buildings, AISC 34105.
Appendix 1, DERIVATION OF SHALLOW FOUNDATION EQUATIONS
P
e
Figure showing Traditional ASD Design
Figure showing Traditional ASD Design
Traditional ASD Design – Full Contact
Figure showing Traditional ASD Design
Figure showing Traditional ASD Design
Given: P = vertical load
Figure showing Traditional ASD Design
M = overturning moment
Figure showing Traditional ASD Design
Figure showing Traditional ASD Design
L = length of rectangular footing
Figure showing Traditional ASD Design
QA
B = width of rectangular footing
L
e = M/P = eccentricity of loading
QA = maximum ASD allowable soil pressure
From the standard ending stress equation:
s = P/A ± M/S, the maximum soil pressure, QA will be:
=
Rearranging,
Introduce the term: P.= QABL so that we can substitute BL=P./QA resulting in
(1)
Traditional ASD Design – Partial Contact
For e = L/6, the soil pressure is assumed as a triangular distribution.
Rearranging,
Substituting QAB = P./L,
(2)
At the transition point between Equations 1 and 2, e = L/6 and P/P. = 1/2. The following is a graph of Equations 1 and 2: Equation
2
6
A
Q P M
BL BL
= + Equation
P 1 6e
BL L
. . +..
. . Equation
1
6
A e L Q BL
P
. . = ..
. . Equation
1 1
6
e P
L P
= .  . . '' . . . Equation
( )
2
3 2
A
Q P
B L e
=
 Equation
2
2 3 A
e L P
Q B
=  Equation
1 1 4
2 3
e P
L P
= .  . .. . . . . '. ...
Figure showing Traditional ASD Design
Graph of equation above
0
0.2
0.4
0.6
0.8
1
1.2
0.000 0.100 0.200 0.300 0.400 0.500 0.600
e/L
P/P' Comparison of Equations for Ultimate vs. ASD Soil Pressure Distribution
0
0.2
0.4
0.6
0.8
1
1.2
0.000
0.100
0.200
0.300
0.400
0.500
0.600
P/P'
e/L
Comparison of Equations for
Ultimate vs. ASD Soil Pressure Distribution
Simplified Ultimate Strength Design Method
e/L
e=L/6
Graph
A simplified ultimate strength design approach, based on the Whitney Stress Block Method, follows:
L/2
Define (in addition to terms used above):
Simplified Ultimate Strength Design Method
Simplified Ultimate Strength Design Method
Simplified Ultimate Strength Design Method
QU = Ultimate Soil Pressure
Simplified Ultimate Strength Design Method
Simplified Ultimate Strength Design Method
Simplified Ultimate Strength Design Method
QU
For an assumed rectangular soil pressure distribution;
Simplified Ultimate Strength Design Method
Simplified Ultimate Strength Design Method
Substituting :
(3)
Graphing this equation against the ASD equations: Equation
2 ( 2 )
U
Q P
B L e
=
 Equation
A
B P
LQ
'
= Equation
1 1
2
A
U
e Q P
L Q P
. . .. .. = .. . .. . '. . ....
P
e
Arrow on graph
Triangular/trapezoidal
soil distribution
Arrow on graph
Rectangular soil
distribution
Appendix 2, ASD AND LRFD INTERACTION DIAGRAMS FOR DEEP FOUNDATIONS
Linear Strain Assumption
Diagram
3ft 3ft
3ft
Assumed
ASD Allowable Pile Capacities
P =
100
kips
T =
50
kips
Ultimate/ASD =
1.7
tension
Ultimate/ASD =
2.5
compression
1
2
3
4
line
(does not include f = 0.7)
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Equation
Point 1  Pure compression
#piles x
Line
# piles
Pile force
x
Px
1
3
300
4.5
1350.0
ASD Capacity
Arrows
2
3
300
1.5
450.0
1200
kips
3
3
300
1.5
450.0
0.0
ft kips
4
3
300
4.5
1350.0
Sum =
1200
0.0
USD Capacity
3000
kips
0.0
ft kips
Diagram
arrow
Diagram
arrow
arrow
Point 2  Max. Moment
Diagram
X
ASD:
#piles x
Line
# piles
Pile force
x
Px
1
3
150
4.5
675.0
ASD Capacity
Diagram
2
3
0
1.5
0.0
300
kips
3
3
150
1.5
225.0
2250.0
ft kips
4
3
300
4.5
1350.0
ASD:
Sum =
300
2250.0
X na =
1.50
ft
USD:
#piles x
USD:
Line
# piles
Pile force
x
Px
X na =
2.22
ft
1
3
255
4.5
1147.5
USD Capacity
2
3
80
1.5
120.0
990
kips
3
3
415
1.5
622.5
5025.0
ft kips
4
3
750
4.5
3375.0
Sum =
990
5025.0
arrow
arrow
Diagram
Diagram
arow Diagram
arrow
Point 3  Pure tension
ASD Capacity
USD Capacity
P = 4 * 3 * 50=
600
kips
1020
kips
M =
0.0
ft kips
0.0
ft kkips
Diagram
arrow
arrow
arrow
arrow
Fully Plastic Assumption
3ft
3ft
3ft
ASD Allowable Pile Capacities
P =
100
kips
T =
50
kips
Ultimate/ASD =
1.7
tension
Ultimate/ASD =
2.5
compression
1
2
3
4
line
(does not include phi = 0.7)
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Point 1
#piles x
Line
#
piles
Pile
force
X
Px
USD Capacity
1
3
750
4.5
3375.0
3000
kips
2
3
750
1.5
1125.0
0.0
ft kips
3
3
750
1.5
1125.0
4
3
750
4.5
3375.0
Sum =
3000
0.0
Point 2
#piles x
Line
#
piles
Pile
force
X
Px
1
3
255
4.5
1147.5
2
3
750
1.5
1125.0
3
3
750
1.5
1125.0
USD Capacity
4
3
750
4.5
3375.0
1995
kips
Sum =
1995
4522.5
4522.5
ft kips
Point 3
#piles x
Line
#
piles
Pile
force
X
Px
1
3
255
4.5
1147.5
2
3
255
1.5
382.5
USD Capacity
3
3
750
1.5
1125.0
990
kips
4
3
750
4.5
3375.0
6030.0
ft kips
Sum =
990
6030.0
Point 4
#piles x
Line
#
piles
Pile
force
X
Px
1
3
255
4.5
1147.5
2
3
255
1.5
382.5
USD Capacity
3
3
255
1.5
382.5
15
kips
4
3
750
4.5
3375.0
4522.5
ft kips
Sum =
15
4522.5
Point 5
#piles x
Line
# piles
Pile
force
x
Px
1
3
255
4.5
1147.5
2
3
255
1.5
382.5
USD Capacity
3
3
255
1.5
382.5
1020
kips
4
3
255
4.5
1147.5
0.0
ft kips
Sum =
1020
0.0
Linear Strain Assumption Linear Strain Assumption
1
3
2
USD
arrow
1.33 ASD
arrow
arrow
ASD
Fully Plastic Assumption,
Superimposed on Linear Strain Assumption Fully Plastic Assumption, Superimposed on Linear Strain Assumption
arrow
1
2
3
4
5
USDPlastic
arrow
USDLinear
Resource Paper 9
SEISMIC DESIGN USING TARGET DRIFT, DUCTILITY, AND
PLASTIC MECHANISMS AS PERFORMANCE CRITERIA
Traditional seismic design methods operate in the elastic domain and use a response modification coefficient in conjunction
with a period of vibration to establish required member strengths. This resource paper presents a design approach that
establishes the base shear required to limit ductility and drift demands based on an estimate of the yield displacement and
uses a plastic mechanism analysis to establish required member strengths. It is suggested as an alternative to the equivalent
lateral force procedure and is presented in Part 3 of the 2009 NEHRP Recommended Seismic Provisions in order to expose
the approach to the design community and to elicit feedback from members of that community.
BACKGROUND
Traditional seismic design methods operate in the elastic domain and use a response modification coefficient in conjunction
with a period of vibration to establish required member strengths. The design approach presented here is an alternative to the
equivalent lateral force (ELF) procedure. Several recent developments are combined to achieve simplicity and transparency
in the design process. Unique features of this design approach are:
1. An estimate of the yield displacement in a firstmode pushover analysis is used as an initial basis for proportioning the
seismicforceresisting system in a manner analogous to the way that an estimated period is used in current code
approaches. This approach reduces the need for iterations in proportioning the structural system.
2. Equivalentsingledegreeoffreedom (ESDOF) systems are used explicitly for determining the required base shear
strength; estimates of modal parameters are used in preliminary design.
3. The required base shear strength is determined using a representation of inelastic spectra known as yield point spectra
(YPS). The elastic portion of the YPS is given by smoothed elastic design spectra defined in the 2009 NEHRP
Recommended Seismic Provisions; inelastic portions are derived on the basis of coefficient relationships that were
recommended in a 2005 report published by the Federal Emergency Management Agency, Improvement of Nonlinear
Static Seismic Analysis Procedures (FEMA 440).
4. An improved lateral force distribution is used which results in a more uniform distribution of peak interstory drifts over
the height of the structure as well as a reduction in column design moments relative to those obtained with the current
ELF procedure.
5. A plastic mechanism analysis is used to determine required member strengths given the required base shear strength.
The analysis assists the engineer in visualizing the intended mechanism, makes preliminary sizing of designated yielding
members very simple, and helps ensure that an intended mechanism actually develops.
System ductility demands are a measure of damage to structural components. Values of system ductility corresponding to
currently recognized seismicforceresisting systems are suggested for use with this approach. Interstory drift is a measure of
damage to nonstructural components. Relationships between interstory drift and roof drift are suggested as a basis for
complying with currently recognized allowable story drift limits. System ductility and roof drift limits are explicitly
considered when establishing the required base shear strength, in order to limit damage to structural and nonstructural
components.
In many cases, the estimate of the yield displacement will be sufficiently accurate that no iteration of the preliminary design
will be needed.
Figure 1 illustrates how system ductility and roof drift limits define regions where the yield points of singledegreeoffreedom
(SDOF) and equivalent SDOF (or ESDOF) systems either satisfy the ductility and drift limits or fail to satisfy one or
both of these limits. For a given yield displacement, satisfaction of both limits requires that the larger of the associated yield
strengths be provided. Because a change in strength is usually achieved by changing the amount of structural material, the
stiffness changes as well. Thus, the period of vibration is a consequence of the strength provided to satisfy drift and ductility
limits, and an estimate of the yield displacement is used as a starting point rather than an estimate of the period. The
admissible design region shown in Figure 1 was derived for a particular performance objective; when multiple performance
objectives must be considered, each may further constrain the admissible design region. Details of the construction and
interpretation of YPS are provided in the appendix to this paper.
Figure 1 Showing Limits on ductility and drift demands are used to establish admissible and inadmissible design regions. SDOF and ESDOF oscillators that have yield points located within the admissible design region satisfy the ductility and drift limits shown.
Text Reading Yield Displacement
Because the lateral force distribution results in more uniform peak interstory drifts over the height of the structure, those
structures for which interstory drift is the controlling design parameter can be allowed to achieve larger peak roof drifts
relative to those obtained with current code approaches. As a result, structures that are slightly more flexible (longer period)
than obtained with current code approaches may be found to be acceptable.
Figure 1 Limits on ductility and drift demands are used to establish admissible and
inadmissible design regions. SDOF and ESDOF oscillators that have yield points
located within the admissible design region satisfy the ductility and drift limits
shown.
Because the design is based on estimates of relatively stable parameters (yield displacement, firstmode participation factor,
and firstmode mass coefficient) as well as the use of a plastic mechanism, little or no iteration in member sizes is required in
typical cases. In some cases, by ensuring compatibility of the modal parameters obtained for the elastic model with the
values assumed in the design, one can avoid nonlinear static (pushover) analysis. Schematic design, system selection, and
even preliminary optimization can be done using only pencil and paper, avoiding the effort of developing detailed computer
models.
The design approach presented here focuses on steel and reinforced concrete structural systems that do not have flexible
diaphragms. Reinforced concrete design examples are provided herein; examples of the design of steel moment resistant
frames using YPS are provided by Black and Aschheim (2000). Estimated values provided for initial proportioning presume
fairly typical spatial distributions of lateral stiffness, strength, and mass; departures from typical distributions will increase
the likelihood that design iterations will be needed. Systems with torsional irregularities and other important considerations
(e.g., Pdelta effects) addressed in Chapter 12 of the 2003 NEHRP Recommended Provisions are not addressed here nor are
structural systems composed of materials other than steel and reinforced concrete and those using baseisolation or
supplemental damping.
OVERVIEW OF DESIGN APPROACH
The design process is illustrated in Figure 2 and is described in detail in the sections that follow. An overview of the process
and logic follows.
A structural system having a defined and desirable plastic mechanism is selected by the engineer. The required base shear
strength, Vy, of this mechanism is determined to limit the peak roof displacement to an acceptable value considering
interstory drift and system ductility limits. Vy is determined based on the corresponding ESDOF system using YPS.
Estimates of the yield displacement, Dy, firstmode participation factor, G1, and firstmode mass coefficient, a1
, are based on
the type of structural system and number of stories. The base shear, Vy, is distributed over the height of the structure using an
improved lateral force distribution. A simple plastic mechanism analysis is used to proportion the designated yielding
members of the seismicforceresisting system. A mathematical model of the structure is prepared and the calculated modal
properties are used to assess the validity of the estimates Dy, G1, and a1
and whether changes to the design base shear might
be needed. The preceding steps establish the strength of the intended mechanism. Forceprotected members then can be
proportioned to ensure that the intended mechanism can develop, considering amplification due to higher modes and material
overstrength.
DESIRABLE INELASTIC MECHANISMS
Current seismic design philosophies presume the development of desirable inelastic mechanisms with the concentration of
inelastic deformation demands occurring at locations detailed for ductile response. Figure 3 illustrates desired mechanisms
applicable to several common structural types. Once selected, the desired mechanism is used to determine the required
strengths of the yielding portions of the seismic forceresisting system using a virtual work analysis.
Figure 2 Steps in the design process.
Figure 2 Steps in the design process. Figure 2 Showing steps in the design process
Yes
No
Estimate Dy, G1, a1
Revise Dy
Distribute base shear vertically
Proportion designated yielding members (plastic
mechanism analysis)
Distribute lateral forces horizontally
Design forceprotected members
Establish Vy and Te
Select structural system and plastic mechanism
Establish Du (system ductility, interstory drift)
Verify assumptions (Determine Te, G1, a1)
Does Dy require revision?
ESTIMATES OF YIELD DISPLACEMENT
Nonlinear static or “pushover” analyses subject a model of a structure that includes nonlinear member forcedeformation
relationships to progressively increasing lateral forces. Of particular interest is the plot of base shear as a function of roof
displacement obtained when lateral forces are proportional to the first mode (i.e., lateral force Fi,1 at the ith floor level is
proportional to the mode shape amplitude fi,1 and weight, wi). Such a plot is shown in Figure 4 for a fourstory steel moment
frame. The figure also shows a bilinear curve that has been fitted to approximately represent the initial stiffness and postyield
stiffness of the capacity curve. The breakpoint of the bilinear curve is known as the yield point, which defines the yield
strength, Vy, and yield displacement, Dy.
Experience generally confirms the kinematic expectation that for any given structural system (distribution of mass, stiffness,
and member depths), the yield displacement, Dy, determined in a pushover analysis varies with the yield strength of the steel
members or reinforcement but is nearly independent of the strength of the system – that is, changes in strength achieved by
increasing steel section weights or reinforcement percentages while maintaining member depths generally have a negligible
influence on Dy (Priestley and Kowalsky, 1998; Priestley, 2000). Furthermore, the yield drift ratio (Dy normalized by the
height of the structure) is nearly invariant with changes in the number of stories for a given structural system (e.g., Aschheim,
2000; Paulay, 2002). Thus, it is feasible to provide estimates of yield drift ratio to be used in design. The yield drift ratio
Figure 3 Showing Desirable inelastic mechanisms.
Figure 3 Showing Desirable inelastic mechanisms.
Figure 3 Showing Desirable inelastic mechanisms.
estimates can be used in much the same way that conventional seismic design approaches make use of period estimates.
Periods of vibration, however, may vary significantly during