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ABSTRACT 
 

This report documents the development of a probabilistic model to represent the occurrence rate 

and characteristics of future hurricanes capable of producing significant surge inundation along 

the Mississippi coast, using available hurricane data and statistical tools that have been 

developed for the offshore oil industry.  The report also documents the generation of a suite of 

synthetic storms, and associated recurrence rates, which provide an efficient representation of the 

population of possible future hurricanes and their characteristics, for use as inputs to numerical 

wind, wave, and surge models. These synthetic storms are generated by means of a JPM-OS 

(Joint-Probability Method—Optimal Sampling) scheme, which is also described in the report. 
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1 INTRODUCTION 

1.1 PROJECT OBJECTIVES 

The objective of this study is to provide the following two inputs for a Mississippi storm surge 
study being performed by the URS Group for FEMA: 

1. A probabilistic characterization of the occurrence and characteristics of future1 hurricanes 
that may cause significant surge along the Mississippi coast. 

2. A set of representative “Synthetic Storms,” and their associated recurrence rates, to be 
used for the numerical wind, wave, and surge calculations, and in the final probability 
calculations.  These synthetic storms have characteristics and recurrence rates that make 
them representative of the entire population of possible future storms, for the purposes of 
surge-inundation calculations. 

The numerical calculation of winds, waves, surge, and total inundation for these synthetic 
storms,  the use of results from these calculations to compute elevations associated with 
exceedence probabilities of interest, and the actual results from these calculations are 
documented in URS (2007; we will refer to this report as the main URS report) report and in 
other contractor reports. 

1.2 APPROACH 
The URS Mississippi surge study follows the Joint-Probability Method (JPM), as described by 
Resio (2007).  This approach is analogous to the “deductive” approach utilized in the 
probabilistic analysis of hurricane-generated waves at offshore locations (Wen and Banon, 1991, 
1988; Toro et al., 2004).   

For the purposes of the JPM method, we describe the storm in terms of its characteristics as it 
reaches the coast in terms of the following parameters: the pressure deficit2 PΔ  (representing 
hurricane intensity), the radius of the exponential pressure profile3 pR  (representing hurricane 

                                                 

1 We refer to future storms, in the sense that risk analysis concerns itself with the future.  On the 
other hand, it is important to keep in mind that we only consider the current climatological 
regime, as represented by the storm population considered in Section 2. 

2 In this study, PΔ  is calculated from the central pressure by assuming that the far-field pressure 
is always 1013 mb (i.e., CPP −=Δ 1013 ).    

3 In this study, it is assumed that the radius of the exponential pressure profile pR  and the radius 
to maximum winds maxR  (sometimes written as RMW) are identical.  This study will consider 
the values of pR  both offshore and at the coast.  



 

 2

size), the forward velocity fV , the storm heading θ 4, and the landfall location (or, equivalently, 
the minimum distance from the track to a reference point along the coast).  These parameters are 
illustrated in Figure 1-1. These parameters represent the main hurricane characteristics affecting 
storm surge; these parameters are treated as random variables in the JPM method.  Other storm 
characteristics, including parameter B (Holland, 1980), are treated as constant at landfall or are 
not considered explicitly.  Although hurricanes are much more complex than this 
parameterization allows for, and substantially more information is available for well-studied 
recent hurricanes, it is necessary at present to utilize this simple storm parameterization for the 
probabilistic characterization of future storms5.   

It was decided to use the characteristics at landfall as the primary variables for the following two 
reasons: (1) most of the coastal surge is generated by the storm in the last 90 nautical miles prior 
to landfall (Resio, 2007), and (2) more and better hurricane data are available at the coast than 
offshore, especially for older storms.  

For the statistical analyses to determine the storm recurrence rate and probability distribution of 
PΔ , which are the most important quantities in the storm characterization, we follow the 

methodology developed by Chouinard and his co-workers (Chouinard, 1992; Chouinard and Liu, 
1997; Chouinard et al., 1997).  This methodology assigns weights to the historical hurricane data 
based on each hurricane’s distance to the site of interest, in a manner that provides an optimal 
compromise between statistical precision and geographical resolution.  For other parameters, this 
study follows simpler statistical approaches.   

The JPM method considers all possible combinations of storm characteristics at landfall, with 
their associated probabilities, calculates the surge effects for each combination, and then 
combines these results to obtain the annual probability of exceeding any desired storm stage.  
Mathematically, this calculation is represented as a multi-dimensional integral (the JPM 
integral).   

Given the number of quantities affecting surge, and given the computational effort required to 
compute winds, waves, and surge for one combination of these quantities, a brute-force 
implementation of the JPM approach is not feasible.  Two JPM-Optimal Sampling (JPM-OS) 
approaches have been developed to overcome this problem.  The approach used in this study 
uses a quadrature procedure that approximates the multi-dimensional JPM integral by means of 
a weighted sum over a manageable number of discrete probability masses.  Each of these masses 
may be interpreted as the characteristics at landfall of a representative synthetic storm.  These 
characteristics, together with some simple deterministic rules, are then used to specify the entire 
storm history, which is then used as input to the numerical wind, wave, and surge models.  Once 
the total inundation is computed for each synthetic storm, calculation of the associated 

                                                 

4 Direction to, measured clockwise from North. 

5 The differences between real hurricanes and this simple parameterization are not ignored in the 
JPM formulation employed in this study.  They are included in a statistical sense by means of the 
ε  terms used in the JPM calculations, as will be explained in Section 4.2. 
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exceedence probabilities (or the inverse calculation of the surge associated with a certain 
exceedence probability) is straightforward.   

The other JPM-OS approach performs wind, wave, and surge calculations for a set of carefully 
selected synthetic storms.  The results from these calculations are then used to fit a parametric 
response surface, which is then used to evaluate the JPM integral numerically.  See Resio (2007)  
for more details on this approach.  A recent paper (Niedoroda et al., 2008) compares the two 
JPM-OS approaches and finds that the two approaches yield comparable results. 

1.3 ORGANIZATION OF THIS REPORT 
Section 2 of this report documents the data used in this study.  Section 3 documents the statistical 
analysis of these data to determine the storm rate and the probability distributions of PΔ , maxR , 

fV , and θ .  Section 4 describes the JPM method in detail and documents the development of the 
quadrature procedure and the generation of synthetic storms.  
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Figure 1-1.  Characterization of a storm as it approaches the coast. 
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2 DATA 

2.1 INTRODUCTION 
This section documents the hurricane data to be used in Section 3 to develop the probabilistic 
model of hurricane occurrence and characteristics and discusses some of the key decisions that 
were necessary as part of the data collection and selection.  

2.2 DATA SOURCES USED 

This study considered only hurricanes with central pressures of 982 mb or lower (roughly 
corresponding in Category 2 and greater) at landfall.  The hurricane data were further divided 
into lesser storms, with central pressures of 965 to 982 mb, and greater storms, with central 
pressures lower than 965 mb.  Weaker hurricanes and tropical storms were deemed to make 
insignificant contribution to surge hazard, based on sensitivity studies. 

The central pressures at landfall were obtained from a compilation provided by Dr. Peter Vickery 
of ARA, Inc.  This compilation includes all hurricanes making landfall on the US Atlantic and 
Gulf of Mexico coast since 1900.  For each hurricane, Vickery examined the central-pressure 
data from NOAA Technical Report NWS-38 (Ho et al., 1987; we will refer to this report as 
NWS-38 for the sake of brevity), NOAA Technical Memoranda TPC-1 and TPC-4, the NOAA 
HURDAT database, the “TROP” files provided by Oceanweather, Inc. (OWI), as well as other 
sources, and selected the most credible value.  All other characteristics for the greater storms 
(and some of the lesser storms) were obtained from the TROP files.  The characteristics obtained 
are the landfall central pressures, track coordinates, storm radius Rp, forward velocity of the 
storm center, and heading of the storm center (the latter two were derived from the coordinates 
and associated time stamps).  These TROP files include all storms since 1940 that attained 
central pressures of 965 mb or less anywhere within the Gulf of Mexico. 

Data for the radius, forward velocity, and heading of lesser storms not contained in the TROP 
files were obtained from NWS-38, which contains information for land falling hurricanes 
between 1900 and 1983.  In addition, the HURDAT data set was scanned for data on lesser 
storms since 1983 which were not in the TROP files.   

For the purposes of this study, coastal crossings is defined to occur at the point where the storm 
track crosses the simplified coastlines shown in  Figure 2-1.  This generalized coastline is similar 
to the one utilized in NWS-38. 

A preliminary screening of the data retained only those hurricanes making landfall on the portion 
of the Gulf coast between latitudes 85W and 95W (i.e., between Apalachicola, FL, and 
Galveston, TX)6.  

                                                 

6 The limits for this screening are not important, provided that they are broader than the optimal 
kernel sizes determined in the statistical analysis.  This will become clear in Section 3.  
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2.3 PERIOD OF RECORD 

The selection of the time period to use as input for the statistical calculations is one of the most 
important decisions for an analysis of this kind.  The TROP files available to this study extend 
back to 1940, but the NWS-38 and ARA data extend back to 1900.   The HURDAT re-analysis 
data extend back to 1850, but they lack central-pressure data for many storms and do not contain 
the storm radius pR .   

The problem of selecting the period of record may be stated as follows.  On the one hand, we 
want to use as much of the available data as possible, in order to have the lowest possible 
statistical uncertainty in our probabilistic hurricane model of Section 3.  On the other hand, we 
want to exclude older data that are incomplete or contain significant biases, in order to have a 
probabilistic model that is free of biases. 

Although coastal and inland weather measurements improved steadily in quality and 
geographical coverage over the Twentieth Century, measurements were sparse and erratic until 
relatively recently.  The older offshore data often depended on unplanned encounters by ships 
whose position relative to the storm was difficult to establish.  This situation changed 
dramatically during World War II with the initiation of aircraft missions specifically designed to 
measure storm parameters.  Since that time the quality of both offshore and onshore data has 
risen steadily.  Aircraft instrumentation and navigation have increased in a more-or-less 
continuous fashion since World War II.  Satellite observations were added during the 1960s, and 
these too have become increasingly more sophisticated and useful.  There have been more 
instrument systems introduced in recent decades.  Ocean data buoys with meteorological and 
oceanographic sensors have been deployed since the 1970s.  A variety of Doppler radar 
installations has come online during the 1990s.  Within the last few years mobile meteorological 
stations have been added to increase the spatial density of storm measurements.   

Superimposed on this evolution in the observing system, there are natural large-scale 
atmospheric cycles, with periods of several years to decades, which may affect the rate and 
intensity of hurricanes (e.g., Gray, 1984; Webster et al., 2005; Bell and Chelliah, 2006; Resio 
and Orelup, 2006).     

The combined effects of these two sets of factors may be seen in Figure 2-2, which shows the 
minimum central pressure by year for all tropical storms and hurricanes  in the north-central Gulf 
of Mexico between the years 1900 and 2005.  This figure suggests that fewer storms were 
detected in the first half of the 20th century.  In particular, the figure suggests that some weak 
storms were not detected and that the intensity of some strong storms was underestimated.  
Cooper and Stear (2006) have also investigated this question and found significant differences 
between the first and second half oh the 20th century.  Based on these considerations, it was 
decided to use the time period between 1940 and 2006 as the period of record for this study.   
Table 2-1 and Table 2-2  list the 1940-2006 coast-crossing data used. 

Climate change and global warming are not considered in this study, largely because FEMA 
flood maps have a five-year shelf life and no significant effects are anticipated during this short 
time period.  In addition, there is still considerable uncertainty about the effects of global 
warming on hurricane frequency and intensity (e.g., Holland and Webster, 2007; Gualdi et al., 



 

 7

2008).  The climate fluctuations and observed trends discussed above may also contain climate-
change effects, but it is difficult to identify these effects at present. 
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Figure 2-1  Map showing the generalized coastline used for defining landfall. 
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Figure 2-2.  Minimum central pressure vs. year for storms in the NHRP Zone B since the 
year 1900 (after Resio, 2006, oral presentation to USACE LaCPR Risk Analysis Group, 
August 27).  Zone B is defined in NWS-23 (Schwerdt et al., 1979); it extends approximately 
from Apalachicola, FL, to Pecan Island, LA, and approximately 250 km offshore from the 
coast. 
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Table 2-1.  Coastline-crossing data for storms in TROP files 
N

am
e

Year

Month

Date

Time

Longitude

Latitude

Heading 
(deg)

Vf (kt)

Central 
Pressure 
(mb)

Rp (nmi)

Pr
es

su
re

 C
om

m
en

ts
 (V

ic
ke

ry
)

N
ot

na
m

ed
19

43
7

27
16

-9
4.

5
29

.5
29

6.
2

5.
7

96
9

16
96

9L
an

ds
ea

,9
75

N
W

S3
8

N
ot

na
m

ed
19

47
9

19
6

-8
9.

5
29

.9
29

8.
4

16
.4

96
6

23
96

6.
5N

W
S3

8
Fl

os
sy

19
56

9
24

24
-8

6.
5

30
.4

66
.8

9.
0

97
4

30
97

4N
W

S3
8,

97
5L

an
ds

ea
Au

dr
ey

19
57

6
27

14
-9

3.
7

29
.7

9.
0

14
.1

94
5

25
94

5L
an

ds
ea

,9
46

.5
N

W
S3

8
Et

he
l

19
60

9
15

21
-8

9.
0

30
.4

0.
0

7.
4

97
6

18
97

6N
W

S3
8,

98
1L

an
ds

ea
H

ild
a

19
64

10
3

17
-9

1.
6

29
.4

12
.6

6.
2

95
9

21
95

9N
W

S3
8,

95
0L

an
ds

ea
Be

ts
y

19
65

9
10

4
-9

0.
3

29
.3

31
6.

7
16

.5
94

1
40

94
1N

W
SO

ffs
ho

re
,9

48
La

nd
se

a,
U

se
d9

41
si

nc
e9

48
~3

hr
sa

fte
rL

an
df

al
l

C
am

ille
19

69
8

18
3

-8
9.

3
30

.2
34

1.
9

13
.3

90
9

12
N

W
S3

8,
La

nd
se

a
Ed

ith
19

71
9

16
12

-9
2.

9
29

.7
47

.1
16

.3
97

8
27

97
8N

W
S3

8,
97

8L
an

ds
ea

Fe
rn

19
71

9
5

3
-8

9.
5

29
.8

34
7.

2
5.

9
97

9
37

97
9N

W
S3

8,
97

9L
an

ds
ea

Ag
ne

s
19

72
6

19
20

-8
5.

5
29

.9
15

.8
10

.1
98

0
20

98
0L

an
ds

ea
C

ar
m

en
19

74
9

8
6

-9
1.

2
29

.3
32

3.
7

9.
3

95
2

15
95

2L
an

ds
ea

El
oi

se
19

75
9

23
12

-8
6.

2
30

.3
16

.1
23

.4
95

5
28

95
5N

W
S3

8,
95

5L
an

se
a

Fr
ed

er
ic

19
79

9
13

4
-8

8.
3

30
.4

34
5.

4
12

.7
94

6
25

N
H

C
El

en
a

19
85

9
2

13
-8

9.
1

30
.3

29
7.

3
15

.0
95

9
13

N
H

C
Ju

an
19

85
10

28
14

-9
2.

0
29

.5
29

5.
6

8.
6

97
1

11
6

97
1L

an
ds

ea
Ka

te
19

85
11

21
22

-8
5.

4
29

.9
40

.4
14

.4
96

7
28

96
7L

an
ds

ea
An

dr
ew

19
92

8
26

8
-9

1.
4

29
.3

33
3.

4
10

.9
95

6
16

N
H

C
Er

in
19

95
8

3
16

-8
7.

2
30

.3
31

2.
8

11
.0

97
3

33
N

H
C

O
pa

l
19

95
10

4
22

-8
7.

1
30

.3
18

.6
21

.3
94

2
39

N
H

C
G

eo
rg

es
19

98
9

28
12

-8
8.

9
30

.4
34

7.
7

4.
1

96
4

50
N

H
C

Li
li

20
02

10
3

13
-9

2.
2

29
.5

34
4.

1
12

.9
96

3
15

N
H

C
Iv

an
20

04
9

16
7

-8
7.

9
30

.3
9.

8
12

.7
94

6
27

N
H

C
Ka

tri
na

20
05

8
29

14
-8

9.
6

29
.7

2.
2

14
.6

92
0

29
N

H
C

R
ita

20
05

9
24

10
-9

3.
8

29
.7

33
5.

2
11

.3
93

7
21

N
H

C



 

 11

 

Table 2-2.  Coastline-crossing data for storms in NWS-38 
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3 PROBABILISTIC MODEL OF STORM FREQUENCY AND 
CHARACTERISTICS (STORM CLIMATOLOGY) 

 

3.1 INTRODUCTION 
This section documents the development of a probabilistic model for the occurrence and storm 
characteristics of hurricanes affecting the Mississippi Coast. 

The occurrence of hurricanes in the neighborhood of a specific point is characterized by terms of 
the omni-directional rate )(xλ  or the directional rate ),( θλ x  using a Poisson line-process model 
(see Chouinard and Liu, 1997, for details). 

The storm characteristics of interest are pressure deficit ( PΔ ), radius of maximum winds ( pR ), 
forward velocity ( fV ), distance to the point of interest x , and heading θ  at landfall.   

Because the East-West extent of the Mississippi Coast is only 120 km, it is reasonable to assume 
that the rate and probably distributions of the storm characteristics are constant within that length 
of coast and adjacent portions of the Louisiana coast.  Therefore, the rate and probability 
distributions of the storm characteristics are defined for a single site (the Coastal Reference Point 
or CRP), with coordinates 30.20 N and 89.30 W.   The CSR is located approximately 30 km (i.e., 
approximately one radius of maximum winds) west  of the coastline midpoint, which is located 
approximately 30 km southwest of Gulfport, Mississippi. 

For reasons related to project schedule and scope, we calculate separate rates and probabilistic  
models for the greater storms ( mbP 48>Δ ) and for the lesser storms ( mbPmb 4831 ≤Δ< ).  
Results for these two storm populations are described below. 

3.2 CALCULATION OF STORM RATES FOR THE GREATER STORMS 

3.2.1 Methodology and Optimal Kernel Sizes 
This study utilizes the methodology of Chouinard and Liu (1997; see also Chouinard, 1992) to 
calculate the rate of storms in the vicinity of the Coastal Reference Point.  The geometry of storm 
tracks as they pass near a specific site is idealized as a Poisson line process.  The key parameter 
of this model is the directional rate )(θλ  7.  If direction is neglected, the key parameter is the 
omni-directional rate λ , which has units of storms/year/km.  

The passage of each storm near a given site is characterized by the associated minimum distance 
d  and storm heading θ  of the storm relative to the site (see Figure 1-1).  To calculate the rate at 
a site, Chouinard and Liu (1997) propose a kernel estimate, where the rate is proportional to a 

                                                 

7 Because we are considering a single site, namely the Coastal Reference Point, we will drop the 
argument x used earlier.  
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weighted count of the observed data in the storm catalog, with weights that depend on the 
distance from the storm to the site and its deviation from the direction of interest.  Storms that 
pass farther from the site of interest or that have directions different from the direction of interest 
receive lower weight.  The resulting expressions for the directional and omni-directional rates, 
respectively, are as follows:  

 ∑ −=

storms)(all

)()(1)(
i

ii kdk
T

θθθλ  (3-1 )

 

 ∑=

storms)(all

)(1
i

idk
T

λ  ( 3-2 )

where the summation extends over all storms in the catalog, T  is the duration of the catalog (in 
years), and the kernel functions are taken as normal-distribution shapes, as follows: 
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The most important step in this procedure is the selection of the kernel widths dh  and θh .  A 
small kernel width introduces too much statistical uncertainty, as the calculated rate effectively 
depends on data from a few storms.  A large kernel width reduces the statistical uncertainty by 
considering storms occurring over a wider area, but may introduce too much spatial bias (i.e., it 
may mix data that are not homogeneous and neglect spatial variability in the data).  The aim 
should be, therefore, to find the optimal tradeoff between statistical precision and spatial 
resolution.    

Chouinard and Liu (1997) utilize a technique known as least-squares cross-validation  to 
determine the optimal kernel size for the estimation of rates.  To calculate the optimal kernel 
width dh  for the omni-directional rate, the data are partitioned at random into two samples (the 
estimation sample and the validation sample) using a randomization scheme in which each storm 
is assigned to the estimation sample with probability p and to the validation sample with 
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probability 1-p.  The estimation sample is used to estimate the predicted rate using Equations 3-2 
and 3-3.  The validation sample is then used to calculate the observed rate8.  The two rates are 
then adjusted for the size of the two samples (i.e., for the effect of p ), the difference between the 
two rates is squared, and the result is summed over many random partitions of the sample.  The 
resulting quantity is the cross-validated square error (CVSE); the optimal choice of kernel width 

dh  is the one that yields the lowest CVSE.  Figure 3-1 shows the values of CVSE as a function 
of kernel size for the calculation of omni-directional rates.  The optimal kernel size is 160 km, 
which is comparable to the optimal value of 140 km obtained by Chouinard and Liu (1997).  A 
value of 200 km is used in the calculations, for the sake of consistency with the directional-rate 
calculations.   

A similar procedure is followed for determining the optimal combination of kernel widths dh  
and θh  for the calculation of directional rates.  Results are shown in Figure 3-2, which indicates 
optimal kernel sizes of 200 km9 and 30°, respectively.   These results are also comparable to 
those obtained by Chouinard and Liu (1997)10. 

It is useful to compare this approach to the conventional "capture zone" approach, where a storm 
is counted in the calculation of rates if it makes landfall within a selected portion of the coast or a 
certain distance from the point of interest11.  The capture zone approach is equivalent to using a 
"boxcar" kernel of an arbitrary width.  If two storms make landfall near the edge of the capture 
zone but only one of them is within the zone, one will receive a weight of 1/width and the other 
one will receive a weight of zero.  In this case, because the total number of storms is small, a 

                                                 

8  The observed rate is calculated by counting the number of storms in the validation sample that 
are within 40 km of the site and then dividing the result by 80 km and by the number of years in 
the storm catalog.  Also, the probability p is set to 0.9 to avoid a large change to the size of the 
estimation sample.  The resulting optimal kernel size is not sensitive to these choices, as long as 
they are within reasonable bounds (Chounard and Liu, 1997).  Similarly, the results for 
directional rates are not sensitive to the choice of angular interval to consider in the calculation 
of observed directional rates. 

9 The kernel size of 200 km will also be used to calculate the omni-directional rate and the 
distribution of PΔ .  

10 Chouinard and Liu (1997) present other approaches, including the use a maximum the cross-
validated likelihood (CVL) criterion for determining the optimal kernel size for the calculation of 
rates, and the separate determination of maximum kernel size for each grid point.  The maximum 
CVL approach was not used here, as these authors indicate that least-squares cross validation is 
more robust.  The variable kernel size was not used for the sake of simplicity.  The maximum 
CVL approach will be used in Section 3.3 to determine the optimal kernel size for fitting the 
distribution of PΔ .  

11 This discussion of the kernel and capture-zone approaches also applies to the approach for 
calculating the distribution of PΔ . 
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small change in the size of the capture zone will lead to a large change in the calculated rate.  In 
contrast, the Chouinard and Liu (1997) approach will give these two storms nearly identical 
weights.  The two main differences between the Chouinard and Liu (1997) approach and the 
capture zone approach are as follows: (1) the smooth versus boxcar kernels, and (2) the objective 
versus arbitrary procedures to determine kernel size. 

Another subtle issue relates to the definition of rates in terms of distance to the site of interest 
versus crossing of a line with a certain orientation.  This study follows the former definition; 
recent US Army Corps of Engineers studies (e.g., Resio, 2007) follow the latter.   

3.2.2 Results for Rate and for the Distribution of Heading 
Calculation of the omni-directional rate, using a kernel size of 200 km, yields a value of 2.88E-4 
storms per year per kilometer, with a coefficient of variation of approximately 30%.  Calculation 
of the directional rate, using kernel sizes of 200 km and 30°, yields the values shown in Figure 
3-3. 

Dividing the directional rate by the omni-directional rate, we obtain the probability distribution 
of the storm heading θ .  This distribution is well approximated by a Beta distribution (also 
shown in Figure 3-3) with probability density function proportional to 11 )1( −− − tr xx , where 

360/)180( += θx , 229.10=r , and 747.11=t .  The associated mean and standard deviation are 
-12.4 degrees and 37.5 degrees, respectively. 

3.3 CALCULATION OF STORM CHARACTERISTICS FOR THE GREATER 
STORMS 

3.3.1 Methodology and Optimal Kernel Sizes for ΔP 
The methodology for determining the probability distribution of PΔ  for hurricanes in the 
vicinity of the Coastal Reference Point is based on the work of Chouinard et al. (1997; see also 
Chouinard, 1992), and is in many ways similar to the methodology used earlier to estimate the 
rate of storms.   

We will consider only storms with mb48>ΔP , and we will adopt a Weibull distribution shape 
based on experience from earlier studies performed by Risk Engineering.  The distribution of 

PΔ   in the vicinity of the Coastal Reference Point is of the form  

 
00 ])/()/(exp[][ PxuPuxxPP kk Δ>Δ+−=>Δ  ( 3-5 )

where u  is a scale parameter, k  is a shape parameter, and mb480 =ΔP  is the lower limit of the 
data being considered (for the greater storms).   

In addition, we introduce the constraint that the probability density function of PΔ  must be a 
monotonically decreasing function over the mb48>ΔP range.  This constraint requires that 
more intense storms be less frequent than weaker ones, which is a physically reasonable 
constraint for storms in this PΔ  range.  This constraint improves the statistical stability of the 
results. 
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The distribution parameters u  and k  are estimated from all the storm data using the method of 
maximum weighted likelihood, where the weights depend on the distance between the track of 
storm i and the Coastal Reference Point, and subject to the monotonicity constraint described 
above.  Specifically, the weighted log-likelihood is of the form 

 ∑ Δ= Δi iPi kupfdwWL )],;(ln[)()ln(  ( 3-6 )

where id  is the distance between the CRP and the track of storm i (associated with pressure 
deficit ipΔ  at landfall), )( ldw  is a Gaussian distance-dependent weight (which is given by 
Equation 3-3 introduced earlier12, although the kernel size dh  is not necessarily the same as for 
the calculation of rate), and ),;( kupf P ΔΔ  is the Weibull probability density function13, and the 
summation extends over all storms with mbP 48>Δ  in the data set.   

Following Chouinard et al. (1997), we utilize a technique known as maximum cross-validated 
likelihood  to determine the optimal kernel size dh  for the estimation of the Weibull parameters.  
As was done for the calculation of the cross-validated squared error for rates, the data are 
partitioned into two samples (the estimation sample and the validation sample) using a 
randomization scheme.  The estimation sample is used to estimate the Weibull parameters  u  
and k  by determining the values of u  and k  that maximize the log-likelihood function in 
Equation 3-6, subject to the monotonicity constraint.  The validation sample is then used to 
calculate the observed log-likelihood14.  The observed log-likelihoods are then summed over all 
random partitions of the sample.  The resulting quantity is the cross-validated likelihood (CVL; 
the optimal choice of kernel width dh  is the one that yields the highest CVL).   

Figure 3-4 shows the calculated values of CVL as a function of kernel size.  For kernel sizes 
smaller than 90 km, the lack of fit is dominated by statistical uncertainty, but the curve becomes 
fairly flat, indicating that all kernel sizes above 120 km yield essentially the same CVL and that 
the data along are not sufficient for defining an upper bound for the kernel size.  This CVL vs. 
kernel size curve is similar to the one obtained by Risk Engineering in previous studies when 
using a Weibull distribution shape.  For the sake of consistency with the kernel size obtained for 
directional rates and with the work of Chouinard et al. (1997), we will use a kernel size of 

km200=dh  to obtain the distribution of PΔ .   

                                                 

12 We change the notation for the weight from k to w, to avoid confusion with the scale 
parameter k of the Weibull distribution. 

13 The Weibull probability density function is obtained by differentiating Equation 3-5 with 
respect to pΔ  (or with respect to x, according to the notation in Equation 3-5). 

14  The observed log-likelihood is calculated using all pΔ  data in the validation sample that are 
within 40 km of the site under consideration.   
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3.3.2 Results for the Probability Distribution of ΔP and its Statistical Uncertainty 
Once the optimal kernel size is selected, the best-estimate values of the Weibull parameters u  
and k  are estimated by maximizing Equation 3-6, subject to the monotonicity constraint.  These 
best-estimate values of the parameters are not sufficient, however, because they have significant 
uncertainty as a result of the small sample size.  To quantify this uncertainty, we utilize a 
bootstrapping procedure (Efron, 1982).  In each cycle of the bootstrapping, a synthetic storm 
catalog with the same duration as the actual catalog is created by using a re-sampling scheme15.  
This catalog is then used to calculate a new set of parameter values (i.e., rate and Weibull 
parameters u and k), using the kernel size of 200 km determined earlier.  This process is repeated 
1,000 times and the mean values, variances, and co-variances of these parameters are 
determined.  These values are then used to establish the mean values16 for the rate and of the 
cumulative distribution function of PΔ  (see Figure 3-5).   

Figure 3-5 displays the statistical uncertainty in the calculated cumulative distribution of PΔ  
(i.e., the uncertainty in the probability of exceeding a certain PΔ  value at landfall, say 90 mb) 
given that a hurricane with mb48>ΔP  makes landfall near the site.  This uncertainty is 
displayed by means of the percentile curves.  For low and moderate values of PΔ , the percentile 
curves are closely spaced, indicating low uncertainty.  For higher values of PΔ , the percentile 
curves spread out gradually, indicating increasing uncertainty.  The uncertainty is significant, but 
not unreasonably large, for PΔ  in the 60-90 mb range, which is expected to control the results 
for the 1% annual-exceedence probability.  Also, the mean curve deviates from the 50-percentile 
or median curve (which is nearly identical to the best-estimate curve, not shown), as a result of 
skewness.     

The resulting mean distribution of PΔ  in  Figure 3-5 is an average of Weibull distributions and 
does not necessarily follow a Weibull distribution.  It was found, however, that a Weibull 
distribution with U=48.6 mb and k=1.8 provides a good approximation to the mean distribution 
of PΔ , for the range of PΔ  of interest to this study.  This distribution is used in all the analyses 
that follow. 

The rationale for using the mean distribution for PΔ , rather than the best-estimate distribution 
that one obtains by applying the Chouinard et al. procedure to the historical hurricane catalog, is 
based on the exchangeability axiom of decision theory (see McGuire et al., 2005).   

                                                 

15 For each historical storm in the data set, a random number is drawn from a Poisson distribution 
with mean value of 1.  This number is then used at the number of times that this particular 
historical storm will appear in the synthetic catalog.  Thus, a historical storm may appear 0, 1, 2, 
or more times in any given synthetic catalog (although it is unlikely that the storm will appear 
two or more times in the same synthetic catalog).  On average, each historical storm will appear 
once in each synthetic catalog.  

16 Integrated over the statistical uncertainty in the storm catalog. 
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3.3.3 Radius of Maximum Winds 
There has been considerable attention given to establishing whether the storm radius Rp is 
statistically independent of the central pressure of a storm, going as far back as NWS-38.   Figure 
3-6 shows a plot of these two parameters measured at landfall for all hurricanes in the TROP 
Files that made landfall between 85 and 95 degrees West. 

As shown in Figure 3-6, the data for land falling storms are sparse and the correlation of the 
parameters is not strong.  However, the decision on whether to consider these two parameters to 
be correlated or not has important consequences.  If there is no negative correlation, then future 
storms with large radii and high PΔ s--which tend to generate higher surges, and these high 
surges affect a wider extent of the coast--are more likely than they are under the commonly made 
assumption of negative correlation.    

A recent paper by Shen (2006) provides some insight into the relationship between Rp and PΔ .  
This paper examines the kinetic-energy balance within a hurricane and concludes that, given the 
same large-scale environmental conditions, hurricanes with smaller radii have higher potential 
intensity.  Shen (2006) also reports that this conclusion is not sensitive to changes in the 
parameters of his model.  

To overcome the sparsity of landfall data in Figure 3-6, more information was taken from the 
more abundant data that are available for storms offshore in the whole Gulf of Mexico.  Figure 
3-7 shows a plot of all the Gulf of Mexico Rp- PΔ data with mbP 48>Δ  in the TROP files. 

Figure 3-7 indicates that Rp has a large scatter for any given value of ΔP17.  It also suggests a 
moderate negative correlation between Rp and ΔP, and it does not show an obvious dependence 
on latitude (within the range of latitudes of the Gulf).  These data were used to perform a 
regression analysis of )ln( PΔ  on )ln(Rp .  In addition, a log-normal shape was adopted for the 
conditional distribution of  PRp Δ| , based on earlier studies (e.g., Wen and Banon, 1991; Toro 
et al., 2004).  In summary, the conditional distribution of  PRp Δ|  for the greater storms is 

treated as lognormal, with a mean value of 711.02.406 −ΔP nautical miles and a standard deviation 
of 711.07.187 −ΔP  nautical miles. 

Although there is still some uncertainty about the correlation of Rp with ΔP, the trend for the 
offshore storms is taken to show that these should be treated as negatively correlated parameters.  
This approach is consistent with the approach described by Resio (2007) for the Corps and with a 
number of studies (e.g., NWS-38, Wen and Banon, 1991; Vickery et al., 2000; Toro et al., 2004).  

3.3.4 Forward Velocity 
The hurricane parameter that has the least effect on the magnitude of a storm surge is the forward 
velocity fV  of the storm center.  Data for this parameter were taken at landfall for the 

                                                 

17 This scatter will be taken into account in the JPM calculations, as we will explain in Section 
4.2. 
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mbP 48>Δ  storms during the 1940-2006 time period.  These data are well approximated by a 
lognormal distribution with a median value of 6.04 m/s and a logarithmic standard deviation of 
0.41 (or, equivalently, a mean of 6.6 m/s and a standard deviation of 2.8 m/s).  Figure 3-8 
compares the histogram of the data to the lognormal distribution shape.  

Earlier studies performed by Risk Engineering for other sites in the Gulf of Mexico indicate that 
the forward velocity fV  is only weakly correlated with other storm characteristics.  Therefore, 

fV  will be treated as independent of other storm characteristics. 

3.4 CALCULATION OF RATE AND STORM CHARACTERISTICS FOR THE 
LESSER STORMS  

3.4.1 Rate and Distribution of Heading 
We calculate the omni-directional and directional rates for the lesser storms using the data for 
storms with mbPmb 4831 ≤Δ<  at landfall, and using the kernel sizes of 200 km and 30° 
determined earlier for the greater storms18. 

The resulting omni-directional rate is 2.57E-4 storms per year per kilometer.  The associated 
directional rates are shown in Figure 3-9.  The resulting distribution of heading is well 
approximated by a normal distribution with mean and standard deviation of -9.9 degrees and 
58.7 degrees, respectively.  This distribution is considerably broader than the distribution 
obtained for the greater storms.  

3.4.2 Probability distribution of PΔ  
We calculate the distribution of PΔ  for the lesser storms by first performing calculations for 

mbP 31>Δ  and then removing the mbP 48>Δ  portion analytically19.   

We follow an approach similar to the one followed for the greater storms, and we use the same 
kernel size of 200 km, but we do not impose the constraint of monotonicity in the probability 
density function20.  We also perform bootstrapping in the same manner discussed above, we 
construct a complementary-cumulative-distribution figure (not shown) similar to Figure 3-5, and 
we find that a Weibull distribution with U = 46.6 mb and k = 1.95 provides a good 
                                                 

18 In principle, we should have determined and optimal kernel size for the lesser storms.  In 
practice, however, it is anticipated that the results would be similar because the total number of 
storms for the two storm classes is approximately the same. 

19 This was necessitated because the software used in these calculations does not support the 
doubly-truncated Weibull distribution and because the maximum likelihood calculations for this 
distribution are much more complicated than for the singly-truncated Weibull.  This approach 
also has the advantage of producing more consistent distribution parameters for the two storm 
populations. 

20 The constraint of monotonicity less tenable when we consider weaker storms because the data 
set may not be complete.   
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approximation to the mean distribution of PΔ .  Finally, we remove the greater storms from this 
distribution by introducing an upper bound at mbP 48=Δ  and re-normalizing the distribution.  
The resulting cumulative distribution is a doubly-truncated Weibull of the form: 
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with U = 46.6 mb and k = 1.95. 

  

3.4.3 Radius of Maximum Winds 
We found that the lognormal model for PRp Δ|  described earlier for the greater storms (see 
Figure 3-7) over-predicts the values of Rp when applied to the lesser storms.  Thus, it was 
necessary to perform a new regression analysis including these storms.  We selected the data for 
this analysis differently from Section 3.3.3.  For each storm, we determine the value of Rp at the 
time when the storm reached its maximum PΔ  within the Gulf (we call this value Rp (offshore) 
or Rp (o) for brevity), and then we pair this value with the value of PΔ  at landfall for the same 
storm21.  Furthermore, we restrict the data to greater and lesser storms during the 1950-2006 
interval in order to use more reliable values of Rp (offshore), and we exclude the data point for 
Hurricane Juan (1985) because its value of Rp (o) in the TROP files (100 nautical miles) is 
considered an outlier. 

Figure 3-10 shows these data, as well as the percentiles of the lognormal model for the 
distribution of Rp| PΔ  derived from them.  Also shown are the percentiles obtained earlier and 
shown in Figure 3-7.  This figure shows that the two models are very similar in the region of 
interest for the 100-year calculations (i.e., 60-90 mb), but they differ significantly for the lesser 
storms.  The lognormal model for Rp| PΔ  based on Figure 3-10 is adopted for the lesser storms.  
This model corresponds to a lognormal distribution with a mean value of -0.33P79.58Δ  nautical 
miles and a standard deviation of -0.33P36.78Δ  nautical miles. 

3.4.4 Forward Velocity 

Data for this parameter were taken at landfall for the mbPmb 4831 ≤Δ<  storms during the 
1940-2006 time period.  These data are well approximated by a lognormal distribution with a 
                                                 

21  This data selection approach is more consistent with our usage of the Rp- PΔ  relationship 
when we generate the synthetic storms (to be described in Section 4.7) than the approach used 
earlier for the greater storms.   
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median value of 5.0 m/s and a logarithmic standard deviation of 0.43 (or, equivalently, a mean of 
5.5 m/s and a standard deviation of 2.5 m/s; i.e., slightly slower than the greater storms). Figure 
3-11 compares the histogram of the data to the lognormal distribution shape.  

3.5 COMPARISON TO THE CORPS MSCIP PROJECT 
It is useful to compare the probabilistic model of hurricane occurrence and characteristics 
developed in this section to the one developed by the Army Corps of Engineers ERDC for the 
same region as part of the Mississippi Coastal Improvement Project (MsCIP).  Because the 

PΔ exceedence rates (i.e., the product of the rate and the distribution function of PΔ ) and the 
distribution of pressure radius Rp (more precisely, the conditional distribution of PRp Δ| ) 
constitute the most important elements of the probabilistic model, this comparison will be 
restricted to these two quantities. 

Figure 3-12 compares the results in the form of annual exceedence rates.  All the rates are 
multiplied by a length of 200 km to obtain the exceedence rates for storms passing within 100 
km of the site (on either side).  The results from this study (labeled URS-FEMA) contain both 
the lesser and greater storms.  The results from the Corps of Engineers (labeled ERDC) are 
computed on the basis of parameters provided by Resio (personal communication, 2007).  Also 
shown is the empirical distribution (labeled URS-FEMA Empirical),which is computed from the 
1940-2006 data, after applying distance-dependent weights based on a 200-km kernel size.  This 
comparison shows a good agreement.   

Figure 3-13 compares the mean and percentile curves of the distributions of PRp Δ| . There are 
some differences between the curves at intermediate values of PΔ , with the ERDC model 
having a tendency for larger storms.  These differences are mainly the result of different choices 
for functional-forms and distribution shapes, and are difficult to resolve with existing data.  

3.6 SUMMARY 
This section documents the development of the probabilistic model for the occurrence and 
characteristics of future hurricanes that may generate significant storm surge along the 
Mississippi coast.  Because the rate and model parameters vary little over the 100 km of 
Mississippi coast, it is appropriate to neglect this variation and perform the analysis for a single 
point. 

The storm population is partitioned into greater and lesser storms, and separate models are 
computed for both.  For each storm population, the following parameters were estimated: annual 
occurrence rate, probability distribution of pressure deficit PΔ , conditional probability 
distribution of storm size (as measured by Rp) given  PΔ , probability distribution of forward 
velocity, and probability distribution of storm heading θ .  The observation that the storm rate 
does not vary along the coast and adjacent portions of Louisiana, implies a uniform distribution 
of (perpendicular) distance to any site of interest. 



 

 22

Other characteristics of hurricanes are not included explicitly in this parameterization.  The effect 
of these characteristics on the exceedence probabilities will be included in an approximate 
manner by means of a random error term.  

The following is a summary of the distributions and parameter values obtained. 

a. Rate( PΔ >48 mb) = 2.88E-4E-4 storms/km/yr 
 Rate ( PΔ  31-48 mb) =  2.57E-4 storms/km/yr  

Can treat distance as uniformly distributed 
b. Heading:  

i. PΔ >48 mb, Beta ( 229.10=r , and 747.11=t ) 
ii. PΔ  31-48 mb, normal (mean= -9.9 deg, σ =58.7 deg; truncate at 90±  degrees) 

c. PΔ : three-parameter Weibull 
i. PΔ >48 mb, U = 48.6 mb, k = 1.8  (see Equation ( 3-5 )) 

ii. PΔ  31-48 mb, U = 46.6 mb, k = 1.95 (see Equation (3-7 )) 
d. Rp given PΔ : lognormal 

i. Greater storms 
1. mean (nmi): 711.02.406 −ΔP  
2. sigma (nmi): 711.07.187 −ΔP  

ii. Lesser storms   
1. mean (nmi): -0.33P79.58Δ  
2. sigma (nmi): -0.33P36.78Δ  

e. Vf: lognormal  
i. Greater storms 

1. mean (m/s); 6.6 
2. sigma (m/s): 2.8 

ii. Lesser storms  
1. mean (m/s); 5.5 
2. sigma (m/s): 2.5 

 

These parameters will be utilized in Section 4 to generate a set of representative synthetic storms, 
using a JPM-OS formulation.
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Figure 3-1.  Cross-validation square error for the omni-directional storm rate for the 
greater storms ( >ΔP 48 mb). 
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Figure 3-2.  CVSE Results for the Directional Storm Rate for the greater storms ( >ΔP 48 
mb) 



 

 25

 

 

 

 

 

  

0.E+00

5.E-07

1.E-06

2.E-06

2.E-06

3.E-06

3.E-06

4.E-06

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Heading (degrees)

R
at

e 
(s

to
rm

s/
km

/d
eg

/y
r)

Calculated Rate
Beta Fit

 

Figure 3-3.  Directional rates and Beta distribution of storm heading for the greater storms 
( >ΔP 48 mb) 
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Cross-Validation Results for DP Distribution at MS point 
(1940-2006  > 48 mb data)
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Figure 3-4.  Cross-validation results for central pressures of the greater storms ( >ΔP 48 
mb) 
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Complementary Cumulative Distribution of DP at 
Coastal Reference Site (CRS) (30.2 N, 89.3 W)
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Figure 3-5.  Complementary cumulative distribution function of PΔ  for the greater storms 
( >ΔP 48 mb).   
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Figure 3-6.  Data and regression for Rp vs. PΔ  for greater storms using only landfall data 
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Figure 3-7.  Data and regression for Rp vs. PΔ  for greater storms using all Gulf of Mexico 
data. 
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Figure 3-8.  Distribution of forward velocity Vf at landfall for the greater storms.  The 
histogram indicates the observed values; the smooth curve indicates the lognormal model 
fit. 
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Figure 3-9.  Directional rates and normal distribution of storm heading for the lesser 
storms ( mb48mb31 ≤Δ< P ) 
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Figure 3-10.  Data and regression for Rp (offshore) vs. PΔ (coast) for lesser and greater 
storms using all Gulf of Mexico data.  The whole-Gulf percentile curves obtained earlier 
for the greater storms (Figure 3-7) are also shown.  
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Figure 3-11.  Distribution of forward velocity Vf at landfall for the lesser storms.  The 
histogram indicates the observed values; the smooth curve indicates the lognormal model 
fit. 
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Annual Exceedence Rate of DP for Storms within 100 km of 
Coastal Reference Site (30.2 N, 89.3 W)
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Figure 3-12.  Comparison of recurrence models in the form of exceedence rates 

 

 

 

 

 



 

 34

 

 

 

GoM Rp data and Models (>=48mb)

0

10

20

30

40

50

60

40 50 60 70 80 90 100 110 120 130

DP (mb)

R
p 

(n
m

i)

S of 29.5

N of 29.5

URS-FEMA - 84%

URS-FEMA - Mean

URS-FEMA - 16%

USACE - 84%

USACE - Mean

USACE - 16%

 

Figure 3-13.  Comparison of models for pressure radius Rp for given PΔ  (i.e., PRp Δ|  ).  The 
data are the same data shown in Figure 3-7.
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4  DEVELOPMENT AND IMPLEMENTATION OF JPM-OS 
APPROACH, INCLUDING THE DEVELOPMENT OF SYNTHETIC 
STORMS 

4.1 INTRODUCTION 
This section documents the development of a set of representative synthetic storms and their 
associated annual recurrence rates.  These storms, together with their rates, provide a condensed 
representation of the population of possible future synthetic storms, for use in the calculation of 
surge inundation probabilities. 

The section begins by describing the JPM method, including the rationale for the error terms that 
account for un-modeled parameters and effects. This is followed by a general description of the 
Quadrature JPM-OS approach adopted in this study, a detailed description of the Bayesian 
Quadrature method, and implementation details.  The section concludes with a description of the 
procedure followed to generate synthetic storms from the storm characteristics at landfall.  

4.2 THE JOINT PROBABILITY METHOD  
The Joint Probability Method or JPM  was developed for coastal storm surge studies by Myers 
(Myers, 1975; Ho and Meyers, 1975).  JPM provides a mathematical framework for the 
calculation of surge exceedence probabilities in terms of the hurricane climatology and hurricane 
surge effects.  In particular, the JPM approach combines the following inputs:   

• The annual rate of storms of interest λ .  For this study, storms of interest are defined as 
hurricanes with mbP 31>Δ  making landfall on or within approximately 30 km of the 
Mississippi coast.  Typically, it is also assumed that the occurrences of these storms in 
time represents a Poisson random process (Parzen, 1962)23. 

• The joint probability distribution )(xfX  of the storm characteristics for storms of interest.  
These characteristics are defined very broadly at first, but they are narrowed later to make 
the approach practical. 

• The storm-generated surge24 )(Xη  at the site of interest, given the storm characteristics.         

The combined effect of these three inputs is expressed by the multiple integral 

                                                 

23 In practice, the Poisson assumption is not necessary.  Weaker assumptions are sufficient when 
calculating the probabilities of rare events, as will be discussed below.   

 

24 In this definition, the term surge represents the peak total inundation, including the surge itself, 
wave setup, astronomical tide, etc.  



 

 36

 ∫∫ >=>
x Xyr xdxPxfP ])([)(...][ )1max( ηηληη  (4-1 ) 

 
where ])([ ηη >xP  is the conditional probability that a storm of certain characteristics x  will 
generate a flood elevation in excess of an arbitrary value η .  This probability would be a 
Heaviside step function )]([ XH ηη − if vector X  contained a complete characterization of the 
storm and if the numerical models for the calculation of surge given x  were perfect, but these 
conditions cannot be satisfied in practice.    The integral above considers all possible storm 
characteristics from the population of storms of interest and calculates the fraction of these 
storms that produce surges in excess of the value of interest η , using the total probability 
theorem (Benjamin and Cornell, 1970). 

The right hand side in Equation 4-1 actually represents the mean annual rate of storms that 
exceed η  at the site, but it also provides a good approximation to the annual exceedence 
probability25.   

Equation 4-1 defines a smooth function of η  that can be used to determine the flood levels 
associated with any annual probability of exceedence.  Those of interest in this study are the 
10%, 2%, 1% and 0.2 % annual probabilities.  These are often referred to as the 10-, 50-, 100- 
and 500-yr annual exceedence levels, respectively.  Unfortunately, the concept of return periods 
is often misunderstood.   

As noted by Resio (2007), some approximations are necessary in practice for the evaluation of 
Equation 4-1.  Firstly, it would be impossible to calculate the peak surge exactly, even if the 
storm’s wind field as a function of time was known exactly.  To this effect, we write the actual 
elevation )(Xη  in terms of the model-calculated elevation )(Xmη  as mm XX εηη += )()( , 
where mε  is a modeling-error term, which will be treated as a random quantity independent of 
X .  If the model is unbiased, mε  has a mean value of zero.  Using the above representation, one 
can write the actual conditional probability as ])([ ηη >xP  as  

 ])([])([ ηεηηη >+=> mm XPXP  (4-2 )

                                                 

25 The derivation to show that the annual probability for a rare event is approximately equal to 
annual rate is usually made by assuming that event occurrences represent a Poisson process and 
then linearizing the resulting exponential.  The same result may be obtained under weaker 
assumptions;  it is sufficient to assume that the probability of two or more of these rare events in 
one year is much lower than the probability of one event.  This condition is satisfied for 
hurricane-generated surges and for the exceedence probabilities of interest in this study (e.g, 0.01 
per year). 

 



 

 37

 

In addition, it would be impossible to provide a complete characterization of the storm itself (i.e., 
the wind and pressure fields as a function of time).  Thus, it is convenient to partition the vector 
of storm characteristics X  into two parts, as follows: (1) a vector of principal quantities  

),locationlandfall,,( ,1 θfVRpPX Δ= , whose probability distributions are represented explicitly 
and whose effects are also represented explicitly in the model calculations, and (2) a vector of 
secondary quantities ...)tide,(2 BX = , whose distributions (relative to their base-case values) 
and effects are jointly represented in an approximate manner by  random terms ,...),( tideεε B  
(which have units of elevation).  These secondary quantities are ignored or set to their base-case 
values in the model runs.  Although these epsilons are conceptually different from the modeling 
error mε  introduced earlier, they are combined operationally into one random quantity 

...+++= tideBm εεεε .   

Incorporating these simplification, Equation 4-1 transforms into 

 ∫∫ >+=>
1

1 111)1max( ])([)(...][
x mXyr xdxPxfP ηεηληη  (4-3 )

where ),locationlandfall,,( ,1 θfVRpPX Δ= .  The subscript 1 [as in 1X ] will be dropped in the 
remainder of this report for the sake of simplicity, resulting in  

 ∫∫ >+=>
x mXyr xdxPxfP ])([)(...][ )1max( ηεηληη  (4-4 )

 

The quantification of the standard deviations for the various components of ε  is documented in 
the main URS report.  This quantification is done using a variety of approaches, such as 
modeling, comparisons of observed surges to surges obtained using “best winds”, and 
comparisons of surges obtained using the limited parameterization employed in the production 
JPM calculations to the surges obtained using the best winds.   

4.3 THE QUADRATURE JPM-OS APPROACH  
Evaluation of the JPM integral (Equation 4-4) using conventional numerical-integration 
approaches is impractical for the following two reasons: (1) each evaluation of the integrand 
involves evaluation of )(xmη  for one value of x  (i.e., one synthetic storm), which requires 
computationally intensive numerical calculations of wind, waves, surge, wave setup, etc.; and, 
(2) numerical evaluation of the 5-dimensional integral in Equation 4-4 using conventional 
approaches requires that the integrand be evaluated a large number of times (this is the so-called 
curse of dimensionality).      

The approach used in this study approximates the integral in Equation 4-4 as a weighted 
summation, i.e.: 
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])([])([)(...][
1

)1max( ∑∫∫
=

>+≈>+=>
n

i
imix mXyr xPxdxPxfP ηεηληεηληη  (4-5) 

where each ),locationlandfall,,( i,, iifiii VRpPx θΔ=  may be interpreted as a synthetic storm26, 

ii pλλ =  may be interpreted as the annual occurrence rate for that storm, and )( im xη  may be 
interpreted as the numerical-model’s estimates of the storm elevation generated by that storm.  
For this approach to be practical, one must be able to specify the storm characteristics ix  and 
their rates iλ  so that the integral can be approximated with sufficient accuracy (for all η  values 
of interest), using a reasonably small value of n (i.e., a reasonably small number of synthetic 
storms and corresponding numerical-model runs).   

The approach used to define the synthetic storms and their rates uses a combination of well-
known and more sophisticated numerical-integration techniques and may be summarized by the 
following three steps27: 

1. Discretize the distribution of PΔ  into three broad slices, roughly corresponding to 
hurricane Categories 3, 4, and 5. 

2. Within each PΔ  slice, discretize the joint probability distribution of )( slicewithinPΔ , 
Rp, Vf, and θ  using the multi-dimensional optimal-sampling procedure known as 
Bayesian Quadrature (Diaconis, 1988; O’Hagan, 1991; Minka, 2000; see Section 4.4).  
This procedure represents the response portion of the integrand (i.e., the term 

])([ ηεη >+xP m ) as a random function of x  with certain correlation properties, and 
calculates the values of iifii VRpP θ,,,,Δ , and the associated probability, so that the 
variance of the integration error is minimized.  The correlation properties of the random 
function (which take the form of correlation distances) depend on how sensitive the 
response is to each variable (shorter correlation distances for the more important 
variables).  These correlation distances were set based on judgment and on the results of 
the sensitivity tests described in the main URS report. 

3. Discretize the distribution of landfall location by offsetting each of the synthetic storms 
defined in the previous two steps.  The offset is equal to Rp and is measured 
perpendicular to the storm track.   

Finally, one computes the probability ip  assigned to each synthetic storm as the product of 
the probabilities resulting from the three steps.  Equivalently, one can compute the rate iλ  

                                                 

26 More precisely, ),locationlandfall,,( i,, iifii VRpP θΔ  represent the characteristics of the synthetic 
storm at landfall.   

27 This description applies to the greater storms.  A slightly modified approach was followed for 
the lesser storms. 
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assigned to each synthetic storm as the product of the probabilities from the first two steps 
times the rate per unit length from Section 3 times the storm spacing. 

4.4 BAYESIAN QUADRATURE APPROACH 

4.4.1 Background 
The word Quadrature is often used to denote numerical techniques to approximate an integral of 
the form  

 ∫= A
dxxpxfI )()(  ( 4-6 )

over some domain A, as a weighted sum of the form  

 
)(

1
i

n

i
i xpwI ∑

=

≈  ( 4-7 )

where )(xf  is typically a probability density function (i.e., it is positive and it integrates to 
unity) and )(xp  represents a function belonging to a certain family of functions. 

In our case, A represents a four-dimensional domain, )(xf  represents the joint probability 
distribution of storm characteristics, and ])([)( ηεη >+= xPxp m  represents the “surge effects” 
portion of the JPM integral (for many possible locations and for many possible values of η ). 

The design of the quadrature involves specification of the number of nodes n, and selection of 
the node values ix  and associated weights iw .  These quantities depend on the functional form 
of )(xf  and of the family of )(xp , and on the desired characteristics (e.g., accuracy) of the 
approximation.  In our case, each node becomes one synthetic storm. 

Classical (Gaussian) quadrature chooses the number of nodes, node values, and weights so that 
the summation will integrate the function exactly if )(xp  is a polynomial of a certain degree and 

)(xf  is a particular function (e.g., a standard normal probability density).  This technique is used 
frequently in one dimension (see Miller and Rice, 1983 for details and for results for a variety of 
probability distributions).  Classical Quadrature is used in the main URS report for the reference-
case or “JPM-Heavy (Gold Standard)” approach to represent the probability distribution of each 
individual storm characteristic.  Extension of these zero-error rules to more than one dimension 
is problematic. The number of required nodes increases rapidly with the number of dimensions 
(see Minka, 2000).  Furthermore, some of the weights often become negative (see Genz and 
Keister, 1996), which leads to less stable results and makes it impossible to interpret the weights 
as probabilities.  

Bayesian quadrature, in contrast, considers a much broader probabilistically defined family of 
functions )(xp (namely, all possible realizations of a random function with a certain correlation 
structure), and chooses the node values and weights so that the integration error is minimized in 
a mean-squared sense.  Conceptually, it is straightforward to extend Bayesian quadrature to 
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multiple dimensions, although it becomes computationally demanding for more than six or seven 
dimensions.  According to Diaconis (1988), the approach dates back to the work of Poincare in 
1896.  It is also closely related to the technique known as Kriging (e.g., Journel and Huijbregts, 
1978), and even to least-squares regression. 

4.4.2 Derivation 
The derivation that follows for the Bayesian Quadrature approach borrows significantly from 
Minka (2000), although we have modified some of the notation, and we add a constraint on the 
sum of the weights (which we borrow from Kriging).  The random-function theory and random-
vector algebra used in this section may be unfamiliar to many readers.  Readers may choose to 
skip this section, and rely on the more qualitative description provided above.  

We begin by idealizing the function )(xp  in Equation 4-4 as a random function in m-
dimensional space with mean zero and with autocovariance function )]()([),( ypxpEyxk =   28 29 
30, where ][⋅E  denotes mathematical expectation (i.e., ][zE  the average value of quantity z  over 
all possible realizations of )(xp ), and x and y are any two arbitrary values of x.  The 
autocovariance function contains information about the degree of continuity of realizations of 

)(xp , at both small and large scales (e.g., Vanmarcke, 1983).  

Let ],...,,[ 21 nxxxD =   denote n nodes31 for which )(xp  has been evaluated, so that we know the 
values of )](),...,(),([)( 21 nxpxpxpDp = .  Because we know the value of )(xp  at these n points 
and )(xp  has some correlation structure, we also have some information about the value of )(xp  
at other x values (particularly at x values in the vicinity of a node where the function has been 
sampled).  This situation is illustrated in Figure 4-1. 

                                                 

28 m is the number of dimensions for the integral in Equation 4-6.  In this derivation, x and y are 
m-dimensional vectors, but we will not use underline or boldface for them for the sake of 
simplicity  

29 Details on the functional form of ),( yxk  will be considered in the next sub-section.  The only 
requirement at this stage is that the required integrals involving ),( yxk  and )(xf  do not 
diverge. 

30 Minka (2000) assumes that )(xp  is a Gaussian random process (or random field, if the number 
of dimensions is greater than two).  Actually, the Gaussian assumption is not required, because 
all the results needed may be obtained using first and second moments, for which the following 
two assumptions are sufficient: (1) )](|)([ DpxpE  is a linear function of )(Dp , and (2) 

)](|)([ DpxpVar  does not dependent on )(Dp . 

31 In our m-dimensional integration space, each node location ix  denotes m nodal coordinates. 
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Using the mean value and covariance properties of )(xp  adopted above, one can determine the 
conditional mean and standard deviation of  )(xp  at any point x given the observations (i.e., the 
properties of )(|)( Dpxp ), as follows:  

 

 )(),(),()](|)([ 1 DpDDKDxKDpxpE −=  ( 4-8 )

and 

 TDxKDDKDxKxxkDpxpVar ),(),(),(),()](|)([ 1−−=  ( 4-9 )

where 

 [ ]),(),...,,(),,(),( 21 nxxkxxkxxkDxK =  ( 4-10 )

and 
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 ( 4-11 )

One can also determine the conditional mean and standard deviation of the weighted integral of 
)(|)( Dpxp  with respect to the weight function )(xf , obtaining 

 

)(),(),(

)(])(|)([])()(|)([
1 DpDDKDxU

dxxfDpxpEdxxfDpxpE
AA

−=

= ∫∫  ( 4-12 )

and 

 )(),()(])()(|)([ 1 DUDDKDUudxxfDpxpVar T

A

−−=∫  ( 4-13 )

where 

  ∫ ∫=
A A

dxdyyfxfyxku )()(),(  ( 4-14 )

and 

 ∫= A

T dxxfDxKDU )(),()(  ( 4-15 )
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O’Hagan (1991) proposes the conditional mean )(),(),( 1 DpDDKDxU −  (from Equation 4-12), 
as an estimate of the integral in Equation 4-6.  This estimate has the same functional form of 
Equation 4-7, but it is written in matrix form; i.e., the weight vector is 

1
21 ),(),(],...,,[ −== DDKDxUwwwW n

T  and the nodal values of )(xp  are given by the 
vector T

nxpxpxpDp ])(),...,(),([)( 21= .   

Minka (2000) also shows that one can arrive at the same weights with a least-squares 
formulation; i.e., by determining the weights that minimize the variance—over all possible 
realizations of )(xp -- of the difference between the exact integral and the approximation given 
by Equation 4-7.  The associated normal equations can be written in matrix form as    

 

)(

),(),(),(

),(),(),(
),(),(),(

),( 2

1

21

22212

12111

DU

w

w
w

xxkxxkxxk

xxkxxkxxk
xxkxxkxxk

WDDK

nnnnn

n

n

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
M

L

MOMM

L

K

 ( 4-16 )

which can be solved to obtain the same weights obtained above. 

The resulting weights from this approach may or may not add to unity, depending on the choice 
of the autocovariance function ),( yxk .  To ensure that the weights always add to unity—which 
is required because we want to interpret )](),...,(),([)( 21 nxpxpxpDp =  and the weights as an m-

dimensional discrete probability distribution—we introduce the constraint 1
1

=∑
=

n

i
iw  into the 

least-squares representation of the problem.  We introduce the constraint by means of a Lagrange 
multiplier, transforming Equation 4-16 into: 
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where μ  is the Lagrange parameter (see, e.g., Journel and Huijbregts, 1978).  We solve this 
system of linear equations to obtain weights that add to unity. 

It may also be possible to force the weights to sum to unity by assuming that )(xp  has an 
unknown (but generally non-zero) mean.  

So far in this discussion, we have treated the node locations ],...,,[ 21 nxxxD =   as known.  The 
development of an efficient quadrature rule requires finding the optimal node locations D  that 
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minimizes the variance in Equation 4-13 32, for a pre-specified value of n.  Note that each ix  in 
D represents the coordinates of a node in m-dimensional space.  Thus, determination of the 
optimal D is an ( nm× )-dimensional optimization problem.  We provide details on the algorithm 
used in Section 4.5.4 

We have not shown that all the weights are non-negative, and in fact negative weights do arise 
when the nodal vector ],...,,[ 21 nxxxD =  is specified arbitrarily (i.e., without optimization)33.  On 
the other hand, it is reasonable to expect (and one may be able to prove) that optimization of 

],...,,[ 21 nxxxD =  so as to minimize the variance in Equation 4-13, forces all the weights to be 
positive.  This argument is related to the concept of quadrature stability (i.e., the sum of the 
absolute values of the weights) employed by Genz and Keister (1996).  In our practical 
applications, the approach introduced here has always led to positive weights when D is 
optimized.   Negative weights, if they happen to arise, may be eliminated by employing a 
numerical optimization scheme with inequality constraints on the weights. 

4.5 IMPLEMENTATION OF BAYESIAN QUADRATURE FOR JPM-OS 
This sub-section provides a number of details on how Bayesian Quadrature procedure is 
implemented as part of the Quadrature JPM-OS formulation used in this study.  These details 
were left out of the derivation above, for the sake of generality and simplicity.   

4.5.1 Probability distribution: choice for )(xf  

The Quadrature JPM-OS formulation must be flexible enough to accommodate the probability 
distributions employed in Section 3.  On the other hand, implementation of the Bayesian 
Quadrature formulation described above using a general form for )(xf would require the 
repeated evaluation of the integrals in Equations 4-14 and 4-15, which are likely more complex 
than the JPM integrals we are trying to solve in the first place. 

Instead, we formulate the problem in m-dimensional standard normal-distribution space, 
determine the coordinates of the integration nodes in that space, and then convert these nodal  

                                                 

32 Note that now we have two nested optimizations, both of which seek to minimize the variance 
of the integration error.  At the inner level of nesting, there is the optimization to determine the 
best weights (for given nodal locations D).  This is done analytically, obtaining the weights given 
by the solution of Equation 4-17.  At the outer level, there is the search for the set of nodal values 
D that minimize the variance given by Equaion 4-13 .  This is done numerically (more details on 
the optimization algorithm will be provided in the next section). 

33 Consider the case where two nodes (call them nodes j  and 'j ) have identical coordinates.  In 
this case, their weights can take any pair of values that satisfy the condition jjj www =+ '  (one 

of which can be made negative), where 
j

w is the weight that one would obtain for node j  if 

node 'j  were removed.  
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coordinates to the “physical” space of ,, pRPΔ  etc., in a manner that takes into account their 
joint probability distribution.   

This transformation of each nodal value from normal space (represented by 
T

mXXXX ],,,[ 21 L= ) to “physical” space (represented by T
mZZZZ ],,,[ 21 L= )  34 consists of 

two steps.  First, we write the joint cumulative distribution of the physical quantities as a product 
of conditional cumulative distributions, i.e.,  

 

 
12121312121 |,|| −

×××=
mmm ZZZZZZZZZZZZZ FFFFF LL L  ( 4-18 )

 

Then, we sequentially transform each normally distributed jX  into the corresponding physical 
quantity jZ ,  using their corresponding conditional cumulative distributions to ensure that jZ has 
the proper conditional distribution, i.e., 

 )]([1
| 11 jZZZj XFZ

jj
Φ= −

−L  ( 4-19 )

where )(⋅Φ  represents the standard normal cumulative distribution function and ][1
| 11

⋅−

−jj ZZZF L  

represents the inverse of the cumulative distribution function of jZ  given 121 ..., −jZZZ .  This 
transformation is performed only once for each sampling node, after the optimization in normal 
space has been completed.   

This approach for the transformation of multivariate probability distributions is the so-called 
Rosenblatt transformation (see Madsen et al., 1986). It is commonly used in structural reliability 
theory and is built into structural reliability software (e.g., Gollwitzer et al., 2006; Risk 
Engineering, 1996).   The approach allows the practical implementation of Bayesian Quadrature 
for  virtually any choice of joint probability distributions, as required for JPM-OS.   

One can also achieve the distribution transformations by altering the weights, or by using a 
combination of both approaches.  This is not done in this study. 

4.5.2 Correlation Structure of )(xp : the choice for ),( yxk  and the specification of 
correlation distances 

We use the correlation structure of )(xp , as represented by the covariance function ),( yxk , to 
specify the importance of the corresponding physical quantity in the surge calculations.  If the 
                                                 

34 In this section and the section that follows, the subscripts denote the coordinates of one point 
in m-dimensional space (j=1,…m).  This is different from Section 4.4.2, where the subscripts 
denote different sampling nodes (i=1,…,n) in m-dimensional space. 
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physical quantity corresponding to the j-th component of x is important, correlation decays faster 
in that direction than in the direction corresponding to a less important quantity.    

One of the consequences of formulating and solving the Bayesian Quadrature problem in normal 
space is that we must also define ),( yxk in normal space.  Also, we must choose a functional 
form that facilitates analytical evaluation of the integrals in Equations 4-14 and 4-15.  

We choose the double-exponential functional form for the covariance function, i.e.,  
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where jc  controls how quickly the correlation decays in the direction of a particular component 
35 36 37.    jc  is related to the corresponding correlation distance or scale of fluctuation jd  

(Vanmarcke, 1983) by the relation jj cd π= .  Because the algorithm operates in standard 
normal space, jc  and jd  have no physical units.      

One of the critical steps in the Quadrature JPM-OS analysis is the specification of the correlation 
distances jd  associated with the various hurricane characteristics.  This is made more difficult 
because these correlation distances are specified in normal space, not in physical space.  The 
following discussion provides some guidance to facilitate this step.  

In a relative sense, the Quadrature JPM-OS algorithm tends to spread the sampling nodes more 
faithfully along those directions for which )(xp has lower correlation distances, providing a 
closer match to the marginal probability distributions in those directions.  Thus, it is important to 
specify correlation distances that relate to the importance of the various physical quantities, in 
order to obtain an optimal allocation of effort among the various directions.   

In an absolute sense, numerical experiments in one dimension show that low values of the 
correlation distance cause the algorithm to be more cautious and tend towards equal weights, 
while high values provide a wide range of weights, approaching those obtained by Gaussian 
quadrature.  The ideal choice is somewhere in between. 

                                                 

35 In this section, the subscripts denote the coordinates of one point in m-dimensional space 
(j=1,…m); x and y denote two points in that m-dimensional space.       

36 This correlation model implies that the random field is homogeneous and twice differentiable 
(in a second-order sense). 

37 The variance 2σ  cancels out in the results of section 4.4.2 and will be omitted in the material 
that follows. 
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The following values provide preliminary guidance for the choice of correlation distances: 

• Sensitive (important):  jd =1 to 3  

• Insensitive (unimportant):  jd = 4 to 6 

4.5.3 Evaluation of Required Integrals 

The choice of a normal distribution for )(xf  and a double-exponential correlation function 
(Equation 4-20) make it possible to evaluate the required integrals analytically; this provides 
significant computational advantages for the optimization of the node locations.  The integral 
required for Equation 4-14 takes the form 
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where jc is the scaling parameter in Equation 4-20. 

The integral required for the i-th element of the vector TDU )(  in Equation 4-15 is given by 

 

∏∫
=

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=

m

j j

ji

j
A i c

x

c
dxxfxxk

1
2

2
,

2/1

2 2
exp21)(),(  ( 4-22 )

  where ix  is the vector with the coordinates of the i-th node and jix ,  is its component  in the j-th 
direction.  

4.5.4 Optimization Algorithm 
As was indicated earlier, determination of n optimal sampling points in m dimensions constitutes 
an ( nm× )-dimensional optimization problem.  We perform this optimization using an algorithm 
developed by Powell (2004), which does not require derivatives.  Convergence is fast for the 
number of dimensions and nodes used in this study.  

4.5.5 Closing Remarks 
Because we make a number of assumptions regarding the functional form and parameters of the 
autocovariance function ),( yxk  of ])([)( ηεη >+= xPxp m , it is important to validate the 
Quadrature JPM-OS scheme (i.e., the number of nodes and the correlation distances).   

In this study, we validate the JPM-OS scheme for the larger storms by comparing the cumulative 
distributions of surge obtained using the JPM-OS scheme and a reference case JPM scheme 
(denoted JPM-Heavy (Gold Standard)), using the SLOSH software to compute the surge in both 
schemes.  These comparisons are documented in the main URS report.      

One can also perform this validation using a parametric surge model (e.g., Irish et al., 2007). 
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4.6 APPLICATION OF THE QUADRATURE JPM-OS APPROACH 
 This section documents the application of the Quadrature JPM-OS approach to hurricanes 
affecting the Mississippi coast.  We present separate results for the greater and lesser storms. 

4.6.1 JPM-OS Scheme for Greater Storms 
The following is a description of the JPM-OS 6 scheme, which is the scheme adopted for the 
final calculations, after experimenting with a number of other schemes having different numbers 
of nodes and correlation distances.  This scheme incorporate the rates and probability 
distributions for the greater storms, as developed in Section 3. Table 4-1 shows the various slices 
of the PΔ distribution, their probabilities, and the number of nodes used in the Bayesian-
Quadrature discretization for each slice.  Table 4-2 shows the correlation distances used in the 
Bayesian-Quadrature procedure.  These values were chosen based on the extensive sensitivity 
results presented in the main URS report, and then refined so that they preserve the marginal 
moments of the most important quantities. 

Figure 4-2 provides an illustration of the resulting synthetic storms (for one landfall location; i.e., 
prior to the distance-offsetting step in Section 4.3).  Each chart on the main diagonal shows the 
probability distribution of the corresponding quantity (in the form of a histogram), as represented 
in the JPM-OS 6 discretization.  Each off-diagonal scatter diagram shows how each pair of 
quantities (e.g., PΔ  and Rp) are jointly distributed in the JPM-OS 6 scheme, with the areas of the 
circles being proportional to the associated annual rates.   Table 4-3 lists the corresponding 
parameter values, probabilities, and rates. 

As indicated earlier, we validate the JPM-OS 6 scheme by comparing the cumulative 
distributions of surge obtained using the JPM-OS scheme and a reference-case JPM scheme 
(denoted JPM-Heavy (Gold Standard)), using the SLOSH software to compute the  surge in both 
schemes.  These comparisons were performed for a large number of locations and are 
documented in the main URS report.  This validation was performed prior to integration over ε .  
The match would have been even closer if the comparison had been performed after integration 
over ε  because this step makes )(xp  smoother.    

4.6.2 JPM-OS Scheme for Lesser Storms 
We followed a simpler approach for the lesser storms ( PΔ =31 to 48 mb).  In particular, we did 
not divide the distribution of PΔ  into slices because these storms span a narrower range of PΔ  
and because the associated probability distribution is less skewed.  The number of nodes 
employed is 13. Table 4-4 lists the correlation distances used. 

We initially developed the JPM-OS scheme using the PRp Δ|  distribution shown in Figure 3-7.  
The resulting parameter values were then used to generate the synthetic storms and perform the 
wind, wave, and surge calculations.  Later in the project, we changed the PRp Δ|  for the lesser 
storms to that in Figure 3-10.  We were able to adjust the weights to reflect the new distribution, 
without a significant loss of accuracy in the JPM-OS scheme.  Table 4-5 lists the corresponding 
parameter values, probabilities, and rates. 
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We also validated this JPM-OS scheme (with the adjusted weights).  The validation approach 
was simpler than that used for the greater storms.  It used a parametric surge model somewhat 
simpler than the model of Irish et al. (2008) instead of SLOSH, it considered only one location 
and one storm track, and it used a 36-node JPM-OS scheme as the standard for comparison.  
Results are shown in Figure 4-3.  Checks on statistical moments were also performed.  

4.7 GENERATION OF SYNTHETIC STORMS 
The numerical wind and wave calculations require as inputs the entire history of the synthetic 
storm, since the moment in enters the Gulf.  This history consists of hourly values of the 
coordinates of the storm center, PΔ (or central pressure) , Rp, and forward velocity.  We 
generate this sequence of values from the storm parameters associated with each Quadrature 
JPM-OS node, as described below.   All the storms generated here make landfall at the Coastal 
Reference Point defined in Section 3.  OWI then offsets these storms laterally, as discussed 
earlier. 

The approach we use to generate the storm tracks--given coastfVP ),,( θΔ  and )(offshorepR  -- is a 
purely deterministic approach and is largely based on the approach developed by USACE in their 
probabilistic surge studies for Mississippi and Louisiana (Resio, 2007), and is described below. 

• The geometry of the tracks is similar to the USACE  tracks (Figures 12-14 in Resio, 2007), 
although we use a different algorithm to generate the track geometries.   Also, our algorithm 
can generate tracks with any arbitrary heading between -90 and 90 degrees, instead of being 
restricted to three possible headings.  

• Storms with )(offshorepR > 10 nmi vary in intensity, radius, and Holland B linearly over the last 
90 nm prior to landfall, according to the following rules: 

• Rp (landfall) = 1.3*Rp (offshore) 

• B (offshore) = 1.27 

• B (landfall) = 1.0 

• B (3 hrs after landfall) = 0.9 

• Decrease in PΔ  ( mb) = Rp (offshore, nmi) - 6 (maximum increase is 18 mb, minimum is 
5 mb) 

• Storms with )(offshorepR < 10 nmi do not undergo any weakening or other changes prior to 
landfall. 

• After landfall, linear variation continues for 2 hours, with the same slopes they had prior to 
landfall.  Weakening of PΔ  continues after this point, following the exponential-decay 
model of Vickery and Twisdale (1995). 

Figure 4-4 and Figure 4-5 show the tracks for the greater and lesser synthetic storms, 
respectively.  Tracks that make landfall with a NNW heading are similar in appearance to the 
RICK-fan tracks in Figure 12 of Resio (2007).  More oblique tracks are similar to the + 45-
degree tracks of Resio (2007).  All these storms make landfall at the Coastal Reference Point.  
We will refer to them as the master or reference tracks.  OceanWeather then offset each of these 
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master synthetic storms by pR , creating multiple offset synthetic tracks that cover the entire 
Mississippi coast.  The latter synthetic storms are the ones actually used for the numerical wind, 
wave, and surge calculations. 

Figure 4-6 shows the track and the variation in time of the key storm parameters for one master 
synthetic storm.  This figure, and similar figures for all other synthetic storms, was generated by 
OceanWeather   

The top panel of Figure 4-6 shows the track of the storm we generate here (in color; the master 
track), as well as the offset tracks generated by OceanWeather.  The offset tracks have a spacing 
of Rp and a uniformly-distributed random offset from the master track.    

The three bottom panels of Figure 4-6 show the variation in time of the key storm parameters for 
the master track. The time of landfall is represented by a short vertical stroke.    

4.8 SUMMARY 
This section documents the development of a set of synthetic storms, and associated annual rates, 
based on the probabilistic hurricane model developed in Section 3.  These storms, and their rates, 
are representative of future hurricanes that may generate significant storm surge to the 
inhabitants and infrastructure along the Mississippi coast.   

The section also describes the Quadrature JPM-OS methodology employed to generate these 
synthetic storms, and provides details on the application of this methodology.  Results from 
validation calculations confirm that the accuracy of the Quadrature JPM-OS scheme employed. 

The synthetic storms generated here were used by OceanWeather to generate a complete set of 
synthetic storms, by offsetting them so that they cover the entire Mississippi coast and portions 
of adjacent states.  These storms were then used by URS and other URS contractors to calculate 
the wind, waves, and surge generated by each storm at a number of grid points, and these were 
used to compute surge-exceedence statistics.  These steps are documented in the main URS 
report. 
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Table 4-1.  Discretization of  PΔ  into Slices in JPM-OS 6 Scheme for Greater Storms 

Slice Cat .3 Cat. 4 Cat. 5 
PΔ range (mb) 48-70 70-95 95-135 

Probability 0.615 0.294 0.091 

#of points in 
Bayesian 
Quadrature 

5 7 7 

 

 

 

Table 4-2.  Correlation Distances in JPM-OS 6 Scheme for Greater Storms 

Correlation Distance (std normal units) 
PΔ  

(within slice) Rp Vf Heading 
4 2.5 6 5 
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Table 4-3.  Parameters of JPM-OS 6 scheme for the Greater Storms 

 

StormID 
(OWI 

notation) 
PΔ  

(mb;coast) 
Rp (nmi; 
offshore) Vf(m/s) Theta (deg) Prob. 

Annual Rate 
(each JOS6###% 

track) 
JOS6% 66.69 18.61 6.047 -38.91 1.33E-01 1.32E-03 
JOS6% 57.17 39.82 6.047 -13.49 1.20E-01 2.55E-03 
JOS6% 49.72 22.93 6.047 -38.92 1.33E-01 1.63E-03 
JOS6% 57.17 10.83 6.047 -13.49 1.20E-01 6.94E-04 
JOS6% 57.17 20.77 6.047 56.66 1.08E-01 1.19E-03 
JOS6% 92.95 14.7 5.943 -12.81 3.42E-02 2.68E-04 
JOS6% 78.59 30.8 6.014 -12.82 5.34E-02 8.77E-04 
JOS6% 78.59 16.56 4.349 47.33 4.20E-02 3.71E-04 
JOS6% 78.59 8.904 6.014 -12.82 5.34E-02 2.54E-04 
JOS6% 78.59 16.56 14.54 -12.86 3.49E-02 3.08E-04 
JOS6% 70.02 17.98 5.943 -12.82 3.42E-02 3.28E-04 
JOS6% 78.59 16.56 4.346 -71.04 4.20E-02 3.71E-04 
JOS6% 128.7 11.66 5.943 -12.81 1.06E-02 6.58E-05 
JOS6% 103.7 25.3 6.014 -12.82 1.65E-02 2.23E-04 
JOS6% 103.7 13.6 4.349 47.33 1.30E-02 9.44E-05 
JOS6% 103.7 7.313 6.014 -12.82 1.65E-02 6.44E-05 
JOS6% 103.7 13.6 14.54 -12.86 1.08E-02 7.83E-05 
JOS6% 94.47 14.53 5.943 -12.82 1.06E-02 8.20E-05 
JOS6% 103.7 13.6 4.346 -71.04 1.30E-02 9.43E-05 

Notes 
1:  the Reference storms (e.g., JOS6001) are not assigned any rate.  Only JOS6001A, JOS6001B, etc. are used in 
the probability calculations.  
2.  The annual rate for each storm is calculated as the storm probability displayed here, times the annual rate of 
greater storms (2.88E-4 storms/km/yr), times the storm spacing (Rp) in km.  
3.  The annual rates in the last column are the lambda terms in the report text 
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Table 4-4.  Correlation Distances in JPM-OS Scheme for the Lesser Storms 

DeltaP Rp Vf Heading
2.5 3 5 5

Correlation Distance (std normal units)

 

 

Table 4-5.  Parameters of JPM-OS scheme for the Lesser Storms 

StormID (OWI 
notation) 

PΔ  (mb; 
coast) 

Rp (nmi; 
offshore) Vf(m/s) theta (deg) Prob. 

Annual 
Rate (each 
*% track) 

CAT2001% 46.38 41.59 5.416 8.758 4.74E-02 9.37E-04 
CAT2002% 37.75 53.63 2.995 23.55 2.93E-02 7.47E-04 
CAT2003% 44.28 21.64 3.4 63.87 7.61E-02 7.83E-04 
CAT2004% 40.71 12.72 4.931 -9.324 1.76E-01 1.06E-03 
CAT2005% 31.78 44.24 4.881 -11.27 3.92E-02 8.25E-04 
CAT2006% 32.11 17.19 6.096 31.22 9.30E-02 7.60E-04 
CAT2007% 34.67 24.32 6.941 -71.07 8.75E-02 1.01E-03 
CAT2008% 47.53 16.94 4.378 -31.63 6.26E-02 5.04E-04 
CAT2009% 42.09 27.82 3.71 -59.19 9.49E-02 1.25E-03 
CAT2010% 34.67 24.31 2.458 -5.25 8.75E-02 1.01E-03 
CAT2011% 44.28 21.64 10.5 -13.83 7.62E-02 7.83E-04 
CAT2012% 37.75 53.63 7.894 -45.75 2.93E-02 7.46E-04 
CAT2013% 37.04 29.79 6.644 46.64 1.01E-01 1.44E-03 
Notes 

1:  the Reference storms (e.g., CAT2001) are not assigned any rate.  Only CAT2001A, CAT2001B, etc. 
are used in the probability calculations. 
2.  The annual rate for each storm is calculated as the storm probability, times the annual rate of storms 
(2.567E-4 storms/km/yr), times the storm spacing (Rp) in km.  
3.  The annual rates (last column) are the lambda terms in the report text. 
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Figure 4-1.  Illustration of the conditional distribution of random function )(xp  at 
intermediate points between sampling nodes.  The function )(xp  has been sampled at 3 
nodes 321 ,, xxx .  The solid line displays the conditional mean value.  The dashed lines 
display the conditional mean ±  standard deviation range; the width of this range depends 
on the distance to the nodes and on the autocorrelation function ),( yxk . 
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Figure 4-2.  Graphical representation of the JPM-OS 6 scheme for one landfall location.  
The areas of the circles are proportional to the associated annual rates. 



 

 55

 

 

 

 

Validation of JPM-OS for Lesser Storms:
Cumulative Distribution given Storm Occurrence (Distance=−Rp)
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Figure 4-3.  Validation of JPM-OS scheme for Lesser Storms.
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Figure 4-4.  Map showing the tracks of the synthetic storms in the JPM-OS representation 
of the greater storms.  Each small red square represents an hourly snapshot; size of the  
squares indicates PΔ .  Note that this map shows only the master tracks (i.e., prior to 
offsetting their landfall locations).  Note also that many of the synthetic storms follow 
identical or nearly identical tracks because they have identical or nearly identical values of 
θ  (see Table 4-3).  
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Figure 4-5.  Map showing the tracks of the synthetic storms in the JPM-OS representation 
of the lesser storms.  Each small red square represents an hourly snapshot; size of the  
squares indicates PΔ .  Note that this map shows only the master tracks (i.e., prior to 
offsetting their landfall locations).  
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Figure 4-6.  Track and evolution of storm parameters for one synthetic storm.  Source: 
OceanWeather. 
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5 QUALITY CONTROL AND ASSURANCE 
 

The work presented here was subject to extensive Peer Review during the JPM Group meeting of 
October 31, 2006 (Boston), and the Senior Review Team meetings of January 30 and31, 2007 
(Tallahassee) and May 8 and 9, 2007 (Tallahassee).  In addition, extensive comparisons have 
been performed between the JPM model parameters developed by Risk Engineering and the 
Corps of Engineers MSCIP Study.  Section 3.5 of this report contains comparisons for the most 
important model parameters, namely PΔ exceedence rates, and distribution of PRp Δ| .  
Furthermore, Section 5.4 of URS (2008) contains comparisons in terms of 100-year surges. 

The Risk Engineering principal investigator also reviewed his calculations and results more than 
once, performed internal consistency checks (e.g., checks of distribution moments), and 
compared results to those obtained by him in proprietary studies for the Gulf of Mexico. 
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