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Appendix G 

Preliminary Multiple-Degree-of-
Freedom System Studies 

In focused analytical studies on single-degree-of-freedom (SDOF) systems, it 

was observed that nonlinear response of a system depends on the 

characteristics of the force-displacement capacity boundary.  It was 

demonstrated that lateral dynamic instability of SDOF systems could be 

evaluated through the use of approximate equations or simplified nonlinear 

dynamic analyses based on the characteristics of the system force-

displacement capacity boundary.  

Multiple-degree-of-freedom (MDOF) systems are more complex, and their 

dynamic response is more difficult to estimate than that of SDOF systems. 

Recent studies have suggested that it may be possible to estimate the collapse 

capacity of MDOF systems by using static pushover analyses and performing 

dynamic analysis on equivalent SDOF systems (Bernal, 1998; Vamvatsikos, 

2002; Vamvatsikos and Cornell, 2005a, 2005b).  In particular, Vamvatsikos 

and Cornell (2005b) suggested that the seismic response of MDOF systems 

could be estimated through the use of incremental dynamic analyses on a 

reference SDOF system whose properties are determined through a nonlinear 

static (pushover) analysis.  

This appendix presents the results of preliminary studies of multiple-degree-

of-freedom (MDOF) systems.  It explores the application of nonlinear static 

analyses combined with dynamic analyses of SDOF systems to evaluate the 

lateral dynamic instability of MDOF systems.  On a preliminary basis, it tests 

how approximate measures of lateral dynamic instability developed for 

SDOF systems might work on more complex MDOF systems.  These 

approximate measures include the proposed equation for Rdi (Equation 5-8) 

and the open source software tool Static Pushover 2 Incremental Dynamic 

Analysis, SPO2IDA (Vamvatsikos and Cornell, 2006).   

A total of six buildings ranging in height from 4 to 20 stories are used in this 

investigation.  This set includes two steel moment-resisting frame structures 

and four reinforced concrete moment-resisting frame structures.  Four were 

previously studied by Haselton (2006), and two were previously studied by 
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Vamvatsikos and Cornell (2005b).  Results are described in the sections that 

follow. 

G.1 Four-Story Code-Compliant Reinforced Concrete 
Building 

The subject building is a four-story reinforced concrete special perimeter 

moment frame designed in accordance with modern building code provisions 

(ICC 2003, ASCE 2002, ACI 2002). The building has a story height of 15 ft 

in the first story, and 13 ft in the remaining stories. The design base shear 

coefficient was 0.092. The building was modeled in OpenSEES and analyzed 

using incremental dynamic analysis using 80 recorded time histories which 

were scaled at twenty-two different ground motion intensities. The pushover 

analysis was conducted using a lateral force distribution in accordance with 

ASCE/SEI 7-05 Minimum Design Loads for Buildings and Other Structures 

(ASCE, 2006). Ground motions were scaled to increasing values of the 

pseudo-acceleration spectral ordinate at the fundamental period of vibration 

of the building (T1=1.12s). For a more detailed description of the building 

and its modeling, the reader is referred to Haselton (2006). 

Figure G-1 shows the results from the nonlinear static (pushover) analysis. 

The figure on the left shows the force-deformation curve while the figure on 

the right shows the distribution of story drift ratios at a roof drift ratio of 6%. 

It can be seen that story drifts primarily concentrate in the lower two stories. 

The force-deformation pushover curve is characterized by a gradual loss in 

lateral strength for roof drift ratios between 1% and 3.5%, followed by a 

more pronounced loss in lateral strength for roof drift ratios greater than 

3.5%. 

  

Figure G-1 (a) Monotonic pushover force-deformation curve and (b) story drifts at a roof drift 
ratio of the 0.06 in a four-story concrete frame building (Haselton 2006).  
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Figure G-2 shows one of three simplified tri-linear force-displacement 

capacity boundaries selected to estimate the seismic response of the structure. 

Alternates are shown in Figure G-4 and Figure G-5.  Although a sloping 

intermediate segment might have been somewhat more appropriate for this 

structure, a horizontal intermediate segment was selected in order to evaluate 

the proposed equation for Rdi and results using SPO2IDA. 

 

Figure G-2 Tri-linear capacity boundary selected for approximate analysis.  

Figure G-3 shows the median seismic behavior computed from incremental 

dynamic analyses conducted by Haselton (2006). These results are indicated 

as MDOF IDA in the figure.  Also shown are results computed using the 

proposed equation for Rdi and approximate results from SPO2IDA.  In the 

figure, Rdi and SPO2IDA both provide a good approximation of the collapse 

capacity of the building.  

 
Figure G-3 Comparison of median collapse capacity for a four-story code-

compliant concrete frame building computed using incremental 
dynamic analysis and approximate procedures.  
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To explore sensitivity to the idealization of the force-displacement capacity 

boundary, two alternate idealizations, along with corresponding results, are 

shown in Figure G-4 and Figure G-5.  Although median collapse capacities 

change with the selection of the force-displacement capacity boundary, the 

observed changes are relatively small.  

 

      
Figure G-4 Effect of selecting an alternate force-displacement capacity boundary on 

estimates of median collapse capacity for a four-story code-compliant concrete 
frame building.  

       

Figure G-5 Effect of selecting an alternate force-displacement capacity boundary on 
estimates of median collapse capacity for a four-story code-compliant concrete 
frame building.  

The median results shown above represent a measure of the central tendency 

of the response of the system; however, considerable dispersion exists around 

the median.  To illustrate record-to-record variability, Figure G-6 shows 
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incremental dynamic analysis results for all 80 ground motions. It can be 

seen that there are ground motions that produce the collapse of the structure 

at intensities equal to one third of the median intensity.  Similarly, there are 

ground motions that require an intensity that is twice as large as the median 

intensity in order to produce the collapse of the structure.   

Also shown in Figure G-6 are the 16th and 84th percentiles of the results. 

Approximately 70% of the ground motions fall between these two dashed 

lines.  When estimating the collapse probability of a structure, it is important 

to consider this variability. For more information, the reader is referred to 

Haselton (2006). 
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Figure G-6 Incremental dynamic analysis results for a four-story code-compliant 

concrete frame building subjected to 80 ground motions (adapted from 
Haselton, 2006).  

G.2 Eight-Story Code-Compliant Reinforced Concrete 
Building 

The subject building is an eight-story reinforced concrete special perimeter 

moment frame designed in accordance with modern building code provisions 

(ICC 2003, ASCE 2002, ACI 2002). The building has a story height of 15 ft 

in the first story, and 13 ft in the remaining stories. The design base shear 

coefficient was 0.05. The building was modeled in OpenSEES and analyzed 

using incremental dynamic analysis with the same 80 recorded ground 

motions that were used to analyze the four-story building. The pushover 

analysis was performed using a lateral force distribution in accordance with 

Maximum Story Drift Ratio
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ASCE/SEI 7-05. The fundamental period of vibration of the building is 

T1=1.71s. For a more detailed description of the building and its modeling, 

the reader is referred to Haselton (2006). 

Figure G-7 shows the results from the nonlinear static (pushover) analysis of 

the building. The figure on the left shows the force-deformation curve while 

the figure on the right shows the distribution of story drift ratios at a roof 

drift ratio of 2.6%. It can be seen that story drifts primarily concentrate in the 

lower four stories. The force-deformation pushover curve is characterized by 

a hardening segment for roof drift ratios between 0.3% and 0.8%, followed 

by softening segment for roof drift ratios greater than 0.8%. 

  

Figure G-7 (a) Monotonic pushover force-deformation curve and (b) distribution of story drift 
demands at a roof drift ratio of 2.6% in an eight-story concrete frame building 
(Haselton 2006).  

Figure G-8 shows the simplified tri-linear force-displacement capacity 

boundary selected to evaluate the proposed equation for Rdi and results using 

SPO2IDA. 

 

 

Figure G-8 Tri-linear capacity boundary selected for approximate analyses using SPO2IDA. 
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Figure G-9 shows the median seismic behavior computed from incremental 

dynamic analyses conducted by Haselton (2006). These results are indicated 

as MDOF IDA in the figure.  Also shown are results computed using the 

proposed equation for Rdi and approximate results from SPO2IDA.  In the 

figure, Rdi provides a good estimate of the median collapse capacity, while 

SPO2IDA overestimates the collapse capacity somewhat.  Figure G-10 

shows incremental dynamic analysis results for all ground motion records. 

 
Figure G-9 Comparison of median collapse capacity for an eight-story 

code-compliant concrete frame building computed using 
incremental dynamic analysis and approximate procedures. 
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Figure G-10 Incremental dynamic analysis results for an eight-story code-compliant 

concrete frame building subjected to 80 ground motions (adapted from 
Haselton, 2006).  
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G.3 Twelve-Story Code-Compliant Reinforced 
Concrete Building 

The subject building is a twelve-story reinforced concrete special perimeter 

moment frame designed in accordance with modern building code provisions 

(ICC 2003, ASCE 2002, ACI 2002). Similarly to the two previous buildings, 

the story height is 15 ft in the first story and 13 ft in the remaining stories. 

The design base shear coefficient was 0.044. The building was modeled in 

OpenSEES and analyzed using an incremental dynamic analysis using the 

same 80 recorded ground motions that were used to analyze the four-story 

building. The pushover analysis was again done using a lateral force 

distribution in accordance with ASCE/SEI 7-05. The fundamental period of 

vibration of the building is T1=2.01s. For a more detailed description of the 

building and its modeling, the reader is referred to Haselton (2006). 

Figure G-11 shows the results from the nonlinear static (pushover) analysis 

of the building. The figure on the left shows the force-deformation curve 

while the figure on the right shows the distribution of story drift ratios at a 

roof drift ratio of 2.7%. It can be seen that story drifts decrease 

approximately linearly with increasing height with the largest story drifts 

occurring in the two lower stories. The force-deformation pushover curve is 

characterized by a hardening segment for roof drift ratios between 0.3% and 

0.8%, followed by softening segment for roof drift ratios greater than 0.8%. 

   

Figure G-11 (a) Monotonic pushover force-deformation curve and (b) distribution of story drift 
demands at a roof drift ratio of 2.7% in a twelve-story concrete frame building 
(Haselton 2006).  

Figure G-12 shows the simplified tri-linear force-displacement capacity 

boundary selected to evaluate the proposed equation for Rdi and results using 

SPO2IDA.  It is assumed that at a roof drift ratio of 2.6% the structure 

reaches its maximum deformation capacity and a total loss in strength occurs.  
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Figure G-13 compares the median seismic behavior computed from 

incremental dynamic analyses conducted by Haselton (2006), indicated in the 

figure as MDOF IDA, with results computed using the proposed equation for 

Rdi and approximate results from SPO2IDA.  In the figure, both approximate 

methods somewhat overestimate the collapse capacity of the structure.  

Figure G-14 shows incremental dynamic analysis results for all ground 

motion records.  

 

 

Figure G-12 Tri-linear capacity boundary selected for approximate analyses 
using SPO2IDA. 

 

 

Figure G-13 Comparison of median collapse capacity for a twelve-story 
code-compliant concrete frame building computed using 
incremental dynamic analysis and approximate procedures. 
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Figure G-14 Incremental dynamic analysis results for a twelve-story code-

compliant concrete frame building subjected to 80 ground 
motions (adapted from Haselton, 2006).  

G.4 Twenty-Story Code-Compliant Reinforced 
Concrete Building 

The subject building is a twenty-story reinforced concrete special perimeter 

moment frame designed in accordance with modern building code provisions 

(ICC 2003, ASCE 2002, ACI 2002). The story height is 15 ft in the first story 

and 13 ft in the remaining stories. The design base shear coefficient was 

0.044. The building was modeled in OpenSEES and analyzed using an 

incremental dynamic analysis using the same 80 recorded ground motions 

that were used to analyze the four-story building. The pushover analysis was 

again done using a lateral force distribution in accordance with ASCE/SEI 7-

05. The fundamental period of vibration of the building is T1=2.63s. For a 

more detailed description of the building and its modeling, the reader is 

referred to Haselton (2006). 

Figure G-15 shows the results from the nonlinear static (pushover) analysis 

of the building. The figure on the left shows the force-deformation curve 

while the figure on the right shows the distribution of story drift ratios at a 

roof drift ratio of 1.8%. It can be seen that story drifts decrease 

approximately linearly with increasing height, with the largest story drifts 

occurring in the lower two stories. The force-deformation pushover curve is 

characterized by a slight softening segment for roof drift ratios between 0.3% 

Maximum Story Drift Ratio



FEMA P440A G: Preliminary Multiple-Degree-of-Freedom System Studies G-11 

and 0.9%, followed by steeper softening segment for roof drift ratios greater 

than 0.9%. 

      

Figure G-15 (a) Monotonic pushover force-deformation curve and (b) distribution of story drift 
demands at a roof drift ratio of 1.8% in a twenty-story concrete frame building 
(Haselton 2006).  

Figure G-16 shows the simplified tri-linear force-displacement capacity 

boundary selected to evaluate the proposed equation for Rdi and results using 

SPO2IDA.  It is assumed that at a roof drift ratio of 1.85% the structure 

reaches its maximum deformation capacity and a total loss in strength occurs.  

 

Figure G-16 Tri-linear capacity boundary selected for approximate analyses 
using SPO2IDA. 

Figure G-17 compares the median seismic behavior computed from 

incremental dynamic analyses conducted by Haselton (2006), indicated in the 

figure as MDOF IDA, with results computed using the proposed equation for 

Rdi and approximate results from SPO2IDA.  In the figure, proposed equation 

for Rdi provides a good estimate of the median collapse capacity, while 

SPO2IDA somewhat overestimates the collapse capacity.  Figure G-18 

shows incremental dynamic analysis results for all ground motion records.  
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Figure G-17 Comparison of median collapse capacity for a twenty-story 

code-compliant concrete frame building computed using 
incremental dynamic analysis and approximate procedures.  
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Figure G-18 Incremental dynamic analysis results for a twenty-story code-
compliant concrete frame building subjected to 80 ground 
motions (adapted from Haselton, 2006).  
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G.5 Nine-Story Pre-Northridge Steel Moment-Resisting 
Frame Building 

The subject building is a nine-story steel moment-resisting frame designed 

for the FEMA-funded SAC project in accordance with pre-Northridge code 

requirements for Los Angeles (ICBO, 1994). The building has a single-story 

basement that is 12 ft in height.  The first story height is 18 ft and the 

remaining stories are 13 ft uniformly.  The building is symmetric in plan with 

six bays of 30 ft in each direction. There is a perimeter moment-resisting 

frame designed for lateral-force-resistance, while internal gravity columns 

carry most of the vertical load.  The building was modeled in OpenSEES and 

analyzed using incremental dynamic analysis with 30 “ordinary” ground 

motions. The pushover analysis was done using a triangular lateral force 

distribution. The fundamental period of vibration of the building is T1=2.3s. 

For a more detailed description of the building and its modeling, the reader is 

referred to Gupta and Krawinkler (1999). 

The results from a nonlinear static (pushover) analysis of the building are 

shown in Figure G-19. The force-deformation pushover curve is 

characterized by a hardening segment for roof drift ratios between 1% and 

2.5%, followed by a softening segment that terminates when the building 

reaches zero strength at 5% roof drift.  The simplified tri-linear force-

displacement capacity boundary, also shown in Figure G-19, was selected to 

evaluate the proposed equation for Rdi and results using SPO2IDA.  In both 

cases the hardening segment has 13% of the elastic stiffness while the 

negative stiffness is -74% of elastic. 

Figure G-20 shows the median seismic behavior computed from incremental 

dynamic analyses conducted by Vamvatsikos and Fragiadakis (2006). These 

results are indicated as MDOF IDA in the figure.  Also shown are results 

computed using the proposed equation for Rdi and approximate results from 

SPO2IDA.  In the figure, both Rdi and SPO2IDA provide a good 

approximation of the collapse capacity of the building.  
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Figure G-19 Monotonic pushover force-deformation curve, and tri-linear 
approximation, for a nine-story pre-Northridge steel moment 
frame building (adapted from Gupta and Krawinkler, 1999).  

 

 
 

Figure G-20 Comparison of median collapse capacity for a nine-story pre-
Northridge steel moment frame building computed using 
incremental dynamic analysis and approximate procedures. 
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G.6 Twenty-Story Pre-Northridge Steel Moment-
Resisting Frame Building 

The subject building is a twenty-story steel moment resisting frame designed 

for the FEMA-funded SAC project in accordance with pre-Northridge code 

requirements for Los Angeles (ICBO, 1994). The building has a basement 

consisting of two stories that are 12 ft in height. The first story height is 18 ft 

and the remaining stories are 13 ft uniformly. The building is slightly 

asymmetric in plan, with five bays of 20 ft in one direction and six bays of 20 

ft in the other direction. There is a perimeter moment-resisting frame 

designed for lateral-force-resistance.  Four internal gravity columns carry the 

vertical loads.  The building was modeled in Drain-2DX and analyzed using 

incremental dynamic analysis with 30 “ordinary” ground motions. The 

pushover analysis was done using a parabolic (k = 2) lateral force 

distribution. The fundamental period of vibration of the building is T1=4.0s. 

For a more detailed description of the building and its modeling, the reader is 

referred to Gupta and Krawinkler (1999). 

The results from the nonlinear static (pushover) analysis of the building are 

shown in Figure G-21. The force-deformation pushover curve is 

characterized by a short hardening segment (5% stiffness ratio) from 0.7% to 

1.2% roof drift ratio that then turns negative (-24% stiffness ratio) and 

terminates when the building reaches zero strength at 4% roof drift.  The 

simplified tri-linear force-displacement capacity boundary, also shown in 

Figure G-21, was selected to evaluate the proposed equation for Rdi and 

results using SPO2IDA.  

Figure G-22 shows the median seismic behavior computed from incremental 

dynamic analyses conducted by Vamvatsikos and Cornell (2006). These 

results are indicated as MDOF IDA in the figure.  Also shown are results 

computed using the proposed equation for Rdi and approximate results from 

SPO2IDA.  In the figure, Rdi overestimates the collapse capacity of the 

building by about 25%, while SPO2IDA provides a good approximation. 
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Figure G-21 Monotonic pushover force-deformation curve, and tri-linear 
approximation, for a twenty-story pre-Northridge steel moment 
frame building (adapted from Gupta and Krawinkler, 1999).  

 

 

Figure G-22 Comparison of median collapse capacity for a twenty-story pre-
Northridge steel moment frame building computed using 
incremental dynamic analysis and approximate procedures. 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.00 0.05 0.10 0.15 0.20

Maximum Story Drift Ratio

Sa(T=4.0s)/g

 MDOF IDA 
 SDO2IDA 
 Rdi 



FEMA P440A G: Preliminary Multiple-Degree-of-Freedom System Studies G-17 

G.7 Summary and Recommendations 

The studies documented above indicate that the application of procedures 

developed for SDOF systems to several representative MDOF moment frame 

systems produces reasonable approximations of the median intensity causing 

lateral dynamic instability.  This was true in the case of both the proposed 

equation for Rdi and simplified nonlinear dynamic analysis using SPO2IDA.  

These results lead to a recommendation for more thorough investigation of 

MDOF systems to modify, or further refine, the procedures presented here.   
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