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T he views, opinions, findings, conclusions, or recommenda-
tions expressed in this publication are those of the authors 
and do not necessarily reflect the official policy or position of 

the Department of Homeland Security (DHS), Federal Emergency 
Management Agency (FEMA), or other federal agencies. The publica-
tion of these views by FEMA does not confer any individual rights or 
cause of action against the United States. Additionally, neither FEMA 
or any of its employees makes any warrantee, expressed or implied, or 
assumes any legal liability or responsibility for the accuracy, complete-
ness, or usefulness of any information, product, or process included in 
this publication. Users of information from this publication assume all 
liability arising from such use.

Any appearances of hyperlinks do not constitute endorsement by FEMA 
of the website or the information, products, or services contained there-
in.  For links outside FEMA, FEMA does not exercise any editorial control 
over the information you may find at these locations.  Users must adhere 
to any intellectual property rights contained in this publication or in ma-
terial in linked websites.
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Acknowledgments
Background

O ur society places great importance on the education system and 
its schools, and has a tremendous investment in current and fu-
ture schools. Nearly 50 million students were expected to attend 

approximately 99,000 public elementary and secondary schools in the 
fall of 2009, with an additional 5.8 million expected to attend private 
schools.1 The sizes of these school facilities range from one-room rural 
schoolhouses to citywide and mega schools that house 5,000 or more 
students. The school is both a place of 
learning and an important community re-
source and center.

This publication is concerned with the 
protection of schools and their occu-
pants against natural hazards. Architects 
and engineers deal with natural hazards 
in building design and construction and 
building codes have provisions for protec-
tion against natural hazards.

This manual addresses two core concepts: multi-hazard design and per-
formance-based design. Neither is revolutionary, but both represent an 
evolution in design thinking that is in tune with the increasing complex-
ity of today’s buildings and that takes advantage of developments and 
innovations in building technology:

1 U.S. Department of Education, National Center for Education Statistics, Fast Facts, Back to 
School Stats, http://nces.ed.gov/fastfacts/display.asp?id=372, accessed April 19, 2010.

http://nces.ed.gov/fastfacts/display.asp?id=372
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n Multi-hazard design recognizes the fundamental characteristics of 
hazards and how they interact, so that design for protection becomes 
integrated with all the other design demands.

n Performance-based design suggests conducting a systematic investi-
gation to ensure that the specific concerns of building owners and 
occupants are addressed, rather than relying on only the minimum 
requirements of the building code for protection against hazards. 
Building codes focus on providing life safety, while property pro-
tection is secondary. Performance-based design provides additional 
levels of protection that cover property damage and functional inter-
ruption within a financially-feasible context. 

This publication stresses that the identification of hazards and their fre-
quency and careful consideration of design to resist these hazards must 
be integrated with all other design issues, and be included from the in-
ception of the site selection and building design process. Although the 
basic issues to be considered in planning a school construction program 
are more or less common to all school districts, the specific processes 
differ greatly because each school district has its own approach. Districts 
vary in size, from a rural district responsible for only a few schools, to 
a city district or statewide system overseeing a complex program of all 
school types and sizes. Any of these districts may be responsible for new 
design and construction, renovations, and additions. While one district 
may have a long-term program of school construction and be familiar 
with programming, financing, hiring designers, bidding procedures, 
contract administration, and commissioning a new building, another 
district may not have constructed a new school for decades, and have no 
staff members familiar with the process.

Scope

T his publication is intended to provide design guidance for the 
protection of school buildings and their occupants against natu-
ral hazards. It focuses on the design of elementary and secondary 

schools (K–12), as well as repair, renovation, and additions to exist-
ing schools. It is one of a series of publications in which multi-hazard 
and performance-based design are addressed (FEMA 577, Design Guide 
for Improving Hospital Safety in Earthquakes, Floods, and High Winds, and 
FEMA 543, Design Guide for Improving Critical Facility Safety from Flooding 
and High Winds). 

This publication considers the safety of school buildings to occupants, 
and the economic losses and social disruption caused by building dam-
age and destruction. The volume covers three natural hazards that have 
the potential to result in unacceptable risk and loss: earthquakes, floods, 
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and high winds. A companion volume, FEMA 428, Primer to Design Safe 
School Projects in Case of Terrorist Attacks, covers the manmade hazards of 
physical, chemical, biological, and radiological attacks.

This publication is intended to assist design professionals and school of-
ficials involved in the technical and financial decisions related to school 
construction, repair, and renovations. 

Organization and Content of the Manual

C hapters 1–3 present issues and background information that are 
common to all hazards. Chapters 4–6 cover the development of 
specific risk management measures for each of the three natural 

hazards addressed.

Chapter 1 opens with a brief outline of the past, present, and future of 
school design. Past school design is important because many of these 
older, and even historic, schools are still in use and may be exposed to 
the effects of earthquakes, floods, and high winds. 

Chapter 2 introduces the concept of performance-based design, an ap-
proach to design that is driven by the desired performance of a new or 
retrofitted facility. 

Chapter 3 introduces the concept of multi-hazard design and presents 
a general description and comparison of the hazards, including charts 
that show how the design to resist one hazard may interact with the de-
sign for other hazards. 

Chapters 4, 5, and 6 outline how to address risk management 
concerns for protection of schools against earthquakes, floods, 
and high winds, respectively. Information is presented on the 
nature of each hazard and its effect on vulnerability, as well as 
and the consequences of building exposure. Procedures for 
risk assessment are followed by descriptions of current meth-
ods of reducing the effects of each hazard. These methods 
vary, depending on the hazard under consideration. 

Appendix A contains a list of acronyms that appear in this 
manual. 

This publication provides recommendations to create safe 
schools, but is necessarily limited. Readers should not ex-
pect to use the information directly to develop plans and 



iv DESIGN GUIDE FOR IMPROVING SCHOOL SAFETY IN EARTHQUAKES, FLOODS, AND HIGH WINDS

FOREWORD AND ACKNOWLEDGMENTS

specifications. Rather, the information is intended to help designers 
and facility decision-makers, who may be unfamiliar with the concepts 
involved, to understand fundamental approaches to risk mitigation plan-
ning and design. With this understanding, they can then approach the 
implementation phase of detailed planning, which involves consultants, 
procurement personnel, and project administration. 
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