Coastal Construction Manual

FEMA P-55 / Volume II / August 2011
Coastal Construction Manual

FEMA P-55 / Volume II / August 2011
All illustrations in this document were created by FEMA or a FEMA contractor unless otherwise noted.

All photographs in this document are public domain or taken by FEMA or a FEMA contractor, unless otherwise noted.
Preface

The 2011 Coastal Construction Manual, Fourth Edition (FEMA P-55), is a two-volume publication that provides a comprehensive approach to planning, siting, designing, constructing, and maintaining homes in the coastal environment. Volume I of the Coastal Construction Manual provides information about hazard identification, siting decisions, regulatory requirements, economic implications, and risk management. The primary audience for Volume I is design professionals, officials, and those involved in the decision-making process.

Volume II contains in-depth descriptions of design, construction, and maintenance practices that, when followed, will increase the durability of residential buildings in the harsh coastal environment and reduce economic losses associated with coastal natural disasters. The primary audience for Volume II is the design professional who is familiar with building codes and standards and has a basic understanding of engineering principles.

Volume II is not a standalone reference for designing homes in the coastal environment. The designer should have access to and be familiar with the building codes and standards that are discussed in Volume II and listed in the reference section at the end of each chapter. The designer should also have access to the building codes and standards that have been adopted by the local jurisdiction if they differ from the standards and codes that are cited in Volume II. If the local jurisdiction having authority has not adopted a building code, the most recent code should be used. Engineering judgment is sometimes necessary, but designers should not make decisions that will result in a design that does not meet locally adopted building codes.

The topics that are covered in Volume II are as follows:

- **Chapter 7** – Introduction to the design process, minimum design requirements, losses from natural hazards in coastal areas, cost and insurance implications of design and construction decisions, sustainable design, and inspections.
Chapter 8 – Site-specific loads, including from snow, flooding, tsunamis, high winds, tornadoes, seismic events, and combinations of loads. Example problems are provided to illustrate the application of design load provisions of ASCE 7-10, *Minimum Design Loads for Buildings and Other Structures*.

Chapter 9 – Load paths, structural connections, structural failure modes, breakaway walls, building materials, and appurtenances.

Chapter 10 – Foundations, including design criteria, requirements and recommendations, style selection (e.g., open, closed), pile capacity in soil, and installation.

Chapter 11 – Building envelope, including floors in elevated buildings, exterior doors, windows and skylights, non-loading-bearing walls, exterior wall coverings, soffits, roof systems, and attic vents.

Chapter 12 – Installing mechanical equipment and utilities.

Chapter 13 – Construction, including the foundation, structural frame, and building envelope. Common construction mistakes, material selection and durability, and techniques for improving resistance to decay and corrosion are also discussed.

Chapter 14 – Maintenance of new and existing buildings, including preventing damage from corrosion, moisture, weathering, and termites; building elements that require frequent maintenance; and hazard-specific maintenance techniques.

Chapter 15 – Evaluating existing buildings for the need for and feasibility of retrofitting for wildfire, seismic, flood, and wind hazards and implementing the retrofitting. Wind retrofit packages that can be implemented during routine maintenance are also discussed (e.g., replacing roof shingles).

For additional information on residential coastal construction, see the FEMA Residential Coastal Construction Web site at http://www.fema.gov/rebuild/mat/fema55.shtm.
Acknowledgments

Fourth Edition Authors and Key Contributors
William Coulbourne, Applied Technology Council
Christopher P. Jones, Durham, NC
Omar Kapur, URS Group, Inc.
Vasso Koumoudis, URS Group, Inc.
Philip Line, URS Group, Inc.
David K. Low, DK Low and Associates
Glenn Overcash, URS Group, Inc.
Samantha Passman, URS Group, Inc.
Adam Reeder, Atkins
Laura Seitz, URS Group, Inc.
Thomas Smith, TLSmith Consulting
Scott Tezak, URS Group, Inc. – Consultant Project Manager

Fourth Edition Volume II Reviewers and Contributors
Katy Goolsby-Brown, FEMA Region IV
John Ingargiola, FEMA Headquarters – Technical Assistance and Research Contracts Program Manager
John Plisich, FEMA Region IV
Paul Tertell, FEMA Headquarters – Project Manager
Ronald Wanhanen, FEMA Region VI
Gregory P. Wilson, FEMA Headquarters
Brad Douglas, American Forest and Paper Association
Gary Ehrlich, National Association of Home Builders
Dennis Graber, National Concrete Masonry Association
David Kriebel, United States Naval Academy
Marc Levitan, National Institute of Standards and Technology
Tim Mays, The Military College of South Carolina
Sam Nelson, Texas Department of Insurance
Janice Olshesky, Olshesky Design Group, LLC
Michael Powell, Delaware Department of Natural Resources and Environmental Control
David Prevatt, University of Florida
Timothy Reinhold, Insurance Institute for Business & Home Safety
Tom Reynolds, URS Group, Inc.
Michael Rimoldi, Federal Alliance for Safe Homes
Randy Shackelford, Simpson Strong-Tie
John Squerciati, Dewberry
Keqi Zhang, Florida International University

Fourth Edition Technical Editing, Layout, and Illustration
Diana Burke, URS Group, Inc.
Lee-Ann Lyons, URS Group, Inc.
Susan Ide Patton, URS Group, Inc.
Billy Ruppert, URS Group, Inc.
Contents

Chapter 7. Pre-Design Considerations

7.1 Design Process .. 7-2

7.2 Design Requirements .. 7-3

7.3 Determining the Natural Hazard Risk .. 7-3

7.4 Losses Due to Natural Hazards in Coastal Areas ... 7-5

7.5 Initial, Long-Term, and Operational Costs .. 7-6

7.5.1 Cost Implications of Siting Decisions .. 7-7

7.5.2 Cost Implications of Design Decisions .. 7-7

7.5.3 Benefits and Cost Implications of Siting, Design, and Construction Decisions 7-11

7.6 Hazard Insurance ... 7-12

7.6.1 Flood Insurance ... 7-13

7.6.1.1 Rating Factors ... 7-13

7.6.1.2 Coverage .. 7-17

7.6.1.3 Premiums .. 7-18

7.6.1.4 Designing to Achieve Lower Flood Insurance Premiums ... 7-20

7.6.2 Wind Insurance .. 7-21

7.6.2.1 Territory ... 7-22

7.6.2.2 Fire Protection Class ... 7-22

7.6.2.3 Building Code Effectiveness Grading Schedule .. 7-22

7.6.2.4 Construction Type ... 7-23

7.6.2.5 Protective Devices .. 7-23

7.6.3 Earthquake Insurance .. 7-24

7.7 Sustainable Design Considerations ... 7-24

7.8 Inspection Considerations ... 7-25

7.9 References ... 7-26
Chapter 8. Determining Site-Specific Loads

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Dead Loads</td>
<td>8-3</td>
</tr>
<tr>
<td>8.2</td>
<td>Live Loads</td>
<td>8-3</td>
</tr>
<tr>
<td>8.3</td>
<td>Concept of Tributary or Effective Area and Application of Loads to a Building</td>
<td>8-4</td>
</tr>
<tr>
<td>8.4</td>
<td>Snow Loads</td>
<td>8-5</td>
</tr>
<tr>
<td>8.5</td>
<td>Flood Loads</td>
<td>8-5</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Design Flood</td>
<td>8-5</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Design Flood Elevation</td>
<td>8-6</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Design Stillwater Flood Depth</td>
<td>8-9</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Design Breaking Wave Height</td>
<td>8-15</td>
</tr>
<tr>
<td>8.5.6</td>
<td>Design Flood Velocity</td>
<td>8-15</td>
</tr>
<tr>
<td>8.5.7</td>
<td>Hydrostatic Loads</td>
<td>8-17</td>
</tr>
<tr>
<td>8.5.8</td>
<td>Wave Loads</td>
<td>8-20</td>
</tr>
<tr>
<td>8.5.8.1</td>
<td>Breaking Wave Loads on Vertical Piles</td>
<td>8-21</td>
</tr>
<tr>
<td>8.5.8.2</td>
<td>Breaking Wave Loads on Vertical Walls</td>
<td>8-22</td>
</tr>
<tr>
<td>8.5.8.3</td>
<td>Wave Slam</td>
<td>8-25</td>
</tr>
<tr>
<td>8.5.9</td>
<td>Hydrodynamic Loads</td>
<td>8-28</td>
</tr>
<tr>
<td>8.5.10</td>
<td>Debris Impact Loads</td>
<td>8-31</td>
</tr>
<tr>
<td>8.5.11</td>
<td>Localized Scour</td>
<td>8-34</td>
</tr>
<tr>
<td>8.5.12</td>
<td>Flood Load Combinations</td>
<td>8-37</td>
</tr>
<tr>
<td>8.6</td>
<td>Tsunami Loads</td>
<td>8-47</td>
</tr>
<tr>
<td>8.7</td>
<td>Wind Loads</td>
<td>8-47</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Determining Wind Loads</td>
<td>8-49</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Main Wind Force Resisting System</td>
<td>8-52</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Components and Cladding</td>
<td>8-61</td>
</tr>
<tr>
<td>8.8</td>
<td>Tornado Loads</td>
<td>8-67</td>
</tr>
<tr>
<td>8.9</td>
<td>Seismic Loads</td>
<td>8-68</td>
</tr>
<tr>
<td>8.10</td>
<td>Load Combinations</td>
<td>8-73</td>
</tr>
<tr>
<td>8.11</td>
<td>References</td>
<td>8-81</td>
</tr>
</tbody>
</table>
Chapter 9. Designing the Building ... 9-1

9.1 Continuous Load Path.. 9-1
 9.1.1 Roof Sheathing to Framing Connection (Link #1) 9-4
 9.1.2 Roof Framing to Exterior Wall (Link #2) ... 9-8
 9.1.3 Wall Top Plate to Wall Studs (Link #3) .. 9-10
 9.1.4 Wall Sheathing to Window Header (Link #4) 9-12
 9.1.5 Window Header to Exterior Wall (Link #5) 9-12
 9.1.6 Wall to Floor Framing (Link #6) ... 9-15
 9.1.7 Floor Framing to Support Beam (Link #7) 9-17
 9.1.8 Floor Support Beam to Foundation (Pile) (Link #8) 9-18

9.2 Other Load Path Considerations ... 9-21
 9.2.1 Uplift Due to Shear Wall Overturning ... 9-21
 9.2.2 Gable Wall Support ... 9-24
 9.2.3 Connection Choices ... 9-24
 9.2.4 Building Eccentricities .. 9-27
 9.2.5 Framing System ... 9-27
 9.2.5.1 Platform Framing ... 9-27
 9.2.5.2 Concrete/Masonry .. 9-27
 9.2.5.3 Moment-Resisting Frames .. 9-28
 9.2.6 Roof Shape ... 9-30

9.3 Breakaway Wall Enclosures ... 9-30

9.4 Building Materials ... 9-33
 9.4.1 Materials Below the DFE .. 9-34
 9.4.2 Materials Above the DFE .. 9-35
 9.4.3 Material Combinations ... 9-35
 9.4.4 Fire Safety Considerations .. 9-36
 9.4.5 Corrosion .. 9-37

9.5 Appurtenances .. 9-38
 9.5.1 Decks and Covered Porches Attached to Buildings 9-38
 9.5.1.1 Handrails ... 9-39
 9.5.1.2 Stairways ... 9-39
 9.5.2 Access to Elevated Buildings ... 9-39
 9.5.3 Pools and Hot Tubs .. 9-40

9.6 References ... 9-43
Chapter 10. Designing the Foundation

10.1 Foundation Design Criteria

10.2 Foundation Styles

10.2.1 Open Foundations

10.2.2 Closed Foundations

10.2.3 Deep Foundations

10.2.4 Shallow Foundations

10.3 Foundation Design Requirements and Recommendations

10.3.1 Foundation Style Selection

10.3.2 Site Considerations

10.3.3 Soils Data

10.4 Design Process

10.5 Pile Foundations

10.5.1 Compression Capacity of Piles – Resistance to Gravity Loads

10.5.2 Tension Capacity of Piles

10.5.3 Lateral Capacity of Piles

10.5.4 Pile Installation

10.5.5 Scour and Erosion Effects on Pile Foundations

10.5.6 Grade Beams for Pile Foundations

10.6 Open/Deep Foundations

10.6.1 Treated Timber Pile Foundations

10.6.1.1 Wood Pile-to-Beam Connections

10.6.1.2 Pile Bracing

10.6.1.3 Timber Pile Treatment

10.6.2 Other Open/Deep Pile Foundation Styles

10.7 Open/Shallow Foundations

10.8 Closed/Shallow Foundations

10.9 Pier Foundations

10.9.1 Pier Foundation Design Examples

10.9.2 Pier Foundation Summary

10.10 References
Chapter 11. Designing the Building Envelope ... 11-1

11.1 Floors in Elevated Buildings .. 11-4

11.2 Exterior Doors .. 11-4
 11.2.1 High Winds ... 11-6
 11.2.1.1 Loads and Resistance .. 11-6
 11.2.1.2 Wind-Borne Debris .. 11-7
 11.2.1.3 Durability .. 11-7
 11.2.1.4 Water Infiltration ... 11-7

11.3 Windows and Skylights ... 11-9
 11.3.1 High Winds ... 11-9
 11.3.1.1 Loads and Resistance .. 11-9
 11.3.1.2 Wind-Borne Debris ... 11-10
 11.3.1.3 Durability .. 11-13
 11.3.1.4 Water Infiltration .. 11-14
 11.3.2 Seismic .. 11-15
 11.3.3 Hail ... 11-15

11.4 Non-Load-Bearing Walls, Wall Coverings, and Soffits .. 11-15
 11.4.1 High Winds .. 11-16
 11.4.1.1 Exterior Walls ... 11-16
 11.4.1.2 Flashings ... 11-21
 11.4.1.3 Soffits .. 11-22
 11.4.1.4 Durability .. 11-23
 11.4.2 Seismic .. 11-24

11.5 Roof Systems ... 11-24
 11.5.1 Asphalt Shingles .. 11-25
 11.5.1.1 High Winds .. 11-25
 11.5.1.2 Hail .. 11-36
 11.5.2 Fiber-Cement Shingles .. 11-36
 11.5.2.1 High Winds .. 11-37
 11.5.2.2 Seismic .. 11-37
 11.5.2.3 Hail ... 11-37
 11.5.3 Liquid-Applied Membranes ... 11-37
 11.5.3.1 High Winds .. 11-37
 11.5.3.2 Hail .. 11-38
 11.5.4 Tiles .. 11-38
CONTENTS

11.5.4.1 High Winds ... 11-38
11.5.4.2 Seismic .. 11-43
11.5.4.3 Hail ... 11-45
11.5.5 Metal Panels and Metal Shingles 11-45
 11.5.5.1 High Winds ... 11-45
 11.5.5.2 Hail ... 11-46
11.5.6 Slate .. 11-46
 11.5.6.1 High Winds ... 11-46
 11.5.6.2 Seismic .. 11-47
 11.5.6.3 Hail ... 11-47
11.5.7 Wood Shingles and Shakes .. 11-47
 11.5.7.1 High Winds ... 11-47
 11.5.7.2 Hail ... 11-48
11.5.8 Low-Slope Roof Systems .. 11-48
 11.5.8.1 High Winds ... 11-49
 11.5.8.2 Seismic .. 11-49
 11.5.8.3 Hail ... 11-49

11.6 Attic Vents .. 11-49

11.7 Additional Environmental Considerations 11-52
 11.7.1 Sun .. 11-52
 11.7.2 Wind-Driven Rain ... 11-52

11.8 References ... 11-52

List of Figures .. 11-58
List of Tables .. 11-60

Chapter 12. Installing Mechanical Equipment and Utilities .. 12-1

12.1 Elevators .. 12-1

12.2 Exterior-Mounted Mechanical Equipment 12-2
 12.2.1 High Winds .. 12-2
 12.2.2 Flooding ... 12-3
 12.2.3 Seismic Events ... 12-6

12.3 Interior Mechanical Equipment ... 12-6

12.4 Electric Utility, Telephone, and Cable TV Systems 12-6
 12.4.1 Emergency Power ... 12-9
12.5 Water and Wastewater Systems

- **12.5.1 Wells** ... 12-10
- **12.5.2 Septic Systems** ... 12-11
- **12.5.3 Sanitary Systems** ... 12-11
- **12.5.4 Municipal Water Connections** 12-12
- **12.5.5 Fire Sprinkler Systems** 12-12

12.6 References ... 12-12

Chapter 13. Constructing the Building .. 13-1

- **13.1 Foundation Construction** .. 13-2
 - **13.1.1 Layout** .. 13-2
 - **13.1.2 Pile Foundations** ... 13-5
 - **13.1.3 Masonry Foundation Construction** 13-8
 - **13.1.4 Concrete Foundation Construction** 13-10
 - **13.1.5 Wood Foundation Construction** 13-12
 - **13.1.6 Foundation Material Durability** 13-13
 - **13.1.7 Field Preservative Treatment** 13-17
 - **13.1.8 Substitutions** ... 13-18
 - **13.1.9 Foundation Inspection Points** 13-18
 - **13.1.10 Top Foundation Issues for Builders** 13-18

- **13.2 Structural Frame** .. 13-19
 - **13.2.1 Structural Connections** 13-19
 - **13.2.2 Floor Framing** ... 13-23
 - **13.2.2.1 Horizontal Beams and Girders** 13-24
 - **13.2.2.2 Substitution of Floor Framing Materials** 13-25
 - **13.2.2.3 Floor Framing Inspection Points** 13-25
 - **13.2.3 Wall Framing** ... 13-25
 - **13.2.3.1 Substitution of Wall Framing Materials** 13-27
 - **13.2.3.2 Wall Framing Inspection Points** 13-27
 - **13.2.4 Roof Framing** ... 13-27
 - **13.2.4.1 Substitution of Roof Framing Materials** 13-28
 - **13.2.4.2 Roof Frame Inspection Points** 13-28
 - **13.2.5 Top Structural Frame Issues for Builders** 13-28

- **13.3 Building Envelope** ... 13-29
 - **13.3.1 Substitution of Building Envelope Materials** 13-30
15.4.1 Evaluating Existing Homes ... 15-16
15.4.2 Wind Retrofit Mitigation Packages ... 15-16
 15.4.2.1 Basic Mitigation Package .. 15-17
 15.4.2.2 Intermediate Mitigation Package .. 15-19
 15.4.2.3 Advanced Mitigation Package ... 15-19
 15.4.2.4 Additional Mitigation Measures ... 15-19
15.4.3 FEMA Wind Retrofit Grant Programs .. 15-19

15.5 References .. 15-21

Acronyms ... A-1

Glossary ... G-1

Index .. I-1

List of Figures

Chapter 7
Figure 7-1. Design framework for a successful building, incorporating cost, risk tolerance, use, location, materials, and hazard resistance ... 7-3
Figure 7-2. Average damage per structure vs. distance from the Florida Coastal Construction Control Line for Bay County, FL .. 7-4
Figure 7-3. Basic benefit-cost model .. 7-12

Chapter 8
Figure 8-1. Summary of typical loads and characteristics affecting determination of design load 8-2
Figure 8-2. Examples of tributary areas for different structural elements ... 8-4
Figure 8-3. Flowchart for estimating maximum likely design stillwater flood depth at the site 8-7
Figure 8-4. Erosion’s effects on ground elevation ... 8-8
Figure 8-5. Parameters that are determined or affected by flood depth .. 8-9
Figure 8-6. Velocity versus design stillwater flood depth ... 8-17
Figure 8-7. Lateral flood force on a vertical component ... 8-19
Figure 8-8. Vertical (buoyant) flood force ... 8-20
Figure 8-9. Breaking wave pressure distribution against a vertical wall 8-23
Figure 8-10. Wave crests not parallel to wall ... 8-24
Figure 8-11. Water depth versus wave height, and water depth versus breaking wave force against, a vertical wall ... 8-25
Figure 8-12. Lateral wave slam against an elevated building 8-26
Figure 8-13. Hydrodynamic loads on a building .. 8-28
Figure 8-14. Scour at single vertical foundation member, with and without underlying scour resistant stratum ... 8-34
Figure 8-15. Deep scour around foundation piles, Hurricane Ike 8-35
Figure 8-16. Scour around a group of foundation piles .. 8-36
Figure 8-17. Effect of wind on an enclosed building and a building with an opening 8-48
Figure 8-18. Distribution of roof, wall, and internal pressures on one-story, pile-supported building ... 8-49
Figure 8-19. Variation of maximum negative MWFRS pressures based on envelope procedures for low-rise buildings ... 8-51
Figure 8-20. Components and cladding wind pressures .. 8-62
Figure 8-21. Effect of seismic forces on supporting piles ... 8-69

Chapter 9

Figure 9-1. Load path failure at gable end ... 9-2
Figure 9-2. Load path failure in connection between home and its foundation 9-2
Figure 9-3. Roof framing damage and loss due to load path failure at top of wall/roof structure connection ... 9-3
Figure 9-4. Load path failure in connections between roof decking and roof framing 9-3
Figure 9-5. Newer home damaged from internal pressurization and inadequate connections 9-4
Figure 9-6. Example load path for case study building .. 9-5
Figure 9-7. Connection of the roof sheathing to the roof framing (Link #1) 9-6
Figure 9-8. Connection of roof framing to exterior wall (Link #2) 9-8
Figure 9-9. Connection of truss to wood-frame wall ... 9-10
Figure 9-10.	Roof truss-to-masonry wall connectors embedded into concrete-filled or grouted masonry cell	9-11
Figure 9-11.	Connection of wall top plate-to-wall stud (Link #3)	9-11
Figure 9-12.	Wall top plate-to-wall stud metal connector	9-12
Figure 9-13.	Connection of wall sheathing to window header (Link #4)	9-13
Figure 9-14.	Connection of window header to exterior wall (Link #5)	9-13
Figure 9-15.	Connection of wall to floor framing (Link #6)	9-15
Figure 9-16.	Connection of floor framing to support beam (Link #7)	9-17
Figure 9-17.	Metal joist-to-beam connector	9-17
Figure 9-18.	Connection of floor support beam to foundation (Link #8)	9-19
Figure 9-19.	Diaphragm stiffening and corner pile bracing to reduce pile cap rotation	9-20
Figure 9-20.	Shear wall holddown connector with bracket attached to a wood beam	9-24
Figure 9-21.	Gable-end failure	9-25
Figure 9-22.	Gable-end bracing detail; nailing schedule, strap specification, brace spacing, and overhang limits should be adapted for the applicable basic wind speed	9-26
Figure 9-23.	Example of two-story platform framing on a pile-and-beam foundation	9-28
Figure 9-24.	Two-story masonry wall with wood floor and roof framing	9-29
Figure 9-25.	Steel moment frame with large opening	9-29
Figure 9-26.	Gable-end failure caused by high winds	9-31
Figure 9-27.	Hip roof that survived high winds with little to no damage	9-31
Figure 9-28.	Typical failure mode of breakaway wall beneath an elevated building	9-32
Figure 9-29.	Breakaway wall panel prevented from breaking away cleanly by utility penetrations	9-32
Figure 9-30.	Lattice beneath an elevated house in Zone V	9-33
Figure 9-31.	House being constructed with a steel frame on wood piles	9-36
Figure 9-32.	Townhouse framing system	9-37
Figure 9-33.	Recommendations for orientation of in-ground pools	9-41
Figure 9-34.	Recommended contraction joint layout for frangible slab-on-grade below elevated building	9-42
Chapter 10

Figure 10-1. Closed foundation failure due to erosion and scour undermining.......................... 10-4
Figure 10-2. Near collapse due to insufficient pile embedment.. 10-13
Figure 10-3. Surviving pile foundation.. 10-13
Figure 10-4. Deflected pile shape for an unbraced pile ... 10-19
Figure 10-5. Pier installation methods... 10-20
Figure 10-6. Scour and erosion effects on piling embedment.. 10-21
Figure 10-7. Column connection failure .. 10-24
Figure 10-8. Scour around grade beam.. 10-25
Figure 10-9. Profile of timber pile foundation type... 10-26
Figure 10-10. Diagonal bracing using dimensional lumber ... 10-28
Figure 10-11. Diagonal bracing schematic... 10-28
Figure 10-12. Knee bracing.. 10-30
Figure 10-13. Section view of a steel pipe pile with concrete column and grade beam foundation type.. 10-32
Figure 10-14. Section view of a foundation constructed with reinforced concrete beams and columns to create portal frames... 10-33
Figure 10-15. Profile of an open/shallow foundation.. 10-34
Figure 10-16. Stem wall foundation design .. 10-36
Figure 10-17. Performance comparison of pier foundations... 10-37
Figure 10-18. Pier foundation and spread footing under gravity loading...................................... 10-38
Figure 10-19. Pier foundation and spread footing exposed to uplift forces.................................... 10-38
Figure 10-20. Pier foundation and spread footing exposed to uplift and lateral forces 10-39

Chapter 11

Figure 11-1. Good structural system performance but the loss of shingles, underlayment, siding, housewrap, and soffits resulted in significant interior water damage.............................. 11-2
Figure 11-2. Numerous wind-borne debris scars and several missing asphalt shingles.............. 11-3
Figure 11-3. House that survived a wildfire due in part to fire-resistant walls and roof while surrounding houses were destroyed ... 11-3

Figure 11-4. Plywood panels on the underside of a house that blew away because of excessive nail spacing ... 11-5

Figure 11-5. Sliding glass doors pulled out of their tracks by wind suction ... 11-5

Figure 11-6. Garage door blown from its track as a result of positive pressure ... 11-6

Figure 11-7. A 3/8-inch gap between the threshold and door which allowed wind-driven rain to enter the house ... 11-8

Figure 11-8. Window frame pulled out of the wall because of inadequate window frame attachment ... 11-9

Figure 11-9. Very old building with robust shutters constructed of 2x4 lumber, bolted connections, and heavy metal hinges ... 11-10

Figure 11-10. Unprotected cupola window that was broken ... 11-11

Figure 11-11. Design pressure and impact-resistance information in a permanent window label 11-12

Figure 11-12. Roll-up shutter slats that detached from the tracks ... 11-12

Figure 11-13. Shutter punctured by roof tile ... 11-13

Figure 11-14. House in Puerto Rico with metal jalousie louvers ... 11-14

Figure 11-15. Blown-off vinyl siding and foam sheathing; some blow-off of interior gypsum board ... 11-17

Figure 11-16. Blown-off fiber cement siding; broken window ... 11-18

Figure 11-17. Four brick veneer failure modes; five corrugated ties that were not embedded in the mortar joints ... 11-18

Figure 11-18. Typical EIFS assemblies ... 11-19

Figure 11-19. Blown-off EIFS, resulting in extensive interior water damage; detachment of the gypsum board or stud blow off; two windows broken by debris ... 11-20

Figure 11-20. Collapse of the breakaway wall, resulting in EIFS peeling ... 11-21

Figure 11-21. EIFS with a barrier design: blown-off roof decking; severely rotted OSB due to leakage at windows ... 11-22

Figure 11-22. Blown-away soffit, which allowed wind-driven rain to enter the attic ... 11-23

Figure 11-23. Blow-off of several newer shingles on a roof that had been re-covered by installing new asphalt shingles on top of old shingles ... 11-25
Figure 11-24. Small area of sheathing that was exposed after loss of a few shingles and some underlayment .. 11-26
Figure 11-25. Typical underlayment attachment ... 11-26
Figure 11-26. Enhanced underlayment Option 1, first variation: self-adhering modified bitumen over the sheathing ... 11-27
Figure 11-27. Enhanced underlayment Option 1, second variation: self-adhering modified bitumen over the felt .. 11-28
Figure 11-28. House that used enhanced underlayment Option 3 with taped sheathing joints. The self-adhering modified bitumen tape was stapled because of bonding problems.... 11-29
Figure 11-29. Underlayment that was not lapped over the hip.. 11-30
Figure 11-30. Loss of shingles and underlayment along the eave and loss of a few hip shingles........ 11-31
Figure 11-31. Loss of shingles and underlayment along the rake .. 11-31
Figure 11-32. Incorrect installation of the starter course ... 11-32
Figure 11-33. Uplift loads along the rake that are transferred to the ends of the rows of self-sealing adhesive.. 11-33
Figure 11-34. A bleeder strip that was used at a rake blow-off .. 11-34
Figure 11-35. Inadequate sealing of the self-sealing adhesive at a hip ... 11-34
Figure 11-36. Proper and improper location of shingle fasteners (nails) .. 11-35
Figure 11-37. Proper and improper location of laminated shingle fasteners (nails).............................. 11-35
Figure 11-38. Shingles that unzipped at the band lines ... 11-36
Figure 11-39. Blow-off of eave and hip tiles and some broken tiles in the field of the roof.............. 11-39
Figure 11-40. Large area of blown-off underlayment on a mortar-set tile roof ... 11-39
Figure 11-41. Blow-off of wire-tied tiles installed over a concrete deck ... 11-39
Figure 11-42. Extensive blow-off of mortar-set tiles... 11-40
Figure 11-43. Blown-off adhesive-set tile... 11-40
Figure 11-44. Adhesive that debonded from the cap sheet ... 11-41
Figure 11-45. Blow-off of mechanically attached tiles .. 11-41
Figure 11-46. Blow-off of hip tiles that were nailed to a ridge board and set in mortar 11-42
Figure 11-47. Damage to field tiles caused by tiles from another area of the roof, including a hip tile. .. 11-42
Figure 11-48. The fastener heads on this mechanically attached tile roof had corroded 11-43
Figure 11-49. Area of the roof where tiles were not nailed to batten strips 11-44
Figure 11-50. Tiles that were nailed to thin wood sheathing ... 11-44
Figure 11-51. Tile that slipped out from under the hip tiles .. 11-45
Figure 11-52. Blow-off of one of the nailers caused panels to progressively fail; cantilevered condenser platform; broken window .. 11-46
Figure 11-53. Damaged slate roof with nails that typically pulled out of the deck 11-47
Figure 11-54. Loss of wood shingles due to fastener corrosion .. 11-48
Figure 11-55. Method for maintaining a continuous load path at the roof ridge by nailing roof sheathing .. 11-50
Figure 11-56. Holes drilled in roof sheathing for ventilation and roof diaphragm action is maintained .. 11-51

Chapter 12

Figure 12-1. Condenser damaged as a result of insufficient elevation, Hurricane Georges (U.S. Gulf Coast, 1998) .. 12-4
Figure 12-2. Proper elevation of an air-conditioning condenser in a floodprone area; additional anchorage is recommended .. 12-4
Figure 12-3. Small piles supporting a platform broken by floodborne debris 12-5
Figure 12-4. Electric service meters and feeders that were destroyed by floodwaters during Hurricane Opal (1995) .. 12-7
Figure 12-5. Recommended installation techniques for electric and plumbing lines and utility elements .. 12-8
Figure 12-6. Damage caused by dropped overhead service, Hurricane Marilyn (U.S. Virgin Islands, 1995) ... 12-9

Chapter 13

Figure 13-1. Site layout .. 13-3
Figure 13-2. Typical pile notching process .. 13-4
Figure 13-3. Improper overnotched wood pile ... 13-4
Figure 13-4.	Properly notched pile	13-5
Figure 13-5.	Typical wood pile foundation	13-6
Figure 13-6.	Open masonry foundation	13-10
Figure 13-7.	Concrete foundation	13-11
Figure 13-8.	Concrete house	13-11
Figure 13-9.	Wood decay at the base of a post supported by concrete	13-14
Figure 13-10.	Examples of minimizing the least dimension of wood contact surfaces	13-14
Figure 13-11.	Drip cut to minimize horizontal water movement along the bottom surface of a wood member	13-15
Figure 13-12.	Exposure of end grain in stair stringer cuts	13-16
Figure 13-13.	Deterioration in a notched stair stringer	13-16
Figure 13-14.	Alternative method of installing stair treads	13-17
Figure 13-15.	Connector failure caused by insufficient nailing	13-20
Figure 13-16.	Reinforcement of overnotched piles	13-21
Figure 13-17.	Beam support at misaligned piles	13-22
Figure 13-18.	Proper pile notching for two-member and four-member beams	13-22
Figure 13-19.	Proper use of metal twist strap ties; solid blocking between floor joists	13-23
Figure 13-20.	Engineered joists used as floor joists with proper metal brace to keep the bottoms of the joists from twisting; engineered wood beam	13-24
Figure 13-21.	Acceptable locations for splices in multiple-member girders	13-25
Figure 13-22.	Full-height sheathing to improve transfer of shear	13-26

Chapter 14

Figure 14-1.	Pile that appears acceptable from the exterior but has interior decay	14-1
Figure 14-2.	Wood decay behind a metal beam connector	14-3
Figure 14-3.	Severely corroded deck connectors	14-11
Figure 14-4.	Deteriorated wood sill plate	14-12
Chapter 15

Figure 15-1. The three concentric zones of defensible space .. 15-2
Figure 15-2. The building envelope .. 15-3
Figure 15-3. Fire spreads vertically through vegetation ... 15-3
Figure 15-4. FEMA P-737, Home Builder’s Guide to Construction in Wildlife Zones: Technical Fact Sheet Series ... 15-4
Figure 15-5. FEMA 232, Homebuilder’s Guide to Earthquake Resistant Design and Construction 15-5
Figure 15-6. A house with severe damage due to cripple wall failure ... 15-6
Figure 15-7. Common open-front configurations in one- and two- family detached houses 15-7
Figure 15-8. FEMA 530, Earthquake Safety Guide for Homeowners ... 15-8
Figure 15-9. Home elevated on piles .. 15-9
Figure 15-10. Preparing a building for relocation .. 15-10
Figure 15-11. Dry floodproofed structure .. 15-11
Figure 15-12. Wet floodproofed structure .. 15-13
Figure 15-13. Home protected by a floodwall and a levee .. 15-15
Figure 15-14. FEMA P-804, Wind Retrofit Guide for Residential Buildings 15-15
Figure 15-15. Wind Retrofit Mitigation Packages .. 15-17
Figure 15-16. Bracing gable end overhangs .. 15-18
Figure 15-17. Sprayed polyurethane foam adhesive to secure roof deck panels 15-18
Figure 15-18. Continuous load path for wind-uplift of a residential, wood-frame building 15-20
Figure 15-19. HMA grant process .. 15-21

List of Tables

Chapter 7

Table 7-1. Examples of Flood and Wind Mitigation Measures .. 7-8
Table 7-2. Sample NFIP Flood Insurance Premiums for Buildings in Zone A 7-19
Table 7-3. Sample NFIP Flood Insurance Premiums for Buildings in Zone V Free of Obstruction Below the Lowest Floor... 7-19

Table 7-4. Sample NFIP Flood Insurance Premiums for Buildings in Zone V with Obstruction Below the Lowest Floor... 7-20

Chapter 8

Table 8-1. Value of Dynamic Pressure Coefficient (C_p) as a Function of Probability of Exceedance ... 8-23

Table 8-2. Drag Coefficients for Ratios of Width to Depth (w/d) and Width to Height (w/h)........ 8-29

Table 8-3. Depth Coefficient (C_D) by Flood Hazard Zone and Water Depth 8-33

Table 8-4. Values of Blockage Coefficient C_B .. 8-33

Table 8-5. Selection of Flood Loads for F_a in ASCE 7-10 Load Combinations for Global Forces .. 8-37

Table 8-6. Roof Uplift Connector Loads at Building Edge Zones.. 8-53

Table 8-7. Lateral Diaphragm Load from Wind Perpendicular to Ridge................................ 8-53

Table 8-8. Roof and Wall Sheathing Suction Loads .. 8-63

Table 8-9. Lateral Connector Loads from Wind at Building End Zones 8-63

Chapter 9

Table 9-1. General Guidance for Selection of Materials ... 9-33

Chapter 10

Table 10-1. Foundation Styles in Coastal Areas ... 10-3

Table 10-2. ASTM D2487 10-Soil Classifications ... 10-8

Table 10-3. Advantages and Special Considerations of Three Types of Pile Materials......... 10-12

Table 10-4. Bearing Capacity Factors (N_q) .. 10-14

Table 10-5. Earth Pressure Coefficients ... 10-14

Table 10-6. Friction Angle Between Soil and Pile (δ) ... 10-15

Table 10-7. Allowable Compression and Tension of Wood Piles Based on Varying Diameters, Embedments, and Installation Methods.............................. 10-18

Table 10-8. Values of n_b Modulus of Subgrade Reaction .. 10-19
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-9</td>
<td>Advantages and Special Considerations of Pile Installation Methods</td>
<td>10-21</td>
</tr>
<tr>
<td>10-10</td>
<td>Example Analysis of the Effects of Scour and Erosion on a Foundation</td>
<td>10-23</td>
</tr>
</tbody>
</table>

Chapter 11

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1</td>
<td>Allowable Basic Wind Speed as a Function of Class</td>
<td>11-31</td>
</tr>
</tbody>
</table>

Chapter 13

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-1</td>
<td>Foundation and Floor Framing Inspection Points</td>
<td>13-18</td>
</tr>
<tr>
<td>13-2</td>
<td>Wall Inspection Points</td>
<td>13-27</td>
</tr>
<tr>
<td>13-3</td>
<td>Roof Frame Inspection Points</td>
<td>13-29</td>
</tr>
<tr>
<td>13-4</td>
<td>Building Envelope Inspection Points</td>
<td>13-31</td>
</tr>
</tbody>
</table>

Chapter 14

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-1</td>
<td>Maintenance Inspection Checklist</td>
<td>14-5</td>
</tr>
</tbody>
</table>

Chapter 15

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1</td>
<td>Advantages and Disadvantages of Elevation</td>
<td>15-9</td>
</tr>
<tr>
<td>15-2</td>
<td>Advantages and Disadvantages of Relocation</td>
<td>15-10</td>
</tr>
<tr>
<td>15-3</td>
<td>Advantages and Disadvantages of Dry Floodproofing</td>
<td>15-12</td>
</tr>
<tr>
<td>15-4</td>
<td>Advantages and Disadvantages of Wet Floodproofing</td>
<td>15-13</td>
</tr>
<tr>
<td>15-5</td>
<td>Advantages and Disadvantages of a Floodwall or Levee</td>
<td>15-14</td>
</tr>
</tbody>
</table>

List of Equations

Chapter 8

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Design Stillwater Flood Depth</td>
<td>8-10</td>
</tr>
<tr>
<td>8.2</td>
<td>Design Flood Velocity</td>
<td>8-16</td>
</tr>
<tr>
<td>8.3</td>
<td>Lateral Hydrostatic Load</td>
<td>8-18</td>
</tr>
<tr>
<td>8.4</td>
<td>Vertical (Buoyant) Hydrostatic Force</td>
<td>8-19</td>
</tr>
<tr>
<td>8.5</td>
<td>Breaking Wave Load on Vertical Piles</td>
<td>8-21</td>
</tr>
</tbody>
</table>
CONTENTS

Chapter 8

Equation 8.6. Breaking Wave Load on Vertical Walls .. 8-22
Equation 8.7. Lateral Wave Slam ... 8-26
Equation 8.8. Hydrodynamic Load (for All Flow Velocities) ... 8-29
Equation 8.9. Debris Impact Load ... 8-32
Equation 8.10. Localized Scour Around a Single Vertical Pile .. 8-35
Equation 8.11. Total Localized Scour Around Vertical Piles .. 8-36
Equation 8.12. Total Scour Depth Around Vertical Walls and Enclosures 8-37
Equation 8.13. Velocity Pressure ... 8-50
Equation 8.15. Seismic Base Shear by Equivalent Lateral Force Procedure 8-69
Equation 8.16. Vertical Distribution of Seismic Forces .. 8-70

Chapter 10

Equation 10.1. Sliding Resistance ... 10-10
Equation 10.2. Ultimate Compression Capacity of a Single Pile ... 10-14
Equation 10.3. Ultimate Tension Capacity of a Single Pile .. 10-15
Equation 10.4. Load Application Distance for an Unbraced Pile .. 10-19
Equation 10.5. Determination of Square Footing Size for Gravity Loads 10-40
Equation 10.6. Determination of Soil Pressure .. 10-43

Chapter 13

Equation 13.1. Pile Driving Resistance for Drop Hammer Pile Drivers 13-8

List of Examples

Chapter 8

Example 8.1. Design Stillwater Flood Depth Calculations .. 8-11
Example 8.2. Wave Slam Calculation .. 8-27
Example 8.3. Hydrodynamic Load on Piles versus Breaking Wave Load on Piles 8-30
Example 8.4. Flood Load Example Problem ... 8-38
Example 8.5. Roof Uplift Connector Loads ... 8-54
Example 8.6. Lateral Diaphragm Loads from Wind Perpendicular to Ridge 8-57
Example 8.7. Roof Sheathing Suction Loads .. 8-64
Example 8.8. Lateral Connection Framing Loads from Wind .. 8-66
Example 8.9. Seismic Load .. 8-70
Example 8.10. Load Combination Example Problem .. 8-75

Chapter 9
Example 9.1. Roof Sheathing Nail Spacing for Wind Uplift .. 9-6
Example 9.2. Roof-to-Wall Connection for Uplift ... 9-9
Example 9.3. Uplift and Lateral Load Path at Window Header 9-14
Example 9.4. Uplift and Lateral Load Path at Wall-to-Floor Framing 9-15
Example 9.5. Uplift Load Path at Floor to Support Beam Framing 9-18
Example 9.6. Uplift Load Path for Support Beam-to-Pile .. 9-19
Example 9.7. Uplift and Compression Due to Shear Wall Overturning 9-21

Chapter 10
Example 10.1. Calculation for Allowable Capacities of Wood Piles 10-16
Example 10.2. Diagonal Brace Force ... 10-29
Example 10.3. Pier Footing Under Gravity Load .. 10-40
Example 10.4. Pier Footing Under Uplift Load ... 10-42
Example 10.5. Pier Footing Under Uplift and Lateral Loads ... 10-44

List of Worksheets

Chapter 8
Worksheet 1. Flood Load Computation Non-Tsunami Coastal A Zones (Solid Foundation) 8-44
Worksheet 2. Flood Load Computation Non-Tsunamic Zone V and Coastal A Zone (Open Foundation) ... 8-46
Worksheet 3. Load Combination Computation ... 8-80