The Applied Technology Council (ATC) is a nonprofit, tax-exempt corporation established in 1971 through the efforts of the Structural Engineers Association of California. ATC is guided by a Board of Directors consisting of representatives appointed by the American Society of Civil Engineers, the Structural Engineers Association of California, the Western States Council of Structural Engineers Associations, and four at-large representatives concerned with the practice of structural engineering. Each director serves a three-year term.

The purpose of ATC is to assist the design practitioner in structural engineering (and related design specialty fields such as soils, wind, and earthquake) in the task of keeping abreast of and effectively using technological developments. ATC also identifies and encourages needed research and develops consensus opinions on structural engineering issues in a nonproprietary format. ATC thereby fulfills a unique role in funded information transfer.

Project management and administration are carried out by a full-time Executive Director and support staff. Project work is conducted by a wide range of highly qualified consulting professionals, thus incorporating the experience of many individuals from academia, research, and professional practice who would not be available from any single organization. Funding for ATC projects is obtained from government agencies and from the private sector in the form of tax-deductible contributions.

1998-1999 Board of Directors

Charles H. Thornton, President
Edwin T. Dean, Vice President
Andrew T. Merovich, Secretary/Treasurer
C. Mark Saunders, Past President
James R. Cagley
Arthur N. L. Chiu
Robert G. Dean

Edwin H. Johnson
Kenneth A. Luttrell
Newland J. Malmquist
Stephen H. Pelham
Richard J. Phillips
Charles W. Roeder
Jonathan G. Shipp

Notice

This report was prepared under Contract EMW-95-C-4685 between the Federal Emergency Management Agency and the Partnership for Response and Recovery.

Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of the Applied Technology Council (ATC), the Partnership for Response and Recovery (PaRR), or the Federal Emergency Management Agency (FEMA). Additionally, neither ATC, PaRR, FEMA, nor any of their employees makes any warranty, expressed or implied, nor assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, or process included in this publication. Users of information from this publication assume all liability arising from such use.

For further information concerning this document or the activities of the ATC, contact the Executive Director, Applied Technology Council, 555 Twin Dolphin Drive, Suite 550, Redwood City, California 94065; phone 650-595-1542; fax 650-593-2320; e-mail atc@atcouncil.org.
Preface

Following the two damaging California earthquakes in 1989 (Loma Prieta) and 1994 (Northridge), many concrete wall and masonry wall buildings were repaired using federal disaster assistance funding. The repairs were based on inconsistent criteria, giving rise to controversy regarding criteria for the repair of cracked concrete and masonry wall buildings. To help resolve this controversy, the Federal Emergency Management Agency (FEMA) initiated a project on evaluation and repair of earthquake damaged concrete and masonry wall buildings in 1996. The project was conducted through the Partnership for Response and Recovery (PaRR), a joint venture of Dewberry & Davis of Fairfax, Virginia, and Woodward-Clyde Federal Services of Gaithersburg, Maryland. The Applied Technology Council (ATC), under subcontract to PaRR, was responsible for developing technical criteria and procedures (the ATC-43 project).

The ATC-43 project addresses the investigation and evaluation of earthquake damage and discusses policy issues related to the repair and upgrade of earthquake-damaged buildings. The project deals with buildings whose primary lateral-force-resisting systems consist of concrete or masonry bearing walls with flexible or rigid diaphragms, or whose vertical-load-bearing systems consist of concrete or steel frames with concrete or masonry infill panels. The intended audience is design engineers, building owners, building regulatory officials, and government agencies.

The project results are reported in three documents. The FEMA 306 report, *Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Basic Procedures Manual*, provides guidance on evaluating damage and analyzing future performance. Included in the document are component damage classification guides, and test and inspection guides. FEMA 307, *Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Technical Resources*, contains supplemental information including results from a theoretical analysis of the effects of prior damage on single-degree-of-freedom mathematical models, additional background information on the component guides, and an example of the application of the basic procedures. FEMA 308, *The Repair of Earthquake Damaged Concrete and Masonry Wall Buildings*, discusses the policy issues pertaining to the repair of earthquake damaged buildings and illustrates how the procedures developed for the project can be used to provide a technically sound basis for policy decisions. It also provides guidance for the repair of damaged components.

The project also involved a workshop to provide an opportunity for the user community to review and comment on the proposed evaluation and repair criteria. The workshop, open to the profession at large, was held in Los Angeles on June 13, 1997 and was attended by 75 participants.

The project was conducted under the direction of ATC Senior Consultant Craig Comartin, who served as Co-Principal Investigator and Project Director. Technical and management direction were provided by a Technical Management Committee consisting of Christopher Rojahn (Chair), Craig Comartin (Co-Chair), Daniel Abrams, Mark Doroudian, James Hill, Jack Moehle, Andrew Merovich (ATC Board Representative), and Tim McCormick. The Technical Management Committee created two Issue Working Groups to pursue directed research to document the state of the knowledge in selected key areas: (1) an Analysis Working Group, consisting of Mark Aschheim (Group Leader) and Mete Sozen (Senior Consultant) and (2) a Materials Working Group, consisting of Joe Maffei (Group Leader and Reinforced Concrete Consultant), Greg Kingsley (Reinforced Masonry Consultant), Bret Lizundia (Unreinforced Masonry Consultant), John Mander (Infilled Frame Consultant), Brian Kehoe and other consultants from Wiss, Janney, Elstner and Associates (Tests, Investigations, and Repairs Consultant). A Project Review Panel provided technical overview and guidance. The Panel members were Gregg Borchelt, Gene Corley, Edwin Huston, Richard Klingner, Vilas Mujumdar, Hassan Sassi, Carl Schulze, Daniel Shapiro, James Wight, and Eugene Zeller. Nancy Sauer and Peter Mork provided technical editing and report production services, respectively. Affiliations are provided in the list of project participants.

The Applied Technology Council and the Partnership for Response and Recovery gratefully acknowledge the cooperation and insight provided by the FEMA Technical Monitor, Robert D. Hanson.

Tim McCormick
PaRR Task Manager

Christopher Rojahn
ATC-43 Principal Investigator
ATC Executive Director
# Table of Contents

 Preface .................................................................................................................. iii  
 List of Figures ........................................................................................................... ix  
 List of Tables ............................................................................................................ xiii  
 Prologue ................................................................................................................... xv  
 1. **Introduction** ........................................................................................................ 1  
 1.1 Purpose And Scope .............................................................................................. 1  
 1.2 Materials Working Group  
 1.2.1 Tests and Investigations .................................................................................. 1  
 1.2.2 Component Behavior and Modeling ............................................................... 1  
 1.2.3 Repair Techniques ............................................................................................ 2  
 1.3 Analysis Working Group ...................................................................................... 3  
 1.4 References ........................................................................................................... 4  
 2. **Reinforced Concrete Components** ..................................................................... 7  
 2.1 Commentary and Discussion ................................................................................ 7  
 2.1.1 Development of Component Guides and $\lambda$-Factors .................................. 7  
 2.2 Typical Force-Displacement Hysteretic Behavior ............................................... 10  
 2.3 Tabular Bibliography ............................................................................................ 28  
 2.4 Symbols for Reinforced Concrete ........................................................................ 33  
 2.5 References for Reinforced Concrete ..................................................................... 35  
 3. **Reinforced Masonry** .......................................................................................... 39  
 3.1 Commentary and Discussion ................................................................................ 39  
 3.1.1 Typical Hysteretic Behavior ............................................................................ 39  
 3.1.2 Cracking and Damage Severity ...................................................................... 39  
 3.1.3 Interpretation of Tests .................................................................................... 46  
 3.2 Tabular Bibliography for Reinforced Masonry ................................................... 46  
 3.3 Symbols for Reinforced Masonry .......................................................................... 53  
 3.4 References for Reinforced Masonry ...................................................................... 54  
 4. **Unreinforced Masonry** ....................................................................................... 59  
 4.1 Commentary and Discussion ................................................................................ 59  
 4.1.1 Hysteretic Behavior of URM Walls Subjected to In-Plane Demands ............... 59  
 4.1.2 Comments on FEMA 273 Component Force/Displacement Relationships .... 72  
 4.1.3 Development of $\lambda$-factors ........................................................................ 75  
 4.2 Tabular Bibliography for Unreinforced Masonry ............................................... 77  
 4.3 Symbols for Unreinforced Masonry ..................................................................... 80
4.4 References for Unreinforced Masonry ......................................................... 81

5. **Infilled Frames** ......................................................................................... 85
   5.1 Commentary And Discussion ............................................................... 85
      5.1.1 Development of $\lambda$-Factors for Component Guides ................. 85
      5.1.2 Development of Stiffness Deterioration—$\lambda_K$ ......................... 85
      5.1.3 The Determination of $\lambda_Q$ for Strength Deterioration .............. 86
      5.1.4 Development of $\lambda_D$—Reduction in Displacement Capability ...... 87
   5.2 Tabular Bibliography for Infilled Frames ............................................. 89
   5.3 References for Infilled Frames ............................................................. 91

6. **Analytical Studies** .................................................................................. 95
   6.1 Overview ............................................................................................... 95
   6.2 Summary of Previous Findings ............................................................ 95
      6.2.1 Hysteresis Models ......................................................................... 95
      6.2.2 Effect of Ground Motion Duration ............................................... 98
      6.2.3 Residual Displacement .................................................................. 98
      6.2.4 Repeated Loading ......................................................................... 98
   6.3 Dynamic Analysis Framework ............................................................... 99
      6.3.1 Overview ....................................................................................... 99
      6.3.2 Dynamic Analysis Approach ......................................................... 99
      6.3.3 Ground Motions ........................................................................... 100
      6.3.4 Force/Displacement Models ......................................................... 120
      6.3.5 Undamaged Oscillator Parameters ............................................. 122
      6.3.6 Damaged Oscillator Parameters ................................................. 123
      6.3.7 Summary of Dynamic Analysis Parameters .................................. 125
      6.3.8 Implementation of Analyses ......................................................... 126
   6.4 Results Of Dynamic Analyses ............................................................... 126
      6.4.1 Overview and Nomenclature ......................................................... 126
      6.4.2 Response of Bilinear Models ....................................................... 127
      6.4.3 Response of Takeda Models .......................................................... 127
      6.4.4 Response Statistics ..................................................................... 151
   6.5 Nonlinear Static Procedures .................................................................. 155
      6.5.1 Introduction ................................................................................... 155
      6.5.2 Description of Nonlinear Static Procedures .................................. 156
      6.5.3 Comments on Procedures ............................................................. 159
      6.5.4 Application of Procedures to Undamaged and Damaged Oscillators 160
   6.6 Comparison of NSP and Dynamic Analysis Results ............................ 160
      6.6.1 Introduction ................................................................................... 160
      6.6.2 Displacement Estimation ............................................................... 160
      6.6.3 Displacement Ratio Estimation ..................................................... 161
   6.7 Conclusions and Implications ............................................................... 177
   6.8 References ............................................................................................. 178
### 7. Example Application

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>181</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Objectives</td>
<td>181</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Organization</td>
<td>181</td>
</tr>
<tr>
<td>7.2</td>
<td>Investigation</td>
<td>183</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Building Description</td>
<td>183</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Postearthquake Damage Observations</td>
<td>183</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Preliminary Classification (by Observation) of Component Types, Behavior Modes, and Damage Severity</td>
<td>189</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Final Classification (by Analysis) of Component Type, Behavior Mode and Damage Severity</td>
<td>190</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Other Damage Observations</td>
<td>195</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Summary of Component Classifications</td>
<td>195</td>
</tr>
<tr>
<td>7.3</td>
<td>Evaluation by the Direct Method</td>
<td>199</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Structural Restoration Measures</td>
<td>199</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Nonstructural Restoration Measures</td>
<td>201</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Restoration Summary and Cost</td>
<td>201</td>
</tr>
<tr>
<td>7.4</td>
<td>Evaluation by Performance Analysis</td>
<td>201</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Performance Objectives</td>
<td>202</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Nonlinear Static Analysis</td>
<td>203</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Force-Displacement Capacity (Pushover Analysis) Results</td>
<td>206</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Estimation of Displacement, de, Caused by Damaging Earthquake</td>
<td>209</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Displacement Demand</td>
<td>210</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Analysis of Restored Structure</td>
<td>212</td>
</tr>
<tr>
<td>7.4.7</td>
<td>Performance Restoration Measures</td>
<td>214</td>
</tr>
<tr>
<td>7.5</td>
<td>Discussion of Results</td>
<td>214</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Discussion of Building Performance</td>
<td>214</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Discussion of Methodology and Repair Costs</td>
<td>215</td>
</tr>
<tr>
<td>7.6</td>
<td>References</td>
<td>215</td>
</tr>
</tbody>
</table>

### Appendix A. Component Damage Records for Building Evaluated in Example Application

- Page 217

### ATC-43 Project Participants

- Page 237

### Applied Technology Council Projects And Report Information

- Page 241
List of Figures

Figure 1-1 Component Force-Deformation Relationships ............................................. 2
Figure 1-2 Generalized Undamaged and Damaged Component Curves ............................. 3
Figure 1-3 Effect of Damage on Building Response .................................................. 4
Figure 1-4 Global Load-Displacement Relationships .................................................. 5
Figure 1-5 Diagram of process used to develop component guides and component modification factors. 8
Figure 4-1 Bed-joint sliding force/displacement relationship ..................................... 73
Figure 4-2 Relationship Between Toe Crushing and Bed-Joint Sliding ........................ 74
Figure 4-3 Developing the initial portion of the damaged force/displacement relationship .................................................. 76
Figure 5-1 Energy-based damage analysis of strength reduction to define $\lambda_Q$ .................. 88
Figure 6-1 Effect of Hysteretic Properties on Response to 1940 NS El Centro Record (from Nakamura, 1988) ................................................................. 97
Figure 6-2 Characteristics of the WN87MWLN.090 (Mount Wilson) Ground Motion .......... 102
Figure 6-3 Characteristics of the BB92CIVC.360 (Big Bear) Ground Motion .................... 103
Figure 6-4 Characteristics of the SP88GUKA.360 (Spitak) Ground Motion ..................... 104
Figure 6-5 Characteristics of the LP89CORR.090 (Corralitos) Ground Motion ................. 105
Figure 6-6 Characteristics of the NR94CENT.360 (Century City) Ground Motion ............. 106
Figure 6-7 Characteristics of the IV79ARY7.140 (Imperial Valley Array) Ground Motion .... 107
Figure 6-8 Characteristics of the CH85LLEO.010 (Llolleo) Ground Motion .................... 108
Figure 6-9 Characteristics of the CH85VALP.070 (Valparaiso University) Ground Motion .......... 109
Figure 6-10 Characteristics of the IV40ELCN.180 (El Centro) Ground Motion ................. 110
Figure 6-11 Characteristics of the TB78TABS.344 (Tabas) Ground Motion ...................... 111
Figure 6-12 Characteristics of the LN92JOSH.360 (Joshua Tree) Ground Motion ............... 112
Figure 6-13 Characteristics of the MX85SCT1.270 (Mexico City) Ground Motion ............... 113
Figure 6-14 Characteristics of the LN92LUCN.250 (Lucerne) Ground Motion ................. 114
Figure 6-15 Characteristics of the IV79BRWY.315 (Brawley Airport) Ground Motion ......... 115
Figure 6-16 Characteristics of the LP89SARA.360 (Saratoga) Ground Motion ................. 116
Figure 6-17 Characteristics of the NR94NWHL.360 (Newhall) Ground Motion ................. 117
Figure 6-18 Characteristics of the NR94SYLH.090 (Sylmar Hospital) Ground Motion ........ 118
Figure 6-19 Characteristics of the KO95TTRI.360 (Takatori) Ground Motion ..................... 119
Figure 6-20 Force-Displacement Hysteretic Models .................................................... 120
Figure 6-21 Degrading Models Used in the Analyses ................................................... 121
Figure 6-22 Bilinear Model Used to Determine Strengths of Degrading Models ................. 122
Figure 6-23 Specification of the Pinching Point for the Takeda Pinching Model ............... 122
Figure 6-24 Specification of the Uncracked Stiffness, Cracking Strength, and Unloading Stiffness for the Takeda Models .......................................................... 123
Figure 6-25 Construction of Initial Force-Displacement Response for Prior Ductility Demand > 0 and Reduced Strength Ratio = 1 .................................................. 123
Figure 6-26 Construction of Initial Force-Displacement Response for PDD> 0 and RSR< 1 for Takeda5 and Takeda10 Models ............................................................. 124
Figure 6-27  Strength Degradation for Takeda Pinching Model .................................................. 125
Figure 6-28  Construction of Initial Force-Displacement Response for PDD> 0 and RSR< 1 for Takeda Pinching Model .............................................................. 126
Figure 6-29  Response of Bilinear Oscillators to Short Duration Records (DDD= 8) ................. 128
Figure 6-30  Response of Bilinear Oscillators to Long Duration Records (DDD= 8) .................. 129
Figure 6-31  Response of Bilinear Oscillators to Forward Directive Records (DDD= 8) .......... 130
Figure 6-32  Displacement Response of Takeda Models Compared with Elastic Response and Bilinear Response, for Short-Duration Records (DDD= 8 and RSR= 1) .......... 131
Figure 6-33  Displacement Response of Takeda Models Compared with Elastic Response and Bilinear Response for Long-Duration Records (DDD= 8 and RSR= 1) .......... 132
Figure 6-34  Displacement Response of Takeda Models Compared with Elastic Response and Bilinear Response for Forward Directive Records (DDD= 8 and RSR= 1) .......... 133
Figure 6-35  Effect of Cracking Without and With Strength Reduction on Displacement Response of Takeda5 Models, for Short-Duration Records (DDD= 8 and PDD= 1) .......... 135
Figure 6-36  Effect of Cracking Without and With Strength Reduction on Displacement Response of Takeda5 Models, for Long-Duration Records (DDD= 8 and PDD= 1) .......... 136
Figure 6-37  Effect of Cracking Without and With Strength Reduction on Displacement Response of Takeda5 Models, for Forward Directive Records (DDD= 8 and PDD= 1) .......... 137
Figure 6-38  Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displacement Response of Takeda5 Models, for Short Duration Records (DDD= 8 and PDD= 8) .............................................................. 138
Figure 6-39  Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displacement Response of Takeda5 Models, for Long Duration Records (DDD= 8 and PDD= 8) .............................................................. 139
Figure 6-40  Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displacement Response of TakPinch Models, for Forward Directive Records (DDD= 8 and PDD= 8) .............................................................. 140
Figure 6-41  Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=0.2 sec (DDD= 8) .............................................................. 141
Figure 6-42  Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=0.5 sec (DDD= 8) .............................................................. 142
Figure 6-43  Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=1.0 sec (DDD= 8) .............................................................. 143
Figure 6-44  Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=1.5 sec (DDD= 8) .............................................................. 144
Figure 6-45  Effect of Damage on Response to El Centro (IV40ELCN.180) for Takeda5, T=2.0 sec (DDD= 8) .............................................................. 145
Figure 6-46  Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displacement Response of TakPinch Models, for Short Duration Records (DDD= 8 and PDD= 8) .............................................................. 146
Figure 6-47  Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displacement Response of TakPinch Models, for Long Duration Records (DDD= 8 and PDD= 8) .............................................................. 147
Figure 6-48  Effect of Large Prior Ductility Demand Without and With Strength Reduction on Displacement Response of TakPinch, for Forward Directive Records (DDD= 8 and PDD= 8) .............................................................. 148
Figure 6-49  Effect of Damage on Response of TakPinch Model to El Centro (IV40ELCN.180) for
List of Tables

Table 2-1  Ranges of Reinforced Concrete Component Displacement Ductility, $\mu_\Delta$, Associated with Damage Severity Levels and $\lambda$ Factors .................................................. 9
Table 2-2  Key References on Reinforced Concrete Wall Behavior. ................................................................. 29
Table 3-1  Damage Patterns and Hysteretic Response for Reinforced Masonry Components .................. 40
Table 3-2  Ranges of Reinforced Masonry Component Displacement Ductility, $\mu_\Delta$, Associated with Damage Severity Levels and $\lambda$ Factors .................................................. 47
Table 3-3  Annotated Bibliography for Reinforced Masonry ................................................................. 48
Table 4-1  Summary of Significant Experimental Research or Research Summaries ........................................... 78
Table 5-1  Tabular Bibliography for Infilled Frames ........................................................................ 89
Table 6-1  Recorded Ground Motions Used in the Analyses ................................................................. 101
Table 7-1  Capacity of Potential Behavior Modes for Typical Solid Wall ................................................. 191
Table 7-2  Capacity of Potential Behavior Modes for Typical Coupling Beam ........................................ 193
Table 7-3  Shear Capacities for Potential Behavior Modes of Wall Pier (RC1) Components in Coupled Wall ........................................................................................................... 194
Table 7-4  Summary of Component Type, Behavior Mode, and Damage Severity for Wall Components (North-South Direction) ................................................................. 200
Table 7-5  Summary of Component Type, Behavior Mode, and Damage Severity for Wall Components (East-West Direction) ................................................................. 201
Table 7-6  Restoration Cost Estimate by the Direct Method ........................................................................ 202
Table 7-7  Performance Indices for Pre-event and Post-event Structures .................................................... 212
Table 7-8  Restoration Cost Estimate by the Relative Performance Method ................................................ 214
Prologue

This document is one of three to result from the ATC-43 project funded by the Federal Emergency Management Agency (FEMA). The goal of the project is to develop technically sound procedures to evaluate the effects of earthquake damage on buildings with primary lateral-force-resisting systems consisting of concrete or masonry bearing walls or infilled frames. The procedures are based on the knowledge derived from research and experience in engineering practice regarding the performance of these types of buildings and their components. The procedures require thoughtful examination and review prior to implementation. The ATC-43 project team strongly urges individual users to read all of the documents carefully to form an overall understanding of the damage evaluation procedures and repair techniques.

Before this project, formalized procedures for the investigation and evaluation of earthquake-damaged buildings were limited to those intended for immediate use in the field to identify potentially hazardous conditions. ATC-20, Procedures for Postearthquake Safety Evaluation of Buildings, and its addendum, ATC-20-2 (ATC, 1989 and 1995) are the definitive documents for this purpose. Both have proven to be extremely useful in practical applications. ATC-20 recognizes and states that in many cases, detailed structural engineering evaluations are required to investigate the implications of earthquake damage and the need for repairs. This project provides a framework and guidance for those engineering evaluations.

What have we learned?

The project team for ATC-43 began its work with a thorough review of available analysis techniques, field observations, test data, and emerging evaluation and design methodologies. The first objective was to understand the effects of damage on future building performance. The main points are summarized below.

- **Component behavior controls global performance.**

  Recently developed guidelines for structural engineering seismic analysis and design techniques focus on building displacement, rather than forces as the primary parameter for the characterization of seismic performance. This approach models the building as an assembly of its individual components. Force-deformation properties (e.g., elastic stiffness, yield point, ductility) control the behavior of wall panels, beams, columns, and other components. The component behavior, in turn, governs the overall displacement of the building and its seismic performance. Thus, the evaluation of the effects of damage on building performance must concentrate on how component properties change as a result of damage.

- **Indicators of damage (e.g., cracking, spalling) are meaningful only in light of the mode of component behavior.**

  Damage affects the behavior of individual components differently. Some exhibit ductile modes of post-elastic behavior, maintaining strength even with large displacements. Others are brittle and lose strength abruptly after small inelastic displacements. The post-elastic behavior of a structural component is a function of material properties, geometric proportions, details of construction, and the combination of demand actions (axial, flexural, shearing, torsional) imposed upon it. As earthquake shaking imposes these actions on components, the components tend to exhibit predominant modes of behavior as damage occurs. For example, if earthquake shaking and its associated inertial forces and frame distortions cause a reinforced concrete wall panel to rotate at each end, statics defines the relationship between the associated bending moments and shear force. The behavior of the panel depends on its strength in flexure relative to that in shear. Cracks and other signs of damage must be interpreted in the context of the mode of component behavior. A one-eighth-inch crack in a wall panel on the verge of brittle shear failure is a very serious condition. The same size crack in a flexurally-controlled panel may be insignificant with regard to future seismic performance. This is, perhaps, the most important finding of the ATC-43 project: the significance of cracks and other signs of damage, with respect to the future performance of a building, depends on the mode of behavior of the components in which the damage is observed.
• **Damage may reveal component behavior that differs from that predicted by evaluation and design methodologies.**

When designing a building or evaluating an undamaged building, engineers rely on theory and their own experience to visualize how earthquakes will affect the structure. The same is true when they evaluate the effects of actual damage after an earthquake, with one important difference. If engineers carefully observe the nature and extent of the signs of the damage, they can greatly enhance their insight into the way the building actually responded to earthquake shaking. Sometimes the actual behavior differs from that predicted using design equations or procedures. This is not really surprising, since design procedures must account conservatively for a wide range of uncertainty in material properties, behavior parameters, and ground shaking characteristics. Ironically, actual damage during an earthquake has the potential for improving the engineer’s knowledge of the behavior of the building. When considering the effects of damage on future performance, this knowledge is important.

• **Damage may not significantly affect displacement demand in future larger earthquakes.**

One of the findings of the ATC-43 project is that prior earthquake damage does not affect maximum displacement response in future, larger earthquakes in many instances. At first, this may seem illogical. Observing a building with cracks in its walls after an earthquake and visualizing its future performance in an even larger event, it is natural to assume that it is worse off than if the damage had not occurred. It seems likely that the maximum displacement in the future, larger earthquake would be greater than if it had not been damaged. Extensive nonlinear time-history analyses performed for the project indicated otherwise for many structures. This was particularly true in cases in which significant strength degradation did not occur during the prior, smaller earthquake. Careful examination of the results revealed that maximum displacements in time histories of relatively large earthquakes tended to occur after the loss of stiffness and strength would have taken place even in an undamaged structure. In other words, the damage that occurs in a prior, smaller event would have occurred early in the subsequent, larger event anyway.

### What does it mean?

The ATC-43 project team has formulated performance-based procedures for evaluating the effects of damage. These can be used to quantify losses and to develop repair strategies. The application of these procedures has broad implications.

• **Performance-based damage evaluation uses the actual behavior of a building, as evidenced by the observed damage, to identify specific deficiencies.**

The procedures focus on the connection between damage and component behavior and the implications for estimating actual behavior in future earthquakes. This approach has several important benefits. First, it provides a meaningful engineering basis for measuring the effects of damage. It also identifies performance characteristics of the building in its pre-event and damaged states. The observed damage itself is used to calibrate the analysis and to improve the building model. For buildings found to have unacceptable damage, the procedures identify specific deficiencies at a component level, thereby facilitating the development of restoration or upgrade repairs.

• **Performance-based damage evaluation provides an opportunity for better allocation of resources.**

The procedures themselves are technical engineering tools. They do not establish policy or prescribe rules for the investigation and repair of damage. They may enable improvements in both private and public policy, however. In past earthquakes, decisions on what to do about damaged buildings have been hampered by a lack of technical procedures to evaluate the effects of damage and repairs. It has also been difficult to investigate the risks associated with various repair alternatives. The framework provided by performance-based damage evaluation procedures can help to remove some of these roadblocks. In the long run, the procedures may tend to reduce the prevailing focus on the loss caused by damage from its pre-event conditions and to increase the focus on what the damage reveals about future building performance. It makes little
sense to implement unnecessary repairs to buildings that would perform relatively well even in a damaged condition. Nor is it wise to neglect buildings in which the component behavior reveals serious hazards regardless of the extent of damage.

• **Engineering judgment and experience are essential to the successful application of the procedures.**

ATC-20 and its addendum, ATC-20-2, were developed to be used by individuals who might be somewhat less knowledgeable about earthquake building performance than practicing structural engineers. In contrast, the detailed investigation of damage using the performance-based procedures of this document and the companion FEMA 306 report (ATC, 1998a) and FEMA 308 report (ATC, 1998b) must be implemented by an experienced engineer. Although the documents include information in concise formats to facilitate field operations, they must not be interpreted as a “match the pictures” exercise for unqualified observers. Use of these guideline materials requires a thorough understanding of the underlying theory and empirical justifications contained in the documents. Similarly, the use of the simplified direct method to estimate losses has limitations. The decision to use this method and the interpretation of the results must be made by an experienced engineer.

• **The new procedures are different from past damage evaluation techniques and will continue to evolve in the future.**

The technical basis of the evaluation procedures is essentially that of the emerging performance-based seismic and structural design procedures. These will take some time to be assimilated in the engineering community. The same is true for building officials. Seminars, workshops, and training sessions are required not only to introduce and explain the procedures but also to gather feedback and to improve the overall process. Additionally, future materials-testing and analytical research will enhance the basic framework developed for this project. Current project documents are initial editions to be revised and improved over the years.

In addition to the project team, a Project Review Panel has reviewed the damage evaluation and repair procedures and each of the three project documents. This group of experienced practitioners, researchers, regulators, and materials industry representatives reached a unanimous consensus that the products are technically sound and that they represent the state of knowledge on the evaluation and repair of earthquake-damaged concrete and masonry wall buildings. At the same time, all who contributed to this project acknowledge that the recommendations depart from traditional practices. Owners, design professionals, building officials, researchers, and all others with an interest in the performance of buildings during earthquakes are encouraged to review these documents and to contribute to their continued improvement and enhancement. Use of the documents should provide realistic assessments of the effects of damage and valuable insight into the behavior of structures during earthquakes. In the long run, they hopefully will contribute to sensible private and public policy regarding earthquake-damaged buildings.
Prologue
1. Introduction

1.1 Purpose And Scope

The purpose of this document is to provide supplemental information for evaluating earthquake damage to buildings with primary lateral-force-resisting systems consisting of concrete and masonry bearing walls and infilled frames. This document includes background and theoretical information to be used in conjunction with the practical evaluation guidelines and criteria given in FEMA 306: Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings - Basics Procedures Manual (ATC, 1998a). In both documents, concrete and masonry wall buildings include those with vertical-load-bearing wall panels, with and without intermediate openings. In these documents, shear wall buildings also include those with vertical-load-bearing frames of concrete or steel that incorporate masonry or concrete infill panels to resist horizontal forces. The FEMA 306 procedures for these building types address:

a. The investigation and documentation of damage caused by earthquakes.
b. The classification of the damage to building components, according to mode of structural behavior and severity.
c. The evaluation of the effects of the damage on the performance of the building during future earthquakes.
d. The development of hypothetical measures that would restore the performance to that of the undamaged building.

Supplemental data in this document, FEMA 307, includes the results of the efforts of two issues working groups that focused on the key aspects of adapting and enhancing existing technology for the purposes of the evaluation and repair of earthquake-damaged buildings. The general scope of work for each group is briefly outlined in the following two sections.

1.2 Materials Working Group

The Materials Working Group effort was a part of the overall ATC-43 project. The primary objectives of the Materials Working Group were:

a. To summarize tests and investigative techniques that can be used to document and evaluate existing structural conditions, particularly the effects of earthquake damage, in concrete and masonry wall buildings.
b. To recommend modifications to component force-deformation relationships currently used in nonlinear structural analysis, based on the documented effects of damage similar to that caused by earthquakes.
c. To describe the specification and efficacy of methods for repair of component damage in a coordinated format suitable for inclusion in the final document.

Figure 1-1 illustrates the idealization of the force-deformation relationships from actual structural component hysteretic data for use in nonlinear analysis. The focus of the Materials Working Group was the generalized force-deformation relationship for structural components of concrete and masonry wall buildings, shown in Figure 1-2.

1.2.1 Tests and Investigations

The scope included review of experimental and analytical research reports, technical papers, standards, and manufacturers’ specifications. Practical example applications relating to the documentation, measurement, and quantification of the structural condition of concrete and masonry walls and in-fill frame walls were also reviewed. The reviews focused on tests and investigative techniques for identifying and evaluating cracking, crushing, deterioration, strength, and general quality of concrete or masonry and yielding, fracture, deterioration, strength, and location of reinforcing steel. Based on this review of existing information, practical guidelines for appropriate tests and investigative techniques were developed and are included in FEMA 306. These guidelines consist of outline specifications for equipment, materials, and procedures required to execute the tests, as well as criteria for documenting and interpreting the results.

1.2.2 Component Behavior and Modeling

The members of the group reviewed experimental and analytical research reports, technical papers, and practical example applications relating to the force-deformation behavior of concrete and masonry walls and in-fill frame walls. Of particular interest were the effects of damage of varying nature and extent on the hysteretic characteristics of elements and components.
subject to cyclic lateral loads. The types of damage investigated included cracking and crushing of concrete or masonry and yielding and fracture of reinforcing steel. Components included a wide variety of configurations for vertical-load-bearing and infilled-frame elements. Materials included reinforced concrete, reinforced masonry, and unreinforced masonry.

Based on the review, practical guidelines for identifying and modeling the force-deformation characteristics of damaged components were developed and included in FEMA 306. These consist of modifications (B', C', D', E') to the generalized force-deformation relationships for undamaged components, as shown in Figure 1-2. Supplemental information on these modifications is included in this volume in Chapters 2 (Concrete), 3 (Reinforced Masonry), 4 (Unreinforced Masonry), and 5 (Infilled Frames).

### 1.2.3 Repair Techniques

The Materials Group also reviewed experimental and analytical research reports, technical papers, standards, manufacturers' specifications, and practical example applications relating to the repair of damage in concrete and masonry walls and infilled-frame walls. The primary interest was the repair of earthquake damage to structural components. The review focused on materials and methods of installation and tests of the effectiveness of repair techniques for cracking, crushing, and deterioration of concrete or masonry and yielding, fracture, and deterioration of reinforcing steel.
Chapter 1: Introduction

Based on the review, practical guidelines for damage repair were developed and are contained in *FEMA 308: The Repair of Earthquake Damaged Concrete and Masonry Wall Buildings* (ATC, 1998b). These guidelines consist of outline specifications for equipment, materials, and procedures required to execute the repairs, as well as criteria for quality control and verification of field installations.

1.3 Analysis Working Group

The work of the Analysis Working Group was a sub-project of the overall ATC-43 project. The primary objectives of the group were:

- To determine whether existing structural analysis techniques are capable of capturing the global effects of previous earthquake damage on future seismic performance
- To formulate practical guidance for the use of these analysis techniques in design-oriented evaluation and repair of damaged masonry and concrete wall buildings.

Chapter 6 summarizes the results of the Analysis Working Group efforts. Work consisted primarily of analytical studies of representative single-degree-of-freedom (SDOF) oscillators subjected to a range of earthquake ground motions. The study was formulated so that the following question might be answered (see Figure 1-3): If a building has experienced damage in an earthquake (the *damaging earthquake*), and if that intermediate damage state can be characterized in terms of its effect on the global force-displacement relationship, how will the damage influence global response to a subsequent earthquake (the *Performance Earthquake*)?

The SDOF oscillators had force-displacement relationships that represent the effects of earthquake damage on the global dynamic response of hypothetical buildings to earthquake ground motions. Types of global force-displacement relationships considered included those shown in Figure 1-4.

The results obtained using existing simplified analyses methods were compared to the time-history results. The group was particularly interested in understanding how nonlinear static analysis methods might be used to represent the findings. Regarding the nonlinear static methods, consideration was given to the applicability of the coefficient method, the capacity-spectrum method, and the secant method of analysis, as summarized in *FEMA-273 NEHRP Guidelines for the Seismic Rehabilitation of Buildings* (ATC, 1997a) and ATC-40 *Seismic Evaluation and Retrofit of Concrete Buildings* (ATC, 1996). The work included a study of the accuracy of the various methods in terms of predicting future performance. The study included an assessment of the

![Figure 1-2 Generalized Undamaged and Damaged Component Curves](image_url)
sensitivity of the predictions to variations in global load-deformation characteristics and to variations in ground motion characteristics. The results are reflected in the procedures presented in FEMA 306.

1.4 References


ATC, 1998a, *Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Basic Procedures Manual*, prepared by the Applied Technology Council (ATC-43 project) for the Partnership for Response and Recovery, published by the Federal...
Figure 1-4  Global Load-Displacement Relationships


Chapter 1: Introduction
2. Reinforced Concrete Components

2.1 Commentary and Discussion

2.1.1 Development of Component Guides and \( \lambda \) Factors

The Component Damage Classification Guides (Component Guides) and component modification factors (\( \lambda \) factors) for reinforced concrete walls were developed based on an extensive review of the research. The main references used are listed in the tabular bibliography of Section 2.3.

2.1.1.1 Identical Test Specimens Subjected to Different Load Histories

As indicated in FEMA 306, the ideal way to establish \( \lambda \) factors would be from structural tests designed specifically for that purpose. Two identical test specimens would be required for each structural component of interest. One specimen would be tested to represent the component in its post-event condition subjected to the performance earthquake; the second specimen would be tested to represent the component in its pre-event condition subjected to the performance earthquake. The \( \lambda \) values would be derived from the differences in the force-displacement response between the two specimens.

Research to date on reinforced concrete walls does not include test programs as described above. There are only a few tests of identical wall specimens subjected to different loading histories, and typically this is only a comparison of monotonic versus cyclic behavior. For reinforced concrete columns, there are more studies of the effects of load history (El-Bahy et al., 1997; Kawashima and Koyama, 1988) but these studies have not focused on the specific problem of comparing previously damaged components to undamaged components.

2.1.1.2 Interpretation of Individual Tests

In the absence of tests directly designed to develop \( \lambda \) factors, the factors can be inferred from individual cyclic-static tests. This is done by examining the change in force-displacement response from cycle to cycle as displacements are increased. Initial cycles can be considered representative of the damaging earthquake, and subsequent cycles representative of the behavior of an initially damaged component.

The general process of interpreting the test data is outlined in the diagram of Figure 2-1. Each structural test is considered according to the component type and behavior mode represented by the test. At intervals along the load-displacement history of the test the critical damage indicators, such as spalling, cracking, etc., are noted. The damage indicators at each interval are correlated with the displacement ductility reached at that point of the test and with the characteristics of subsequent cycles of the test. From the comparisons of initial and subsequent cycles, \( \lambda \) values are estimated. Critical damage indicators and the associated \( \lambda \) factors are then discretized into different damage severity levels.

The ranges of component displacement ductility, \( \mu_\Delta \), associated with damage severity levels and \( \lambda \) factors and for each Component Guide are given in Table 2-1. The range of ductility values are the result of the differences in test procedures, specimen details, and relative values of coincident loading (shear, moment, axial load). See the remarks column of Table 2-1 for specific factors affecting individual components. Typical force-displacement hysteresis loops from wall tests are given in Section 2.2. A discussion of the relationship between cracking and damage severity for reinforced masonry is given in Section 3.1.2. This discussion is largely applicable to reinforced concrete as well as reinforced masonry.

In estimating the \( \lambda \) values, it was considered that some stiffness and strength degradation would occur in a structural component in the course of the Performance Earthquake, whether or not it was previously subjected to a damaging earthquake. As discussed in FEMA 306, the \( \lambda \) factors refer to the difference in the stiffness, strength, and displacement capacity of the performance earthquake response, between a pre-event component and a post-event component.

2.1.1.3 Accuracy

The \( \lambda \) factors are considered accurate to one significant digit, as presented in the Component Damage Classification Guides. In the case of component types and behavior modes which are not well covered in the research, engineering judgment and comparisons to similar component types or behavior modes were used.
to establish $\lambda$ factors. In cases of uncertainty, the recommended $\lambda$ factors and severity classifications are designed to be conservative — that is, the factors and classifications may overestimate the effect of damage on future performance.

Only limited research is available from which to infer specific $\lambda_D$ values. However, a number of tests support the general idea that ultimate displacement capacity can be reduced because of previous damaging cycles. Comparisons of monotonic to cyclic-static wall tests show greater displacement capacities for monotonic loading, and Oesterle et al. (1976) conclude, “structural wall performance under load reversals is a function of load history. The previous level of maximum deformation is critical.”

For reinforced concrete columns, Mander et al. (1996) have shown a correlation between strength degradation and cumulative plastic drift. El-Bahy et al. (1997) have shown similar results. This research generally supports the $\lambda_D$ values recommended for reinforced concrete, which are 0.9 at moderate damage and 0.7 to 0.8 at heavy damage.
## Table 2-1: Ranges of reinforced concrete component displacement ductility, $\mu_D$, associated with damage severity levels and $\lambda$ factors

<table>
<thead>
<tr>
<th>Component Guide</th>
<th>Damage Severity</th>
<th>Remarks on Ductility Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>RC1A</strong> Ductile Flexural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 3$</td>
<td>Slight</td>
<td>$\mu_A = 4 - 8$</td>
</tr>
<tr>
<td>$\lambda_K = 0.8$</td>
<td>Moderate</td>
<td>$\mu_A = 3 - 10$</td>
</tr>
<tr>
<td>$\lambda_Q = 1.0$</td>
<td>Heavy not used</td>
<td></td>
</tr>
<tr>
<td>$\lambda_D = 1.0$</td>
<td>Slight category will only occur for low axial loads, where concrete does not spall until large ductilities develop.</td>
<td></td>
</tr>
<tr>
<td><strong>RC1B</strong> Flexure/ Diagonal Tension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 3$</td>
<td>Slight not used</td>
<td>$\mu_A = 2 - 6$</td>
</tr>
<tr>
<td>$\lambda_K = 0.8$</td>
<td>$\mu_A = 3 - 8$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_K = 0.2$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_Q = 0.3$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_D = 0.7$</td>
<td></td>
</tr>
<tr>
<td>Ductility depends on ratio of flexural to shear strength. Lower ductility indicates behavior similar to preemptive diagonal tension. Higher ductility indicates behavior similar to ductile flexural.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>RC1C</strong> Flexure/ Web Crushing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 3$</td>
<td>Slight not used</td>
<td>$\mu_A = 4 - 8$</td>
</tr>
<tr>
<td>See RC1B</td>
<td>Moderate</td>
<td>$\mu_A = 4 - 8$</td>
</tr>
<tr>
<td>Slight category will only occur for lower axial loads, where concrete does not spall until large ductilities develop. Lower ductility relates poorer confinement conditions. Higher ductility indicates behavior similar to ductile flexural.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>RC1D</strong> Flexure/ Sliding Shear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 3$</td>
<td>Slight</td>
<td>$\mu_A = 4 - 6$</td>
</tr>
<tr>
<td>See RC1A</td>
<td>Moderate</td>
<td>$\mu_A = 4 - 8$</td>
</tr>
<tr>
<td>See RC1A</td>
<td>Heavy not used</td>
<td></td>
</tr>
<tr>
<td>Slight category will only occur for lower axial loads, where concrete does not spall until large ductilities develop. Lower ductility relates poorer confinement conditions. Higher ductility indicates behavior similar to ductile flexural.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>RC1E</strong> Flexure/ Boundary Compression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 3$</td>
<td>Slight</td>
<td>$\mu_A = 1.5$</td>
</tr>
<tr>
<td>See RC1A</td>
<td>Moderate</td>
<td>$\mu_A = 2 - 6$</td>
</tr>
<tr>
<td>See RC1A</td>
<td>Heavy not used</td>
<td></td>
</tr>
<tr>
<td>Force controlled behavior associated with low ductility levels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>RC2A</strong> Ductile Flexural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 3$</td>
<td>Slight not used</td>
<td>$\mu_A = 2 - 6$</td>
</tr>
<tr>
<td>See RC1A</td>
<td>Moderate</td>
<td>$\mu_A = 3 - 8$</td>
</tr>
<tr>
<td>See RC1A</td>
<td>Heavy not used</td>
<td></td>
</tr>
<tr>
<td>Sliding shear may occur at lower ductility levels that RC1D because of less axial load.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>RC2H</strong> Preemptive Diagonal Shear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 1$</td>
<td>Slight not used</td>
<td>$\mu_A = 2 - 8$</td>
</tr>
<tr>
<td>$\lambda_K = 0.9$</td>
<td>$\lambda_K = 0.2$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 0.3$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 0.7$</td>
<td></td>
</tr>
<tr>
<td>See RC1B</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>RC3B</strong> Flexure/ Diagonal Tension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_A \leq 3$</td>
<td>Slight not used</td>
<td>$\mu_A = 2 - 6$</td>
</tr>
<tr>
<td>See RC1B</td>
<td>Moderate</td>
<td>$\mu_A = 3 - 8$</td>
</tr>
<tr>
<td>See RC1B</td>
<td>Heavy not used</td>
<td></td>
</tr>
<tr>
<td>Sliding shear may occur at lower ductility levels that RC1D because of less axial load.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2 Typical Force-Displacement Hysteretic Behavior

**Damage Patterns and Hysteretic Response**

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Ductile Flexure</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
</tbody>
</table>

**Reference:** Corley, Fioralo, Oesterle (1981), Oesterle et al. (1976), Oesterle et al. (1979)

**Specimen:** B3

Damage at +3-in. deflection
\[ \Delta = 3 \text{ in} \quad \Delta/h_w = 0.017 \quad \lambda_Q = 1.0 \]

Damage at +6-in. deflection
\[ \Delta = 6 \text{ in} \quad \Delta/h_w = 0.033 \quad \lambda_Q = 1.0 \]

Damage at +8-in. deflection
\[ \Delta = 8 \text{ in} \quad \Delta/h_w = 0.044 \quad \lambda_Q = 0.7 \]
Chapter 2: Reinforced Concrete Components

DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/Diagonal Tension</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
</tbody>
</table>

Example 1 of 2

Reference: Paulay and Priestley (1992)
Specimen: Figure 8.3 of reference

Failure of a squat wall due to diagonal tension after reversed cyclic loading.

Hysteretic response of a squat wall that eventually failed in shear.
Chapter 2: Reinforced Concrete Components

DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/Diagonal Tension</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>Flexure/Web Crushing</td>
</tr>
</tbody>
</table>

Reference: Shiu et al. (1981)
Specimen: PW-1

Crack pattern of specimen PW-1 at end of Phase II.

Load versus top deflection relationship for specimen PW-1.

Specimen PW-1 at end of test.
Damage at +3-in. deflection
\[ \Delta = 3 \text{ in} \quad \Delta h_w = 0.017 \quad \lambda_Q = 1.0 \]

Damage prior to web crushing
\[ \Delta = 4 \text{ in} \quad \Delta h_w = 0.022 \quad \lambda_Q = 1.0 \]

Damage after web crushing
\[ \Delta = 5 \text{ in} \quad \Delta h_w = 0.028 \quad \lambda_Q = 0.3 \]

Load versus deflection relationship
Chapter 2: Reinforced Concrete Components

**Damage Patterns and Hysteretic Response**

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/Web Crushing</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
<tr>
<td>Reference:</td>
<td>Corley, Fioralo, Oesterle (1981), Oesterle et al. (1976), Oesterle et al. (1979)</td>
</tr>
<tr>
<td>Specimen:</td>
<td>B5</td>
</tr>
</tbody>
</table>

- **Damage at +3-in. deflection**
  \[ \Delta = 3 \text{ in} \quad \Delta/h_w = 0.017 \quad \lambda_Q = 1.0 \]

- **Damage at -3-in. deflection**
  \[ \Delta = 3 \text{ in} \quad \Delta/h_w = 0.017 \quad \lambda_Q = 1.0 \]

- **Damage after web crushing**
  \[ \Delta = 5 \text{ in} \quad \Delta/h_w = 0.028 \quad \lambda_Q = 0.6 \]
Damage at +3-in. deflection
\[ \Delta = 3 \text{ in} \quad \Delta/h_w = 0.017 \quad \lambda_Q = 1.0 \]

Damage at -3-in. deflection
\[ \Delta = 3 \text{ in} \quad \Delta/h_w = 0.017 \quad \lambda_Q = 1.0 \]

Damage after web crushing
\[ \Delta = 3 \text{ in} \quad \Delta/h_w = 0.017 \quad \lambda_Q = 0.3 \]
### DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/Sliding Shear</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
</tbody>
</table>

Specimen: CI-1

Crack pattern of specimen CI-1 at end of phase II.

Load versus top deflection relationship for specimen CI-1.
Chapter 2: Reinforced Concrete Components

DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
<th>RC1D</th>
<th>Example 2 of 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/Sliding Shear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen:</td>
<td>Wall 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall dimensions of typical test units.

Splitting and Crushing of Concrete at Base of Wall

Compression Toe

Load-deflection relationship for wall 1.
### DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode</td>
<td>Flexure/Sliding Shear</td>
</tr>
<tr>
<td>Secondary Behavior Mode</td>
<td>—</td>
</tr>
</tbody>
</table>

**Reference:** Paulay, Priestley, and Synge (1982)

**Specimen:** Wall 3

---

Overall Dimensions for Walls 3 and 4.

---

Load-Deflection Relationship for Flanged Wall
### Damage Patterns and Hysteretic Response

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/BOUNDary Compression</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
<tr>
<td>Reference:</td>
<td>Corley, Fioralo, Oesterle (1981), Oesterle et al. (1976), Oesterle et al. (1979)</td>
</tr>
<tr>
<td>Specimen:</td>
<td>B1</td>
</tr>
</tbody>
</table>

**Damage at +3-in. deflection**

\[
\Delta = 3 \text{ in} \quad \Delta h_w = 0.017 \quad \lambda_Q = 1.0
\]

**Buckled reinforcement after Load Cycle 30**

\[
\Delta = 4 \text{ in} \quad \Delta h_w = 0.022 \quad \lambda_Q = 0.9
\]

**Damage during Load Cycle 34**

\[
\Delta = 6 \text{ in} \quad \Delta h_w = 0.033 \quad \lambda_Q = 0.6
\]

Load versus deflection relationship
### DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
<th>RC1G</th>
<th>Example 1 of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/Out-of-Plane Wall Buckling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference:</td>
<td>Corley, Fioralo, Oesterle (1981), Oesterle et al. (1976), Oesterle et al. (1979)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen:</td>
<td>R2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cracking pattern at +3 in. deflection for Specimen R2

Cracking pattern at -3 in. deflection for Specimen R2

Inelastic instability of compression zone

Continuous load-deflection plot for Specimen R2
### DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Flexure/Out-of-Plane Wall Buckling</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
</tbody>
</table>

**Reference:** Paulay and Priestley (1992)

**Specimen:** Wall 2 and Wall 4, Figure 5.37 of reference

Diagonal cracking and buckling in the plastic hinge region of a structural wall (G1).

---

**Stable hysteretic response of a ductile wall structure (G1).**
### DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
<th><strong>RC11</strong> Example 1 of 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
<td>B3-2</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Preemptive Web Crushing</td>
<td></td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference: Barda (1972), Barda, Hanson, & Corley (1976) (Lehigh Univ.)
Specimen: B3-2

Test specimen at ultimate load
\[ \Delta = 0.2 \text{ in} \quad \Delta/h_w = 0.005 \quad \lambda_Q = 1.0 \]

Test specimen at conclusion of loading
\[ \Delta = 3.0 \text{ in} \quad \Delta/h_w = 0.080 \quad \lambda_Q = 0.2 \]

<table>
<thead>
<tr>
<th>Provided Information</th>
<th>Calculated Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>( h_w = 37.5 \text{ in} )</td>
<td>( P = 4.9 \text{ k} )</td>
</tr>
<tr>
<td>( f_y = 60 \text{ ksi} )</td>
<td>( M_n = 1700 \text{ k-1} )</td>
</tr>
<tr>
<td>( f_c^* = 3920 \text{ psi} )</td>
<td>( V ) corresponding to ( M_n = 1810 \text{ psi} )</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>( \Delta )</th>
<th>( \Delta/h_w )</th>
<th>( \lambda_Q )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.005</td>
<td>1.0</td>
</tr>
<tr>
<td>0.23</td>
<td>0.006</td>
<td>0.9</td>
</tr>
<tr>
<td>0.28</td>
<td>0.007</td>
<td>0.7</td>
</tr>
<tr>
<td>0.40</td>
<td>0.011</td>
<td>0.5</td>
</tr>
<tr>
<td>0.80</td>
<td>0.021</td>
<td>0.3</td>
</tr>
<tr>
<td>3.00</td>
<td>0.080</td>
<td>0.2</td>
</tr>
</tbody>
</table>
**Chapter 2: Reinforced Concrete Components**

**Damage Patterns and Hysteretic Response**

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Preemptive Web Crushing</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
</tbody>
</table>

Reference: Barda (1972), Barda, Hanson, & Corley (1976)
Specimen: B8-5

Test specimen at ultimate load
\[ \Delta = 0.2 \text{ in} \quad \Delta/h_w = 0.005 \quad \lambda_Q = 1.0 \]

Test specimen at conclusion of loading
\[ \Delta = 3.0 \text{ in} \quad \Delta/h_w = 0.040 \quad \lambda_Q = 0.2 \]

<table>
<thead>
<tr>
<th>Provided Information</th>
<th>Calculated Values</th>
<th>( \Delta )</th>
<th>( \Delta/h_w )</th>
<th>( \lambda_Q )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( h_w = 75 \text{ in} )</td>
<td>( P = 75 \text{k} )</td>
<td>0.45</td>
<td>0.006</td>
<td>1.0</td>
</tr>
<tr>
<td>( f_y = 71 \text{ ksi} )</td>
<td>( M_n = 2000 \text{k} - 1 )</td>
<td>0.60</td>
<td>0.008</td>
<td>0.9</td>
</tr>
<tr>
<td>( f_{c'} = 3400 \text{ psi} )</td>
<td>( V ) corresponding to ( M_n = 1070 \text{ psi} )</td>
<td>0.80</td>
<td>0.011</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.20</td>
<td>0.016</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.70</td>
<td>0.023</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.00</td>
<td>0.040</td>
<td>0.2</td>
</tr>
</tbody>
</table>
DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Isolated Wall or Stronger Wall Pier</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Preemptive Sliding Shear</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>Web Crushing</td>
</tr>
</tbody>
</table>

Reference: Barda (1972), Barda, Hanson, & Corley (1976) (Lehigh Univ.)
Specimen: B7-5

Test specimen at ultimate load
\[ \Delta = 0.15 \text{ in} \quad \Delta/h_w = 0.008 \quad \lambda_Q = 1.0 \]

Test specimen at conclusion of loading
\[ \Delta = 3.0 \text{ in} \quad \Delta/h_w = 0.160 \quad \lambda_Q = 0.4 \]

Provided Information
- \( h_w = 18.75 \) in
- \( f_y = 78 \) ksi
- \( f_c' = 3730 \) psi

Calculated Values
- \( P = 3.6 \) k
- \( M_p = 2180 \) k·in
- \( V \) corresponding to \( b \cdot l_w \)
- \( M_n = 4600 \) psi

\[ \lambda_Q \text{ values from response plot} \]

\[ \begin{array}{ccc}
\Delta & \Delta/h_w & \lambda_Q \\
0.15 & 0.008 & 1.0 \\
0.30 & 0.016 & 0.9 \\
0.70 & 0.037 & 0.8 \\
1.80 & 0.096 & 0.6 \\
3.00 & 0.160 & 0.4 \\
\end{array} \]

Hysteretic response to 0.6 in.

Hysteretic response to 3.0 in.
**DAMAGE PATTERNS AND HYSTERETIC RESPONSE**

- **System:** Reinforced Concrete
- **Component Type:** Weaker Spandrel or Coupling Beam
- **Predominant Behavior Mode:** Ductile Flexure
- **Secondary Behavior Mode:** —

Specimen: Beam 316

Theoretical (uncracked section)

Theoretical ultimate load  
$P_u^* = 128.4 \text{kips}$

Load held

151.5th cycle

Reinforcement

Load-rotation relationship for Beam 316.
Chapter 2: Reinforced Concrete Components

### Damage Patterns and Hysteretic Response

<table>
<thead>
<tr>
<th>System</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type</td>
<td>Weaker Spandrel or Coupling Beam</td>
</tr>
<tr>
<td>Predominant Behavior Mode</td>
<td>Flexure/Sliding Shear</td>
</tr>
<tr>
<td>Secondary Behavior Mode</td>
<td>—</td>
</tr>
</tbody>
</table>

**Reference:** Paulay & Binney (1974)

**Specimen:** Beam 315

---

**Theoretical:**
- (b) Uncracked sections
- (a) Cracked sections

**Beam 315**

Load-rotation relationship for a conventional coupling beam.
DAMAGE PATTERNS AND HYSTERETIC RESPONSE

<table>
<thead>
<tr>
<th>System:</th>
<th>Reinforced Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Type:</td>
<td>Weaker Spandrel or Coupling Beam</td>
</tr>
<tr>
<td>Predominant Behavior Mode:</td>
<td>Preemptive Diagonal Tension</td>
</tr>
<tr>
<td>Secondary Behavior Mode:</td>
<td>—</td>
</tr>
</tbody>
</table>

Specimen: Beam 392

Beam 392 after being subjected to seismic-type loading: Cycle 13.

Beam 392, Cycle 14.
2.3 Tabular Bibliography

Table 2-2 contains a brief description of the key technical reports that address specific reinforced concrete component behavior. The component types and their behavior modes are indicated. The full references can be found in Section 2.5.
### Chapter 2: Reinforced Concrete Components

#### Table 2-2 Key References on Reinforced Concrete Wall Behavior.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Comp. Types</th>
<th>Behavior modes Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EVALUATION AND DESIGN RECOMMENDATIONS:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oesterle et al (1983)</td>
<td>Development of a design equation for web crushing strength. Strength is related to story drift and correlation with research results is shown.</td>
<td>A B C D E F G H</td>
<td>RC1 –</td>
</tr>
<tr>
<td><strong>OVERVIEWS OF TEST RESULTS:</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood (1991)</td>
<td>Review of 27 specimens. 24 cyclic-static loading, 3 monotonic loading. “Slender” walls: (1.1 &lt; M/\nu L &lt; 2.9). All specimens reached flexural yield. Failure categorized as either “shear” or “flexure”.</td>
<td>A B C D E F G H</td>
<td>RC1</td>
</tr>
<tr>
<td>Wood (1990)</td>
<td>Review of 143 specimens. 50 cyclic-static loading, 89 monotonic loading, 4 repeated unidirectional loading. “Short” walls: (0.23 &lt; M/\nu L &lt; 1.7). Review focuses on maximum strength. Failure modes and displacement capacity not addressed</td>
<td>A B C D E F G H</td>
<td>RC1</td>
</tr>
<tr>
<td>ATC-11(1983)</td>
<td>Commentary on implications of r/c wall test results and design issues.</td>
<td>A B C D E F G H</td>
<td>RC1, RC3</td>
</tr>
<tr>
<td>Sozen &amp; Moehle (1993)</td>
<td>Review of wall test results applicable to nuclear power plant structures. Focused on predicting initial stiffness.</td>
<td>A B C D E F G H</td>
<td>RC1</td>
</tr>
</tbody>
</table>

\[ \text{\textsuperscript{1}} \text{Behavior modes:} \]

- A Ductile Flexural Response
- B Flexure/Diagonal Tension
- C Flexure/Diagonal Compression (Web Crushing)
- D Flexure/Sliding Shear
- E Flexure/Boundary-Zone Compression
- F Flexure/Lap-Splice Slip
- G Flexure/Out-of-Plane Wall Buckling
- H Preemptive Diagonal Tension
- I Preemptive Web Crushing
- J Preemptive Sliding Shear
- K Preemptive Boundary Zone Compression Failure
- L Preemptive Lap-Splice Failure
- M Global foundation rocking of wall
- N Foundation rocking of individual piers
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Comp. Types</th>
<th>Behavior modes Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barda (1972)</td>
<td>8 test specimens: 6 cyclic-static loading, 2 monotonic loading. Small axial load. Approx. 1/3 scale, flanged walls. Low-rise: $M/VL = 1.0, 0.5, 0.25$. Wall vertical &amp; horiz. reinf. and flange longit. reinf. varied 1 specimen repaired by replacement of web concrete and tested.</td>
<td>RC1</td>
<td>• •</td>
</tr>
<tr>
<td>Barda, Hanson &amp; Corley (1976)</td>
<td>8 test specimens: 6 cyclic-static loading, 2 monotonic loading. Small axial load. Approx. 1/3 scale, flanged walls. Low-rise: $M/VL = 1.0, 0.5, 0.25$. Wall vertical &amp; horiz. reinf. and flange longit. reinf. varied 1 specimen repaired by replacement of web concrete and tested.</td>
<td>RC1</td>
<td>• •</td>
</tr>
<tr>
<td>Oesterle et al (1976)</td>
<td>16 test specimens: 2 rectangular, 12 barbell, 2 flanged. $M/VL = 2.4$. Approx. 1/3 scale. Variables include boundary longit. and hoop reinf., wall horiz. reinf., axial load, load history 2 specimens repaired and tested.</td>
<td>RC1</td>
<td>• • • •</td>
</tr>
<tr>
<td>(Portland Cement Association)</td>
<td>16 test specimens: 2 rectangular, 12 barbell, 2 flanged. $M/VL = 2.4$. Approx. 1/3 scale. Variables include boundary longit. and hoop reinf., wall horiz. reinf., axial load, load history 2 specimens repaired and tested.</td>
<td>RC1, RC2, RC4</td>
<td>• •</td>
</tr>
<tr>
<td>Shiu et al (1981)</td>
<td>2 test specimens. One solid wall and one wall with openings. Approx. 1/3 scale. Rectangular sections. Solid wall governed by sliding shear. Wall with openings was governed by diagonal compression in the piers. Coupling beams were not significantly damaged.</td>
<td>RC1, RC2, RC4</td>
<td>• •</td>
</tr>
<tr>
<td>(Portland Cement Association)</td>
<td>2 test specimens. One solid wall and one wall with openings. Approx. 1/3 scale. Rectangular sections. Solid wall governed by sliding shear. Wall with openings was governed by diagonal compression in the piers. Coupling beams were not significantly damaged.</td>
<td>RC1, RC2, RC4</td>
<td>• •</td>
</tr>
<tr>
<td>Wang, Bertero &amp; Popov (1975)</td>
<td>10 test specimens: 6 barbell and 4 rectangular. 5 cyclic-static loading, 5 monotonic. 1/3 scale, modeled bottom 3 stories of 10-story barbell wall and 7-story rectangular wall. 5 specimens repaired with replacement of damaged rebar and crushed concrete.</td>
<td>RC1</td>
<td>• • • •</td>
</tr>
<tr>
<td>Valleonas, Bertero &amp; Popov (1979)</td>
<td>10 test specimens: 6 barbell and 4 rectangular. 5 cyclic-static loading, 5 monotonic. 1/3 scale, modeled bottom 3 stories of 10-story barbell wall and 7-story rectangular wall. 5 specimens repaired with replacement of damaged rebar and crushed concrete.</td>
<td>RC1</td>
<td>• • • •</td>
</tr>
<tr>
<td>(U.C. Berkeley)</td>
<td>2 test specimens. Barbell-shaped sections. Combination of cyclic-static and monotonic loading. 1/3 scale, modeled bottom 3 stories of 10-story barbell wall. Specimens repaired with epoxy injection of cracks after minor damage then subsequently repaired (after major damage) with replacement of damaged rebar and crushed concrete.</td>
<td>RC1</td>
<td>• •</td>
</tr>
<tr>
<td>Iliya &amp; Bertero (1980)</td>
<td>2 test specimens. Barbell-shaped sections. Combination of cyclic-static and monotonic loading. 1/3 scale, modeled bottom 3 stories of 10-story barbell wall. Specimens repaired with epoxy injection of cracks after minor damage then subsequently repaired (after major damage) with replacement of damaged rebar and crushed concrete.</td>
<td>RC1</td>
<td>• •</td>
</tr>
</tbody>
</table>

1. Behavior modes:

- A. Ductile Flexural Response
- B. Flexure/Diagonal Tension
- C. Flexure/Diagonal Compression (Web Crushing)
- D. Flexure/Sliding Shear
- E. Flexure/Boundary-Zone Compression
- F. Flexure/Lap-Splice Slip
- G. Flexure/Out-of-Plane Wall Buckling
- H. Preemptive Diagonal Tension
- I. Preemptive Web Crushing
- J. Preemptive Sliding Shear
- K. Preemptive Boundary Zone Compression Failure
- L. Preemptive Lap-Splice Failure
- M. Global foundation rocking of wall
- N. Foundation rocking of individual piers
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Comp. Types</th>
<th>Behavior modes Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paulay, Priestley &amp; Synge (1982)</td>
<td>4 test specimens, 2 rectangular, 2 flanged. Low-rise walls, $M/\nu L = 0.57$. Approx. 1/2 scale. Two specimens with diagonal bars to prevent sliding shear.</td>
<td>RC1</td>
<td>• • • •</td>
</tr>
<tr>
<td>Paulay &amp; Binney (1974) Paulay (1971a, 1971b)</td>
<td>12 coupling-beam test specimens, 3 monotonic loading, 9 cyclic-static loading. $M/\nu L = 0.51, 0.65$. Approx. 1/2 scale. Varied amount of stirrup reinforcement, and amount and arrangement of longitudinal reinf., 3 specimens with diagonal bars.</td>
<td>RC3</td>
<td>• • • •</td>
</tr>
<tr>
<td>Paulay and Santhakumar (1976)</td>
<td>Two 7-story coupled wall specimens. Cyclic-static loading 1/4 scale. One specimen with diagonally reinforced coupling beams.</td>
<td>RC1</td>
<td>• • •</td>
</tr>
<tr>
<td>Barney et al (1978) (Portland Cement Association)</td>
<td>8 coupling beam test specimens. Cyclic-static loading. $M/\nu L = 1.25, 2.5$. Approximately 1/3-scale specimens with conventional longitudinal reinforcement, diagonal bars in hinge zones, and full length diagonal bars. Full length diagonal reinforcement significantly improved performance.</td>
<td>RC3</td>
<td>• • • •</td>
</tr>
<tr>
<td>Wight (Editor) (1985)</td>
<td>7-story building, two bays by three bays with beam and slab floors, cyclic-static loading full scale. One wall acting parallel to moment frames. Parallel and perpendicular frames increased the capacity of the structure. Test structure repaired with epoxy injection and re-tested</td>
<td>RC1</td>
<td>•</td>
</tr>
<tr>
<td>Alexander, Heidebrcht, and Tso (1973) (McMaster University)</td>
<td>$M/\nu L = 2.0, 1.33, 0.67$. Cyclic-static loading. 1/2 scale. Axial load varied.</td>
<td>RC1</td>
<td>• •</td>
</tr>
<tr>
<td>Shiga, Shibata, and Takahashi (1973, 1975) (Tohoku University)</td>
<td>8 test specimens, 6 cyclic-static loading, 2 monotonic. Approx. 1/4 scale. Barbell section. Load history, web reinforcement, and axial load varied. $M/\nu L = 0.63$.</td>
<td>RC1</td>
<td>•</td>
</tr>
<tr>
<td>Maier (1991)</td>
<td>10 test specimens, 2 cyclic-static loading, 8 monotonic. 7 flanged sections, 3 rectangular. Approx. 1/3 scale. Reinforcement and axial load varied. $M/\nu L = 1.12$.</td>
<td>RC1</td>
<td>• •</td>
</tr>
</tbody>
</table>

---

1 Behavior modes:

- A Ductile Flexural Response
- B Flexure/Diagonal Tension
- C Flexure/Diagonal Compression (Web Crushing)
- D Flexure/Sliding Shear
- E Flexure/Boundary-Zone Compression
- F Flexure/Lap-Splice Slip
- G Flexure/Out-of-Plane Wall Buckling
- H Preemptive Diagonal Tension
- I Preemptive Web Crushing
- J Preemptive Sliding Shear
- K Preemptive Boundary Zone Compression Failure
- L Preemptive Lap-Splice Failure
- M Global foundation rocking of wall
- N Foundation rocking of individual piers
### Table 2-1: Key References on Reinforced Concrete Wall Behavior (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Comp. Behavior modes Addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mansur, Balendra, and H’ng (1991)</td>
<td>4 successful test specimens, cyclic-static loading. Approx. 1/4 scale. Flanged section. Web reinforced with welded wire mesh or expanded metal. $M/\sqrt{L} = 0.68.$</td>
<td>RC1</td>
</tr>
<tr>
<td>Saatcioglu (1991)</td>
<td>3 test specimens, cyclic-static loading. Approx. 1/3 scale. Rectangular section. Horizontal and sliding-shear dowel reinforcement varied.</td>
<td>RC1</td>
</tr>
<tr>
<td>Aristizabal-Ochoa, Dario, &amp; Sozen (1976) (University of Illinois)</td>
<td>4 shake-table specimens. Approx. 1/12 scale. 10-story coupled walls, rectangular pier and beam sections. Discusses reduced stiffness of coupling beams resulting from bond slip, and redistribution of demands between wall piers.</td>
<td>RC1, RC3</td>
</tr>
<tr>
<td>Lybas &amp; Sozen (1977) (University of Illinois)</td>
<td>6 test specimens, 5 shake-table and 1 cyclic static. Approx. 1/12 scale. 6-story coupled walls, rectangular pier and beam sections.</td>
<td>RC1, RC3</td>
</tr>
<tr>
<td>Azizinamini et al. (1994) (Portland Cement Association)</td>
<td>Out-of-plane tests on tilt-up walls. 6 test specimens. Approx. 3/5 scale. Monotonic out-of-plane loading. Report shows typical crack patterns resulting from out-of-plane forces.</td>
<td>RC1</td>
</tr>
<tr>
<td>ACI-SEAOSC Task Force (1982)</td>
<td>Out-of-plane tests on tilt-up walls, 12 reinforced concrete specimens (Also, 18 reinforced masonry specimens). Full scale monotonic out-of-plane loading and constant axial loading $h/t$ ratios of 30 to 60.</td>
<td>RC1</td>
</tr>
</tbody>
</table>

---

4 Behavior modes:

- **A** Ductile Flexural Response
- **B** Flexure/Diagonal Tension
- **C** Flexure/Diagonal Compression (Web Crushing)
- **D** Flexure/Sliding Shear
- **E** Flexure/Boundary-Zone Compression
- **F** Flexure/Lap-Splice Slip
- **G** Flexure/Out-of-Plane Wall Buckling
- **H** Preemptive Diagonal Tension
- **I** Preemptive Web Crushing
- **J** Preemptive Sliding Shear
- **K** Preemptive Boundary Zone Compression Failure
- **L** Preemptive Lap-Splice Failure
- **M** Global foundation rocking of wall
- **N** Foundation rocking of individual piers
2.4 Symbols for Reinforced Concrete

Symbols that are used in this chapter are defined below. Further information on some of the variables used (particularly those noted “per ACI”) may be found by looking up the symbol in Appendix D of ACI 318-95.

\[ A_{ch} = \text{Cross sectional area of confined core of wall boundary region, measured out-to-out of confining reinforcement and contained within a length } c' \text{ from the end of the wall, FEMA 306, Section A2.3.7} \]

\[ A_{cv} = \text{Net area of concrete section bounded by web thickness and length of section in the direction of shear force considered, in}^2 \text{ (per ACI)} \]

\[ A_g = \text{Gross cross sectional area of wall boundary region, taken over a length } c' \text{ from the end of the wall, FEMA 306, Section A2.3.7} \]

\[ A_{sh} = \text{Total cross-sectional area of transverse reinforcement (including cross ties) within spacing } s \text{ and perpendicular to dimension } h_c. \text{ (per ACI)} \]

\[ b = \text{Width of compression face of member, in (per ACI)} \]

\[ b_w = \text{Web width, in (per ACI)} \]

\[ c = \text{Distance from extreme compressive fiber to neutral axis (per ACI)} \]

\[ c' = \text{Length of wall section over which boundary ties are required, per FEMA 306, Section A2.3.7} \]

\[ d_b = \text{Bar diameter (per ACI)} \]

\[ d_{bt} = \text{Bar diameter of tie or loop} \]

\[ f_{c'} = \text{Specified compressive strength of concrete, psi (per ACI)} \]

\[ f_y = \text{Specified yield strength of nonprestressed reinforcement, psi. (per ACI)} \]

\[ f_{yh} = \text{Specified yield strength of transverse reinforcement, psi (per ACI)} \]

\[ h_c = \text{Cross sectional dimension of confined core of wall boundary region, measured out-to-out of confining reinforcement} \]

\[ h_d = \text{Height over which horizontal reinforcement contributes to } V_s \text{ per FEMA 306, Section A2.3.6.b} \]

\[ h_w = \text{Height of wall or segment of wall considered (per ACI)} \]

\[ k_{rc} = \text{Coefficient accounting the effect of ductility demand on } V_c \text{ per FEMA 306, Section A2.3.6.b} \]

\[ l_p = \text{Equivalent plastic hinge length, determined according to FEMA 306, Section A2.3.3.} \]

\[ l_u = \text{Unsupported length considered for wall buckling, determined according to FEMA 306, Section A2.3.9} \]

\[ l_t = \text{Beam clear span (per ACI)} \]

\[ l_w = \text{Length of entire wall or segment of wall considered in direction of shear force (per ACI). (For isolated walls and wall piers equals horizontal length, for spandrels and coupling beams equals vertical dimension i.e., overall depth)} \]

\[ M_{cr} = \text{Cracking moment (per ACI)} \]

\[ M_e = \text{Expected moment strength at section, equal to nominal moment strength considering expected material strengths.} \]

\[ M_n = \text{Nominal moment strength at section (per ACI)} \]

\[ M_u = \text{Factored moment at section (per ACI)} \]

\[ M/V = \text{Ratio of moment to shear at a section. When moment or shear results from gravity loads in addition to seismic forces, can be taken as } M_u/V_u \]

\[ N_u = \text{Factored axial load normal to cross section occurring simultaneously with } V_u; \text{ to be taken as positive for compression, negative for tension (per ACI)} \]

\[ s = \text{Spacing of transverse reinforcement measured along the longitudinal axis of the structural member (per ACI)} \]

\[ s_l = \text{spacing of vertical reinforcement in wall (per ACI)} \]

\[ V_c = \text{Nominal shear strength provided by concrete (per ACI)} \]

\[ V_n = \text{Nominal shear strength (per ACI)} \]

\[ V_p = \text{Nominal shear strength related to axial load per Section} \]
Chapter 2: Reinforced Concrete Components

\[ V_s = \text{Nominal shear strength provided by shear reinforcement (per ACI)} \]

\[ V_u = \text{Factored shear force at section (per ACI)} \]

\[ V_{wc} = \text{Web crushing shear strength per FEMA 306, Section A2.3.6.c} \]

\[ \alpha = \text{Coefficient accounting for wall aspect ratio effect on } V_c \text{ per FEMA 306, Section A2.3.6.b} \]

\[ \beta = \text{Coefficient accounting for longitudinal reinforcement effect on } V_c \text{ per FEMA 306, Section A2.3.6.b} \]

\[ \delta = \text{Story drift ratio for a component, corresponding to the global target displacement, used in the computation of } V_{wc}, \text{FEMA 306, Section A2.3.6.c} \]

\[ \mu = \text{Coefficient of friction (per ACI)} \]

\[ \mu_\Delta = \text{Displacement ductility demand for a component, used in FEMA 306, Section A2.3.4, as discussed in Section 6.4.2.4 of FEMA-273. Equal to the component deformation corresponding to the global target displacement, divided by the effective yield displacement of the component (which is defined in Section 6.4.1.2B of FEMA-273).} \]

\[ \rho_g = \text{Ratio of total reinforcement area to cross-sectional area of wall.} \]

\[ \rho_l = \text{Local reinforcement ratio in boundary region of wall according to FEMA 306, Section A2.3.7} \]

\[ \rho_n = \text{Ratio of distributed shear reinforcement on a plane perpendicular to plane of } A_{cv} \text{ (per ACI). (For typical wall piers and isolated walls indicates amount of horizontal reinforcement.)} \]
2.5 References for Reinforced Concrete

This list contains references from the reinforced concrete chapters of both FEMA 306 and 307.

ACI, 1995, Building Code Requirements for Reinforced Concrete, American Concrete Institute, Report ACI 318-95, Detroit, Michigan.

ACI-SEAOSC, 1982, Test Report on Slender Walls, Task Committee on slender Walls, American Concrete Institute, Southern California Chapter, and Structural Engineers of Southern California.


Barda, Felix, 1972, Shear Strength of Low-Rise Walls with Boundary Elements, Ph.D. University, Lehigh University, Bethlehem, Pennsylvania.

Barda, Felix, Hanson, J.W., and Corley, W.G., 1976, Shear Strength of Low-Rise Walls with Boundary Elements, Research and Development Bulletin RD043.01D, preprinted with permission from ACI Symposium Reinforced Concrete Structures in Seismic Zones, American Concrete Institute.


CRSI, No publication date given, *Evaluation of Reinforcing Steel in Old Reinforced Concrete Structures*, Concrete Reinforcing Steel Institute, Engineering Data Report No. 11, Chicago, Illinois.


Paulay, T., and Binney, J.R., 1974, “Diagonally Reinforced Coupling Beams of Shear Walls,” *Shear in Reinforced Concrete*, ACI Publication SP-42, American Concrete Institute, Detroit, Michigan, pp. 579-598.


Wight, James K. (editor), 1985, *Earthquake Effects on Reinforced Concrete Structures*, US-Japan Research, ACI Special Publication SP-84, American Concrete Institute, Detroit Michigan.


3. Reinforced Masonry

3.1 Commentary and Discussion

Several topics that are relevant to the development of the reinforced masonry component guides are addressed in this chapter.

3.1.1 Typical Hysteretic Behavior

The behavior modes described for reinforced masonry in FEMA 306, Section A3.2 are based on experimental research and field observation of earthquake damaged masonry buildings. Typical damage patterns and hysteretic response representative of different components and behavior modes are presented in Table 3-1.

3.1.2 Cracking and Damage Severity

Cracks in a structural wall can provide information about previous displacements and component response. Aspects of cracking that relate to component behavior include:

- The orientation of cracks
- The number (density) of cracks
- The spacing of cracks
- The width of individual cracks
- The relative size of crack widths

In reinforced masonry with a flexural behavior mode, flexural cracks generally form in the mortar bed joints. At the base of a tall cantilever wall, flexural cracks may propagate across the entire length of the wall. Following an earthquake, flexural cracks tend to close due to gravity loads, and they may be particularly hard to locate in mortar joints. They are generally associated with ductile response and the natural engagement of vertical reinforcement; as a result, they do not provide a good measure of damage. When such cracks are visible, they are only used to identify behavior modes, not to assess the severity of damage.

Diagonal cracks reflect associated shear stresses, but they may be a natural part of ductile flexural action. In fully-grouted hollow brick or block masonry, diagonal cracks typically propagate through the units with short deviations along the mortar joints. Stair-step diagonal cracks are rare, and would indicate partial grouting and low-strength mortar. In plastic-hinge zones undergoing flexural response, diagonal cracks propagate from the ends of flexural cracks. In shear-dominated panels, diagonal cracks are more independent of flexural cracks.

In a flexurally-controlled wall, diagonal cracks are well-distributed and of uniform, small width. In a wall undergoing the transition from flexural response to shear response, one or two diagonal cracks, typically at the center of the wall, will grow wider than the others, dominating the response and concentrating shear deformations in a small area. A poorly-detailed wall undergoing preemptive shear behavior may have very few cracks until a critical, single diagonal crack opens.

In the investigation of earthquake-damaged concrete and masonry wall structures, cracks are the most visible evidence of damage. Because cracks are a striking and easily observed indication of the effect of earthquakes on walls, there is a strong temptation to overemphasize the relationship between crack width and the associated decrease (if any) in the strength and deformation capacity of a wall. Hanson (1996), has made the case that crack width alone is a poor indicator of damage severity. In recognition of this, the Component Damage Classification Guides in FEMA 306 do not rely on crack width as the only description of damage—numerous indicators of damage severity in reinforced masonry walls are described, among which crack width is only one. Cracking patterns can provide a wealth of information about the performance of a structural wall, but the location, orientation, number, and distribution of the cracks must be considered as important as, if not more important than, the crack width.

With the understanding that crack width must be considered in the context of all of the other parameters that can affect the behavior mode and damage severity of a wall, a rational approach is required to understand the influence of crack width on damage. This section outlines the basis of crack width limits specified in the Component Damage Classification Guides.
<table>
<thead>
<tr>
<th>Component and Behavior Mode</th>
<th>Reference</th>
<th>Crack / Damage Pattern</th>
<th>Hysteretic Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM1 Flexure</td>
<td>Shing et al., 1991 Specimen 12</td>
<td>See Guide RM1A</td>
<td><img src="image" alt="Hysteretic Response Diagram" /></td>
</tr>
<tr>
<td>RM1 Flexure</td>
<td>Priestley and Elder 1982</td>
<td>See Guide RM1A</td>
<td><img src="image" alt="Hysteretic Response Diagram" /></td>
</tr>
</tbody>
</table>

Table 3-1 Damage Patterns and Hysteretic Response for Reinforced Masonry Components
<table>
<thead>
<tr>
<th>RM1</th>
<th>Flexure / Shear</th>
<th>Shing et al., 1991 Specimen 7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>See Guides RM1B and RM2B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RM1</th>
<th>Flexure / Shear</th>
<th>Priestley and Elder 1982</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>See Guides RM1B and RM2B</td>
</tr>
</tbody>
</table>

---

**Table 3-1** Damage Patterns and Hysteretic Response for Reinforced Masonry Components (continued)

![Graph](image1.png)

![Graph](image2.png)

(a) Unconfined Wall
### Table 3-1  Damage Patterns and Hysteretic Response for Reinforced Masonry Components (continued)

<table>
<thead>
<tr>
<th>RM1</th>
<th>Shing et al., 1991</th>
<th>Specimen 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexure / Sliding Shear</td>
<td>See Guide RM1C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RM1</th>
<th>Shing et al., 1991</th>
<th>Specimen 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexure / Shear / Sliding Shear</td>
<td>See Guides RM1B and RM1C</td>
<td></td>
</tr>
</tbody>
</table>

**Diagram:**

- **First Yield**
- **Base Spalling**
- **Toe Crushing**
- **Diagonal Crack**
Table 3-1  Damage Patterns and Hysteretic Response for Reinforced Masonry Components (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM1</td>
<td>Flexure/lap splice slip</td>
<td>Shing et al., 1991 Specimen 19</td>
</tr>
<tr>
<td></td>
<td>See Guide RM1E</td>
<td></td>
</tr>
<tr>
<td>RM1 or RM2</td>
<td>Preemptive Shear</td>
<td>Shing et al., 1991 Specimen 9</td>
</tr>
<tr>
<td></td>
<td>See Guide RM2G</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3-1  Damage Patterns and Hysteretic Response for Reinforced Masonry Components (continued)

<table>
<thead>
<tr>
<th>RM1 or RM2</th>
<th>Shing et al., 1991</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preemptive Shear</td>
<td>Specimen 14</td>
</tr>
<tr>
<td>See Guide RM2G</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RM3</th>
<th>Priestley and Hon, 1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexure</td>
<td></td>
</tr>
<tr>
<td>See Guide RM3A</td>
<td></td>
</tr>
<tr>
<td>Damage Patterns and Hysteretic Response for Reinforced Masonry Components (continued)</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>RM1 or RM2 with flange. Flexure / Shear</td>
<td></td>
</tr>
<tr>
<td>Priestley and He, 1990</td>
<td></td>
</tr>
</tbody>
</table>

See Guides RM1A, RM1B, and / or RM2G

![Graph showing hysteretic response in reinforced masonry](image-url)
Research has been conducted to evaluate the relationship between crack width, crack spacing, and reinforcing bar strain. A partial review of the literature on crack width is provided by Noakowski, (1985). Research indicates that the width of a crack crossing a reinforcing bar at first yield of the reinforcement depends on the bar diameter, the reinforcement yield stress, the reinforcement ratio, the reinforcement elastic modulus, and on the characteristics of the bond stress-slip relationship. However, most research in this area has focused on nearly elastic systems (prior to yield in reinforcement), and flexural cracking in beams and uniaxial tension specimens. It is difficult to extrapolate quantitative expressions for crack width and spacing prior to yield to reinforced masonry specimens with sufficient damage to reduce strength or deformation capacity.

Sassi and Ranous (1996) have suggested criteria to relate crack width to damage, but they have not provided sufficient information to associate crack patterns with specific behavior modes, which is essential when determining damage severity.

In the guides for reinforced masonry components, the crack width limits for each damage severity level have been determined empirically, using crack widths reported in the literature and photographs of damaged specimens. Consideration has been given to the theoretical crack width required to achieve yield of reinforcement under a variety of conditions. A fundamental presumption is that the width of shear cracks is related to damage severity, while flexural crack widths are not closely related to damage severity.

### 3.1.3 Interpretation of Tests

Interpretation of test results for reinforced masonry was similar to that for reinforced concrete as described in Section 2.1.1.2. The ranges of component ductility and I-factors are presented in Table 3-2.

### 3.2 Tabular Bibliography for Reinforced Masonry

Table 3-3 contains a brief description of the key technical reports which address specific reinforced masonry component behavior. The component types and their behavior modes are indicated. The full references can be found in Section 3.4.
### Table 3-2: Ranges of Reinforced Masonry Component Displacement Ductility, $\mu_A$, Associated with Damage Severity Levels and $\lambda$ Factors

<table>
<thead>
<tr>
<th>Damage Guide</th>
<th>Damage Severity</th>
<th>Insignificant</th>
<th>Slight</th>
<th>Moderate</th>
<th>Heavy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM1A Ductile Flexural</td>
<td>$\mu_A \leq 3$</td>
<td>$\mu_A = 2 - 4$</td>
<td>$\mu_A = 3 - 8$</td>
<td><em>Heavy not used</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_K = 0.8$</td>
<td>$\lambda_K = 0.6$</td>
<td>$\lambda_K = 0.4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 0.9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM1B Flexure/Shear</td>
<td>$\mu_A \leq 2$</td>
<td>$\mu_A = 2 - 3$</td>
<td>$\mu_A = 3 - 5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_K = 0.8$</td>
<td>$\lambda_K = 0.6$</td>
<td>$\lambda_K = 0.4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 0.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 0.9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM1C Flexure/Sliding Shear</td>
<td>See RM1A</td>
<td>See RM1A</td>
<td>See RM1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mu_A = 2 - 4$</td>
<td>$\mu_A = 3 - 8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_K = 0.5$</td>
<td>$\lambda_K = 0.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_Q = 0.9$</td>
<td>$\lambda_Q = 0.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 0.9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM1D Flexure/Out-of-Plane Instability</td>
<td>See RM1A</td>
<td>See RM1A</td>
<td>See RM1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\mu_A = 8 - 10$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\lambda_K = 0.4$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\lambda_Q = 0.5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\lambda_D = 0.5$</td>
<td></td>
</tr>
<tr>
<td>RM1E Flexure/Lap Splice Slip</td>
<td>See RM1A or RM1B</td>
<td>See RM1A or RM1B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\mu_A = 3 - 4$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\lambda_K = 0.4$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\lambda_Q = 0.5$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\lambda_D = 0.8$</td>
<td></td>
</tr>
<tr>
<td>RM2B Flexure/Shear</td>
<td>$\mu_A \leq 2$</td>
<td>$\mu_A = 2 - 3$</td>
<td>$\mu_A = 3 - 5$</td>
<td><em>Heavy not used</em></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_K = 0.8$</td>
<td>$\lambda_K = 0.6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM2G Preemptive Shear</td>
<td>$\mu_A \leq 1$</td>
<td>$\mu_A = 1 - 2$</td>
<td>$\mu_A = 1 - 2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_K = 0.9$</td>
<td>$\lambda_K = 0.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM3A Flexure</td>
<td>$\mu_A \leq 2$</td>
<td>$\mu_A \leq 3$</td>
<td>$\mu_A = 6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_K = 0.9$</td>
<td>$\lambda_K = 0.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 0.9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM3G Preemptive Shear (No $\mu$ values for RM3G)</td>
<td>$\lambda_K = 0.9$</td>
<td>$\lambda_K = 0.8$</td>
<td>$\lambda_K = 0.3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_Q = 1.0$</td>
<td>$\lambda_Q = 0.8$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\lambda_D = 1.0$</td>
<td>$\lambda_D = 1.0$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference(s)</td>
<td>Description</td>
<td>Comp. Type(s)</td>
<td>Behavior modes Addressed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------------------------------------------------</td>
<td>---------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EVALUATION AND DESIGN RECOMMENDATIONS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paulay and Priestley (1992)</td>
<td>Overview of capacity-design principles for reinforced concrete and masonry structures. Thorough description of R/C failure modes, and, to a lesser extent, R/M failure modes. Description of R/M component response in terms of displacement and ductility.</td>
<td>RM1 RM2 RM3 RM4</td>
<td>• • • • • • •</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OVERVIEWS OF EXPERIMENTAL TEST RESULTS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drysdale, Hamid, and Baker (1994)</td>
<td>Textbook for design of masonry structures. Includes complete bibliography and selected results from experimental research.</td>
<td>RM1 RM2 RM4</td>
<td>• • •</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>EXPERIMENTAL TEST RESULTS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abrams and Paulson (1989) Abrams and Paulson (1990)</td>
<td>2 specimens 1/4-scale model</td>
<td>RM2</td>
<td>• • •</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foltz and Yancy (1993)</td>
<td>10 Specimens 8&quot; CMU 56&quot; tall by 48&quot; wide Axial load 200+ psi No vertical reinforcement $\rho_v = 0.0%$ $\rho_h = 0.024% - 0.22%$ Axial load increased w/ displacement. Clear improvement in displacement and crack distribution w/ increased horizontal reinforcement. Many damage photos. No hysteresis curves. Joint reinforcement improved ultimate displacement from $\mu=1$ to $\mu=3$.</td>
<td>RM2</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Specimens/Details</td>
<td>Tests Performed</td>
<td>Reinforcement Details</td>
<td>Failure Details</td>
<td>Results</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Ghanem et al. (1993)</td>
<td>14 Specimens 1/3 scale concrete block</td>
<td>Monotonic tests only reported here.</td>
<td>Tensile splitting failure likely regardless of lap splice length for: #4 in 4 inch units #6 in 6 inch units #8 in 8 inch units</td>
<td>RM2</td>
<td>•</td>
</tr>
<tr>
<td>Hammons et al. (1994)</td>
<td>124 specimens Hollow concrete and clay masonry</td>
<td>Monotonic testing of lap splices.</td>
<td>Only #4 in 8” units fail by classical pull-out. Others fail in tensile splitting.</td>
<td>N/A</td>
<td>•</td>
</tr>
<tr>
<td>Hidalgo et al. (1978)</td>
<td>63 specimens: 28 8” hollow clay brick 18 2-wythe clay brick 17 8” hollow concrete block</td>
<td>Aspect ratios: 0.5, 1.0, 2.0 High axial loads, increasing with lateral displacement.</td>
<td>All failures in shear or flexure/shear</td>
<td>RM2</td>
<td>•</td>
</tr>
<tr>
<td>Chen et al. (1978)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hidalgo et al. (1979)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hon &amp; Priestley (1984)</td>
<td>2 fully-grouted specimens 8” hollow concrete block One specimen tested in New Zealand, and a second later at UC San Diego.</td>
<td>Full-scale, fully-reversed cyclic loading. 2nd specimen purposely violated proposed design criteria, and performed in a ductile manner.</td>
<td>Stable hysteresis up to displacement ductility of 4 at first crushing. Achieved ductility of 10 with minor load degradation.</td>
<td>RM3</td>
<td>•</td>
</tr>
<tr>
<td>Priestley &amp; Hon (1985)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Hart &amp; Priestley (1989)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Priestley (1990)</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Igarashi et al. (1993)</td>
<td>1 fully grouted 3-story wall specimen 6” hollow concrete block 3-story full-scale cantilever wall</td>
<td>ρ_v = 0.15% ρ_h = 0.22%</td>
<td>Flexural response to 0.3% drift followed by lapsplice slip at base and stable rocking to 1% drift at approx. 1/3 of max. load.</td>
<td>RM1</td>
<td>•</td>
</tr>
<tr>
<td>Kubota and Murakami (1988)</td>
<td>5 cmu wall specimens Investigated effect of lap splices</td>
<td>Sudden loss of strength associated w/ lap-splice failure. Test stopped following lap-splice failure</td>
<td>Vertical splitting at lap</td>
<td>RM2</td>
<td>•</td>
</tr>
<tr>
<td>Kubota et al. (1985)</td>
<td>5 wall specimens Hollow clay brick</td>
<td>Minimum vertical reinf ρ_h = 0.17% - 0.51%</td>
<td></td>
<td>RM2</td>
<td>•</td>
</tr>
<tr>
<td>Matsumura (1988)</td>
<td>Includes effect of grout flaws on damage patterns and shear strength.</td>
<td>Missing or insufficient grout causes localized damage and inhibits uniform distribution of cracks.</td>
<td></td>
<td>RM2</td>
<td>•</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matsuno et al. (1987)</td>
<td>1 grouted hollow clay specimen 3-stories 3-coupled flanged walls</td>
<td>Limited ductility, significant strength degradation associated with preemptive shear failure of coupling beams. Flexure in long wall (RM1) Flexure/shear in short walls (RM2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merryman et al. (1990) Leiva and Klingner (1991)</td>
<td>6 fully-grouted, 2-story wall specimens 2-story walls with openings 2-story pairs of wall coupled by slab only 2-story pairs of walls coupled by slab and R/M lintel</td>
<td>Flexural design by 1985 UBC. Shear design to ensure flexure hinging. ( \rho_v = 0.22% ) ( \rho_h = 0.22% - 0.44% ) Stable flexural response in coupled walls, limited by compression toe spalling, fracture of reinforcement, and sliding. No significant load degradation even at end of test. One specimen inadvertently loaded to 60% of max base shear in single pulse prior to test, with no clear effect on response.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Okada and Kumazawa (1987)</td>
<td>Concrete block beams 32”x90”</td>
<td>Similar to concrete. Rotation capacity of 1/100 Damage for lap splices limited to splice zone. More distributed without laps.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priestley and Elder (1982)</td>
<td>6 partially-grouted specimens concrete masonry</td>
<td>Minimum vertical reinf ( \rho_h = .05% - .12% ) Drift = 0.3%-1% at 75% of max strength. Behavior characterized by vertical cracks at junction of grouted and ungrouted cells. Few if any diagonal cracks except in one specimen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3-3 Annotated Bibliography for Reinforced Masonry (continued)
### Table 3-3 Annotated Bibliography for Reinforced Masonry (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
<th>Design</th>
<th>Flexural Modes</th>
<th>Shear</th>
<th>Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seible et al. (1994)</td>
<td>1 fully grouted, 5-story building specimen</td>
<td>Flexural design by 1991</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seible et al. (1995)</td>
<td>6&quot; hollow concrete block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingsley (1994)</td>
<td>5-story full-scale flanged walls coupled by topped, precast plank floor system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingsley et al. (1994)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kürtchübasche et al. (1994)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ductile flexural response with some sliding to μ=6 and 9, (drift = 1% and 1.5%). Distributed cracking. Significant influence of flanges and coupling slabs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shing et al. (1990a)</td>
<td>24 fully-grouted test specimens: 6 6-inch hollow clay brick 18 6-inch hollow concrete block</td>
<td>Full-scale walls, 6-ft square, loaded in single curvature. M/VL = 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shing et al. (1990b)</td>
<td>2 monotonic loading 22 cyclic-static loading.</td>
<td>Uniformly distributed vertical &amp; horizontal reinforcement. ρ_v = 0.38% - 0.74% ρ_h = 0.14% - 0.26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shing et al. (1991)</td>
<td>4 levels of axial load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomazevic and Zarnic (1985)</td>
<td>32 wall specimens Concrete block walls and complete structures Static and shaking table</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomazevic and Lutman (1988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomazevic and Modena (1988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomazevic et al. (1993)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamazaki et al. (1988a)</td>
<td>1 fully-grouted 5-story building specimen</td>
<td>First damage in masonry lintel beams of many different geometries.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamazaki et al. (1988b)</td>
<td>8&quot; hollow concrete block</td>
<td>Flexural modes degraded to shear failing modes at 0.75% building drift (1.4% first story drift).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-story full-scale flanged walls coupled by cast-in-place 6&quot; and 8&quot; R/C floor slabs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### EXPERIMENTAL TEST RESULTS – REPAIRED OR RETROFITTED WALLS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test Specimens</th>
<th>Condition</th>
<th>Repair Method</th>
<th>RM1</th>
<th>RM2</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innamorato (1994)</td>
<td>3 fully-grouted test specimens Designed to match Shing (1991) Preemptive shear failure Flexure failure</td>
<td>Tested in “original” and “repaired” condition</td>
<td>Repair by epoxy injection and carbon fiber overlay</td>
<td>RM1</td>
<td>RM2</td>
<td>•</td>
</tr>
<tr>
<td>Laursen et al. (1995)</td>
<td>2 in-plane specimens Designed to match Shing (1991) specimen preemptive shear failure 2 out-of-plane specimens</td>
<td>Tested in “original,” “repaired,” and “retrofit” configurations</td>
<td>Repair by epoxy injection and carbon fiber overlays in horizontal or vertical direction to enhance ductility or strength</td>
<td>RM1</td>
<td>RM2</td>
<td>•</td>
</tr>
<tr>
<td>Weeks et al. (1994)</td>
<td>5-story building tested previously by Seible et al. (1994) repaired and retested</td>
<td></td>
<td>Repair by epoxy injection and carbon fiber overlay</td>
<td>RM1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

† Behavior modes:

- a Ductile Flexural Response:
  - c Flexure/Sliding Shear
  - d Flexure/Out-of-Plane Wall Buckling
  - e Flexure/Lap-Splice Slip
  - f Foundation rocking of individual piers
  - g Preemptive Diagonal Shear Failure
### Chapter 3: Reinforced Masonry

#### 3.3 Symbols for Reinforced Masonry

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_g$</td>
<td>Gross crosssectional area of wall</td>
</tr>
<tr>
<td>$A_{si}$</td>
<td>Area of reinforcing bar $i$</td>
</tr>
<tr>
<td>$A_v$</td>
<td>Area of shear reinforcing bar</td>
</tr>
<tr>
<td>$A_{vf}$</td>
<td>Area of reinforcement crossing perpendicular to the sliding plane</td>
</tr>
<tr>
<td>$a$</td>
<td>Depth of the equivalent stress block</td>
</tr>
<tr>
<td>$c$</td>
<td>Depth to the neutral axis</td>
</tr>
<tr>
<td>$C_m$</td>
<td>Compression force in the masonry</td>
</tr>
<tr>
<td>$f_{me}$</td>
<td>Expected compressive strength of masonry</td>
</tr>
<tr>
<td>$f_{ye}$</td>
<td>Expected yield strength of reinforcement</td>
</tr>
<tr>
<td>$h_e$</td>
<td>Effective height of the wall (height to the resultant of the lateral force)</td>
</tr>
<tr>
<td>$l_d$</td>
<td>Lap splice development length</td>
</tr>
<tr>
<td>$l_p$</td>
<td>Effective plastic hinge length</td>
</tr>
<tr>
<td>$l_w$</td>
<td>Length of the wall</td>
</tr>
<tr>
<td>$M/V$</td>
<td>Ratio of moment to shear (shear span) at a section</td>
</tr>
<tr>
<td>$M_e$</td>
<td>Expected moment capacity of a masonry section</td>
</tr>
<tr>
<td>$P_u$</td>
<td>Wall axial load</td>
</tr>
<tr>
<td>$s$</td>
<td>Spacing of reinforcement</td>
</tr>
<tr>
<td>$t$</td>
<td>Wall thickness</td>
</tr>
<tr>
<td>$V_e$</td>
<td>Expected shear strength of a reinforced masonry wall</td>
</tr>
<tr>
<td>$V_m$</td>
<td>Portion of the expected shear strength of a wall attributed to masonry</td>
</tr>
<tr>
<td>$V_s$</td>
<td>Portion of the expected shear strength of a wall attributed to steel</td>
</tr>
<tr>
<td>$V_p$</td>
<td>Portion of the expected shear strength of a wall attributed to axial compression effects</td>
</tr>
<tr>
<td>$V_{se}$</td>
<td>Expected sliding shear strength of a masonry wall</td>
</tr>
<tr>
<td>$x_i$</td>
<td>Location of reinforcing bar $i$</td>
</tr>
<tr>
<td>$\Delta_p$</td>
<td>Maximum inelastic displacement capacity</td>
</tr>
<tr>
<td>$\Delta_y$</td>
<td>Displacement at first yield</td>
</tr>
<tr>
<td>$\phi_m$</td>
<td>Maximum inelastic curvature of a masonry section</td>
</tr>
<tr>
<td>$\phi_y$</td>
<td>Yield curvature of a masonry section</td>
</tr>
<tr>
<td>$\mu_\Delta$</td>
<td>Displacement ductility</td>
</tr>
<tr>
<td>$\mu$</td>
<td>Coefficient of friction at the sliding plane</td>
</tr>
</tbody>
</table>
3.4 References for Reinforced Masonry

This list contains references from the reinforced masonry chapters of both FEMA 306 and 307.


Fattal, S.G., 1993, Strength of Partially-Grouted Masonry Shear Walls Under Lateral Loads, National Institute of Standards and Technology, NISTIR 5147, Gaithersburg, Maryland.


Chapter 3: Reinforced Masonry


Leiva, G., and Klingner, R.E., 1994, “Behavior and Design of Multi-Story Masonry Walls under In-


Noakowski, Piotr, 1985, *Continuous Theory for the Determination of Crack Width under the Consideration of Bond*, Beton-Und Stahlbetonbau, 7 u..


Vulcano A., and Bertero, V.V., 1987, Analytical Models for Predicting the Lateral Response of RC Shear Walls, University of California, UCB/EERC Report No. 87-19, Berkeley, California.


4. Unreinforced Masonry

4.1 Commentary and Discussion

4.1.1 Hysteretic Behavior of URM Walls Subjected to In-Plane Demands

A search of the available literature was performed to identify experimental and analytical research relevant to unreinforced masonry bearing-wall damage. Because URM buildings have performed poorly in past earthquakes, there is an extensive amount of anecdotal information in earthquake reconnaissance reports; there have also been several studies that took a more statistical approach and collected damage information in a consistent format for a comprehensive population of buildings. These studies help to confirm the prevalence of the damage types listed in FEMA 306, and they help to indicate the intensity of shaking required to produce certain damage types.

The proposed methodology for this document, however, requires moving beyond anecdotal and qualitative discussions of component damage and instead obtaining quantitative information on force/displacement relationships for various components. The focus of research on URM buildings has been on the in-plane behavior of walls. Most of the relevant research has been done in China, the former Yugoslavia, Italy, and the United States. This stands in contrast to the elements in URM buildings that respond to ground shaking with essentially brittle or force-controlled behavior: parapets, appendages, wall-diaphragm ties, out-of-plane wall capacity, and, possibly, archaic diaphragms such as brick arch floors. While there has been very little research on most of these elements, it is less important because performance of these elements is not deformation-controlled.

Unfortunately, research on in-plane wall behavior is rarely consistent—materials, experimental techniques, modes of reporting, and identified inelastic mechanisms all vary widely. Placing the research in a format consistent with FEMA 273 and this project’s emphasis on components, damage types, hysteresis curves, nonlinear force/displacement relationships, and performance levels is difficult. Almost no experimental tests have been done on damaged URM walls; typically, tests were done on undamaged walls and stopped. In some cases, the damaged wall was repaired and retested. Most of the research does not provide simple predictive equations for strength and stiffness (particularly post-elastic stiffness); when analysis has been done, it has usually used fairly sophisticated finite element modelling techniques.

Hysteresis loops for in-plane wall behavior are shown on the following pages, Sections 4.1.1.1 to 4.1.1.6, organized by behavior mode. Research shows that the governing behavior mode depends upon a number of variables including material properties, aspect ratio, and axial stress. To aid in comparing the curves, basic data given in the research report are provided, including the average compressive strength of prism tests and the masonry unit, the pier aspect ratio, the nominal axial stress, and whether the specimen was free to rotate at the top (cantilever condition) or was fixed (double-curvature condition). For many of the specimens, independent calculations have been carried out for this document to allow comparison between the evaluation procedure predictions in Section 7.3 of FEMA 306 and the actual experimental results. Predictions using FEMA 273 are also noted. In several cases, engineering judgment has been exercised to make these calculations, since not all of the necessary information is available. Material properties that were assumed for the purposes of the calculation are identified. It is expected that predicted results could vary significantly if different assumptions are made. In addition, the experimental research in URM piers is difficult to synthesize for several reasons:

- Some researchers do not report a measure of bed-joint sliding-shear strength. Others use triplet tests rather than in-place push tests to measure bed-joint sliding capacity. Comparisons between triplet tests and in-place push tests are not well established. Several different assumptions were investigated for this project, and the approach shown below was found to correlate best with the data.

- Descriptions of cracking can be inconsistent and overly vague. Diagonal cracking, for example, is often reported, but it can be unclear if the report refers to diagonal tension cracking, toe crushing with diagonally-oriented cracks, or stair-stepped bed-joint sliding.

- Observed damage is often not linked to points on the force/displacement hysteresis loops.

- Final drift values are not always given; when they are, it is often unclear why the test was stopped and
whether additional stable deformation capacity remained.

- In many tests, the applied axial load varies significantly from the desired nominal value at different times during the test. Thus, lateral capacities can be affected.

### 4.1.1.1 Rocking

**Reference:** Anthoine et al. (1995)

**Specimen:** High wall, first run

**Material:** Brick

**Loading:** Reversed quasistatic cyclic

**Provided Information:**
- Prism $f'_{m}=6.2$ MPa, brick $f'_{m}=16$ MPa
- $L/h_{eff}=1m/2m=0.5$
- Nominal $f_{a}=0.60$ MPa
- Fixed-fixed end conditions

**Assumed Values:**
- $v_{me}=(0.75/1.5)*(0.23+0.57f_{a})$ MPa
- $v_{me}=(0.75/1.5)*(0.57f_{a})$ MPa

**Calculated Values (kN):**
- $V_{r}=68$
- $V_{tc}=65$
- $V_{bjs1}=73$
- $V_{bjs2}=43$
- $V_{dt1}=85$
- $V_{dt2}=130$

**FEMA 273 Predicted Mode:** Toe crushing

**ATC-43 Predicted Behavior:** Rocking at 68 kN with drift "d"=0.8%

**Actual Behavior:** Rocking at 72 kN with test stopped at 0.6%. Slight cracks at mid-pier. Axial load increased for second run (see below).

- There is no direct test for $f'_{dt}$. FEMA 273 equations use $v_{me}$ for $f'_{me}$. This gives the value for $V_{dt1}$. As an additional check, 1/30th of the value of flat-wise compressive strength of the masonry units was also used; this results in the value for $V_{dt2}$.

![Hysteretic response of the high wall, first run.](image-url)
Chapter 4: Unreinforced Masonry

Reference: Anthoine et al. (1995)
Specimen: High wall, second run
Material: Brick
Loading: Reversed quasistatic cyclic

Provided Information:
- Prism $f'_m$=6.2 MPa, brick $f'_m$=16 MPa
- $L/h_{eff}=1m/2m= 0.5$
- Nominal $f_a= 0.80$ MPa
- Fixed-fixed end conditions

Assumed Values:
- $v_{me1}=(0.75/1.5)*(0.23+0.57f_a)$ MPa
- $v_{me2}=(0.75/1.5)*(0.57f_a)$ MPa

Calculated Values (kN):
- $V_r=90$  $V_c=82$
- $V_{bj1}=85$  $V_{bj2}=58$
- $V_{dt1}=104$  $V_{dt2}=141$

FEMA 273 Predicted Mode: Toe crushing
ATC-43 Predicted Behavior: Same as FEMA 273
Actual Behavior: Rocking, then stair-stepped bed-joint sliding at a drift of 0.75%

Specimen: 3, runs 7-12
Material: Brick
Loading: Shaketable

Provided Information:
- Prism $f'_m$=8.6 MPa, brick $f'_m$=18.2 MPa
- $L/h_{eff}=1m/2m= 0.5$
- Nominal $f_a= 0.63$ MPa
- Fixed-fixed end conditions

Assumed Values:
- $v_{me1}=(0.75/1.5)*(1.15+0.57f_a)$ MPa
- $v_{me2}=(0.75/1.5)*(0.57f_a)$ MPa

Calculated Values (kN):
- $V_r=71$  $V_c=70$
- $V_{bj1}=189$  $V_{bj2}=45$
- $V_{dt1}=171$  $V_{dt2}=145$

FEMA 273 Predicted Mode: Toe crushing
ATC-43 Predicted Behavior: Rocking at 71 kN with drift "d" = 0.8%.
Actual Behavior: Rocking at 87 kN with drift of 1.3% in run 10.
Specimen: S1 Door Wall
Material: Brick
Loading: 3/8th-scale building on shaketable

Provided Information:
- Prism $f'_{m}=1960$ psi, brick $f'_{m}=6730$ psi
- Fixed-fixed end conditions

Assumed Values:
- $v_{me1} = (0.75/1.5)*(0.75*361+f_a) \text{ psi}$
- $v_{me2} = (0.75/1.5)*(f_a) \text{ psi}$

Outer Piers:
- $L/h_{eff}=1.44\text{ft}/2.67\text{ft} = 0.54$
- Nominal $f_a = 33$ psi
- Calculated Values (kips):
  - $V_r = 1.0$
  - $V_{bijs1} = 9.7$
  - $V_{bijs2} = 1.1$
  - $V_{dr1} = 7.2$
  - $V_{dr2} = 10.3$

Inner Pier:
- $L/h_{eff}=0.79\text{ft}/1.50\text{ft} = 0.53$
- Nominal $f_a = 40$ psi
- Calculated Values (kips):
  - $V_r = 2.7$
  - $V_{bijs1} = 15.3$
  - $V_{bijs2} = 1.8$
  - $V_{dr1} = 14.3$
  - $V_{dr2} = 20.4$

FEMA 273 Predicted Behavior of Wall Line: Rocking at 4.7 kips with inner-pier drift “d”=0.5%

ATC-43 Predicted Behavior of Wall Line: Same as FEMA 273

Actual Behavior of the Wall Line:
- Run 14: Rocking up to 8 kips, then stable at 4-6 kips. Drift up to 1.1%.
- Run 15: Rocking at 4-6 kips with drift up to 1.3%
Chapter 4: Unreinforced Masonry

Specimen: S2 Door Wall
Material: Brick
Loading: 3/8th-scale building on shaketable
Provided Information:
Prism \( f'_{m}=1960 \) psi, brick \( f'_{m}=6730 \) psi
Fixed-fixed end conditions
Assumed Values:
\( \nu_{me1}=(0.75/1.5) \times (0.75 \times 361 + f_a) \) psi
\( \nu_{me2}=(0.75/1.5) \times f_a \) psi
Outer Piers:
\( L/h_{eff}=0.79 \text{ft}/2.67 \text{ft} = 0.30 \)
Nominal \( f_a = 40 \) psi
Calculated Values (kips):
\( V_r = 0.4 \quad V_{tc} = 0.4 \)
\( V_{bjs1} = 5.5 \quad V_{bjs2} = 0.7 \)
\( V_{dt1} = 4.1 \quad V_{dt2} = 5.7 \)
Inner Piers:
\( L/h_{eff}=1.12 \text{ft}/2.67 \text{ft} = 0.42 \)
Nominal \( f_a = 48 \) psi
Calculated Values (kips):
\( V_r = 0.9 \quad V_{tc} = 1.0 \)
\( V_{bjs1} = 7.9 \quad V_{bjs2} = 1.2 \)
\( V_{dt1} = 6.1 \quad V_{dt2} = 8.2 \)
FEMA 273 Predicted Behavior of Wall Line: Rocking at 2.6 kips with inner-pier drift “d”=1.0%
ATC-43 Predicted Behavior of Wall Line: Same as FEMA 273
Actual Behavior of the Wall Line:
Run 22: Rocking at 4 kips, up to a 0.3% drift
Run 23: Rocking at 4 kips, up to a 0.8% drift
Run 24: Rocking at 4 kips, up to a 1.1% drift
4.1.1.2 Bed-joint Sliding

Reference: Magenes & Calvi (1992)
Specimen: MI4
Material: Brick
Loading: Reversed quasi-static cyclic

Provided Information:
Prism $f''_m$=7.9 MPa, brick $f''_m$=19.7 MPa
$L/h_{eff}=1.5m/3m = 0.5$
Nominal $f_a= 0.69$ MPa
Fixed-fixed end conditions

Assumed Values:
$v_{me1}=(0.75/1.5)*(0.206+0.813f_a)$ MPa
$v_{me2}=(0.75/1.5)*(0.813f_a)$ MPa

Calculated Values (kN):
$V_r=177$  $V_{tc}=172$
$V_{bjs1}=219$  $V_{bjs2}=160$
$V_{dr1}=245$  $V_{dr2}=360$

FEMA 273 Predicted Behavior: Toe crushing at 172 kN
ATC-43 Predicted Behavior: Rocking at 177 kN with drift "d" = 0.8%
Actual Behavior: Stair-stepped bed-joint sliding at 153 kN with a final drift of 0.6%

Specimen: W1
Material: Brick
Loading: Reversed quasi-static cyclic

Provided Information:
Prism $f''_m$=911 psi, brick $f''_m$=3480 psi
$L/h_{eff}=12ft/6ft = 2$
Nominal $f_a= 75$ psi
Cantilever conditions

Assumed Values:
$v_{me1}=(0.75/1.5)*(0.75*100+f_a)$ psi
$v_{me2}=(0.75/1.5)*(f_a)$ psi

Calculated Values (kips):
$V_r=76$  $V_{tc}=74$
$V_{bjs1}=84$  $V_{bjs2}=42$
$V_{dr1}=149$  $V_{dr2}=167$

FEMA 273 Predicted Behavior: Toe crushing at 74 kips
ATC-43 Predicted Behavior: Flexural cracking/toe crushing/bed-joint sliding with a peak load of 74 kips with “d” drift of 0.4%
Actual Behavior: Bed-joint sliding at 92 kips with test stopped at a drift of 2.4%.
Chapter 4: Unreinforced Masonry

Specimen: 5
Material: Brick
Loading: Shaketable
 Provided Information:
  Prism $f'_m = 6.2$ MPa, brick $f'_m = 16$ MPa
  $L/h_{eff} = 1m/1.35m = 0.74$
  Nominal $f_a = 0.63$ MPa
  Fixed-fixed end conditions
 Assumed Values:
  $v_{me1} = (0.75/1.5)*(0.23+0.57f_a)$ MPa
  $v_{me2} = (0.75/1.5)*(0.57f_a)$ MPa
 Calculated Values (kN):
  $V_r = 105$  $V_t = 102$
  $V_{bjs1} = 74$  $V_{bjs2} = 45$
  $V_{dr1} = 97$  $V_{dr2} = 160$
 FEMA 273 Predicted Behavior: Bed-joint sliding at 74 kN with “d” drift of 0.4%
 ATC-43 Predicted Behavior: Same as FEMA 273
 Actual Behavior: Flexural cracking then horizontal and stepped bed-joint sliding with peak load of 114 kN

Reference: Magenes & Calvi (1992)
Specimen: MI2
Material: Brick
Loading: Reversed quasistatic cyclic
 Provided Information:
  Prism $f'_m = 7.9$ MPa, brick $f'_m = 19.7$ MPa
  $L/h_{eff} = 1.5m/2m = 0.74$
  Nominal $f_a = 0.67$ MPa
  Fixed-fixed end conditions
 Assumed Values:
  $v_{me1} = (0.75/1.5)*(0.206+0.813f_a)$ MPa
  $v_{me2} = (0.75/1.5)*(0.813f_a)$ MPa
 Calculated Values (kN):
  $V_r = 257$  $V_t = 251$
  $V_{bjs1} = 213$  $V_{bjs2} = 155$
  $V_{dr1} = 267$  $V_{dr2} = 399$
 FEMA 273 Predicted Behavior: Bed-joint sliding at 213 kN with “d” drift of 0.4%
 ATC-43 Predicted Behavior: Same as FEMA 273
 Actual Behavior: Horizontal bed-joint sliding at top course, then stair-stepped bed-joint sliding with a peak load of 227 kN and drift of 0.7%
4.1.1.3 Rocking/Toe Crushing

Specimen: W3
Material: Brick
Loading: Reversed quasistatic cyclic
Provided Information:
- Prism $f'_m = 911$ psi, brick $f'_m = 3480$ psi
- $L/h_{eff} = 6ft/6ft = 1.0$
- Nominal $f_a = 50$ psi
- Cantilever conditions

Assumed Values:
- $v_{me1} = (0.75/1.5)*(0.75*100+f_a)$ psi
- $v_{me2} = (0.75/1.5)*(f_a)$ psi

Calculated Values (kips):
- $V_r = 12.6$  $V_{tc} = 12.9$
- $V_{bjs1} = 35$  $V_{bjs2} = 14$
- $V_{dt1} = 69$  $V_{dt2} = 78$

FEMA 273 Predicted Behavior: Rocking at 12.6 kips with drift “d”=0.4%
ATC-43 Predicted Behavior: Same as FEMA 273
Actual Behavior: Rocking at 20 kips then toe crushing at drift of 0.8%

4.1.1.4 Flexural Cracking/Toe Crushing/Bed-Joint Sliding

Reference: Manzouri et al. (1995)
Specimen: W1
Material: Brick
Loading: Reversed quasistatic cyclic
Provided Information:
- Prism $f'_m = 2000$ psi, brick $f'_m = 3140$ psi
- $L/h_{eff} = 8.5ft/5ft = 1.7$
- Nominal $f_a = 150$ psi
- Cantilever conditions

Assumed Values:
- $v_{me1} = (0.75/1.5)*(0.75*85+f_a)$ psi
- $v_{me2} = (0.75/1.5)*(f_a)$ psi

Calculated Values (kips):
- $V_r = 152$  $V_{tc} = 151$
- $V_{bjs1} = 156$  $V_{bjs2} = 99$
- $V_{dt1} = 235$  $V_{dt2} = 172$

FEMA 273 Predicted Behavior: Toe crushing at 151 kips.
ATC-43 Predicted Behavior: Flexural cracking/toe crushing/bed-joint sliding with a 151 kip peak load, 99 kip load for “c” and a “d”drift of 0.4%.
Actual Behavior: Flexural cracking at 88 kips, toe crushing then bed-joint sliding at 156 kips, with a final drift of 1.3%
Chapter 4: Unreinforced Masonry

Reference: Manzouri et al. (1995)
Specimen: W2
Material: Brick
Loading: Reversed quasistatic cyclic
Provided Information:
- Prism $f'_m= 2200$ psi, brick $f'_m= 3140$ psi
- $L/h_{eff} = 8.5/5/5 =1.7$
- Nominal $f_d= 55$ psi
- Cantilever conditions

Assumed Values:
- $v_{me1} = (0.75/1.5)*(0.75*85+f_d)$ psi
- $v_{me2} = (0.75/1.5)*(f_d)$ psi

Calculated Values (kips):
- $V_r = 56$
- $V_{t_e} = 60$
- $V_{bjs1} = 93$
- $V_{bjs2} = 36$
- $V_{dr1} = 124$
- $V_{dr2} = 171$

FEMA 273 Predicted Behavior: Rocking at 56 kips.
ATC-43 Predicted Behavior: Flexural cracking/toe crushing at 60 kips.
Actual Behavior: Flexural cracking at 31 kips, toe crushing at 68 kips, diagonal cracking at 62 kips, then bed-joint sliding at 52 kips and below, with a final drift of 1.2%

Reference: Manzouri et al. (1995)
Specimen: W3
Material: Brick
Loading: Reversed quasistatic cyclic
Provided Information:
- Prism $f'_m= 2600$ psi, brick $f'_m= 3140$ psi
- $L/h_{eff} = 8.5/5/5 =1.7$
- Nominal $f_d= 85$ psi
- Cantilever conditions

Assumed Values:
- $v_{me1} = (0.75/1.5)*(0.75*85+f_d)$ psi
- $v_{me2} = (0.75/1.5)*(f_d)$ psi

Calculated Values (kips):
- $V_r = 86$
- $V_{t_e} = 91$
- $V_{bjs1} = 113$
- $V_{bjs2} = 56$
- $V_{dr1} = 159$
- $V_{dr2} = 187$

FEMA 273 Predicted Behavior: Rocking at 86 kips.
ATC-43 Predicted Behavior: Flexural cracking/toe crushing/bed-joint sliding with a 91 kip peak load, 56 kip load for “c” and a “d” drift of 0.4%.
Actual Behavior: Flexural cracking at 55 kips, toe crushing at 80 kips, then bed-joint sliding at 80 kips, reducing to 56-62 kips, with some final toe crushing up to final drift of 0.8%
4.1.1.5 Flexural Cracking/Diagonal Tension

Reference: Anthoine et al. (1995)
Specimen: Low Wall
Material: Brick
Loading: Reversed quasistatic cyclic

Provided Information:
- Prism, \( f'_{m}=6.2 \) MPa, brick \( f'_{m}=16 \) MPa
- \( L/h_{eff}=1m/1.35m= 0.74 \)
- Nominal \( f_{a}= 0.60 \) MPa
- Fixed-fixed end conditions

Assumed Values:
- \( v_{m1}=(0.75/1.5)*(0.23+0.57f_{a}) \) MPa
- \( v_{m2}=(0.75/1.5)*(0.57f_{a}) \) MPa

Calculated Values (kN):
- \( V_{r}=100 \)
- \( V_{tc}=96 \)
- \( V_{bjs1}=73 \)
- \( V_{bjs2}=43 \)
- \( V_{dt1}=94 \)
- \( V_{dt2}=144 \)

FEMA 273 Predicted Behavior: Bed-joint sliding at 73 kips with “d” drift of 0.4%

ATC-43 Predicted Behavior: Same as FEMA 273

Actual Behavior: Flexural cracking then diagonal tension cracking with a peak load of 84 kN and a final drift of 0.5%

Reference: Magenes & Calvi (1992)
Specimen: MI3
Material: Brick
Loading: Reversed quasistatic cyclic

Provided Information:
- Prism, \( f'_{m}=7.9 \) MPa, brick \( f'_{m}=19.7 \) MPa
- \( L/h_{eff}=1.5m/3m= 0.5 \)
- Nominal \( f_{a}= 1.245 \) MPa
- Fixed-fixed end conditions

Assumed Values:
- \( v_{me1}=(0.75/1.5)*(0.206+0.813f_{a}) \) MPa
- \( v_{me2}=(0.75/1.5)*(0.813f_{a}) \) MPa

Calculated Values (kN):
- \( V_{r}=319 \)
- \( V_{tc}=275 \)
- \( V_{bjs1}=347 \)
- \( V_{bjs2}=288 \)
- \( V_{dt1}=406 \)
- \( V_{dt2}=427 \)

FEMA 273 Predicted Behavior: Toe crushing

ATC-43 Predicted Behavior: Flexural cracking/diagonal tension at 275 kN

Actual Behavior: Flexural cracking then diagonal tension cracking with a peak load of 185 kN and a final drift of 0.5%
Chapter 4: Unreinforced Masonry

Specimen: 8
Material: Brick
Provided Information:
- Prism $f' = 6.2$ MPa, brick $f' = 16$ MPa
- $L/h_{eff} = 1m/2m = 0.5$
- Nominal $f_d = 1.11$ MPa
- Fixed-fixed end conditions
Assumed Values:
- $v_{me1} = (0.75/1.5)*(0.23+0.57f_d)$ MPa
- $v_{me2} = (0.75/1.5)*(0.57f_d)$ MPa
Calculated Values (kN):
- $V_r = 125$
- $V_{tc} = 109$
- $V_{bjs1} = 108$
- $V_{bjs2} = 79$
- $V_{dt1} = 137$
- $V_{dt2} = 171$
FEMA 273 Predicted Behavior: Bed-joint sliding or toe crushing.
ATC-43 Predicted Behavior of Wall Line: Same as FEMA 273
Actual Behavior: Flexural cracking then diagonal tension cracking with a peak load of 129 kN and a final drift of 0.8-1.3%

Reference: Magenes & Calvi (1992)
Specimen: MI1
Material: Brick
Loading: Reversed quasistatic cyclic
Provided Information:
- Prism $f' = 7.9$ MPa, brick $f' = 19.7$ MPa
- $L/h_{eff} = 1.5m/2m = 0.75$
- Nominal $f_d = 1.123$ MPa
- Fixed-fixed end conditions
Assumed Values:
- $v_{me1} = (0.75/1.5)*(0.206+0.813f_d)$ MPa
- $v_{me2} = (0.75/1.5)*(0.813f_d)$ MPa
Calculated Values (kN):
- $V_r = 432$
- $V_{tc} = 383$
- $V_{bjs1} = 319$
- $V_{bjs2} = 260$
- $V_{dt1} = 415$
- $V_{dt2} = 462$
FEMA 273 Predicted Behavior: Bed-joint sliding at 319 kN with drift “d”=0.4%
ATC-43 Predicted Behavior of Wall Line: Same as FEMA 273
Actual Behavior: Flexural cracking then diagonal tension at 259 kN, with maximum drift of 0.6%
4.1.1.6 Flexural Cracking/Toe Crushing

Specimen: W2
Material: Brick
Loading: Reversed quasistatic cyclic

Provided Information:
- Prism \( f_m' = 911 \) psi, brick \( f_m' = 3480 \) psi
- \( L/h_{eff} = 9 \text{ft}/6 \text{ft} = 1.5 \)
- Nominal \( f_a = 50 \) psi
- Cantilever conditions

Assumed Values:
- \( v_{m1} = (0.75/1.5)(0.75*100+f_a) \) psi
- \( v_{m2} = (0.75/1.5)f_a \) psi

Calculated Values (kips):
- \( V_r = 28 \)
- \( V_t = 29 \)
- \( V_{bj1} = 53 \)
- \( V_{bj2} = 21 \)
- \( V_{dt1} = 155 \)
- \( V_{dt2} = 175 \)

FEMA 273 Predicted Behavior: Rocking at 28 kips with drift “d”=0.3%

ATC-43 Predicted Behavior: Flexural cracking/toe crushing at 29 kips

Actual Behavior: Flexural cracking/toe crushing, with a maximum capacity of 43-45 kips.

Specimen: E1
Material: Brick
Loading: Monotonic

Provided Information:
- Prism \( f_m' = 1740 \) psi, brick \( f_m' = 8280 \) psi
- \( L/h_{eff} = 7.83 \text{ft}/6 \text{ft} = 1.31 \)
- Nominal \( f_a = 126 \) psi
- Cantilever conditions

Assumed Values:
- \( v_{me1} = (0.75/1.5)(0.75*186+f_a) \) psi
- \( v_{me2} = (0.75/1.5)f_a \) psi

Calculated Values (kips):
- \( V_r = 118 \)
- \( V_{tc} = 118 \)
- \( V_{bj1} = 250 \)
- \( V_{bj2} = 101 \)
- \( V_{dt1} = 336 \)
- \( V_{dt2} = 533 \)

FEMA 273 Predicted Behavior: Rocking or toe crushing

ATC-43 Predicted Behavior: Flexural cracking/toe crushing at 118 kips

Actual Behavior: Flexural cracking/toe crushing, with a maximum capacity of 120 kips and final drift of 0.3%
Chapter 4: Unreinforced Masonry

Specimen: E3
Material: Brick
Loading: Monotonic
Provided Information:
- Prism $f'_{m}=1740$ psi, brick $f'_m=8280$ psi
- $L/h_{eff}=9.5ft /6ft = 1.58$
- Nominal $f_a=141$ psi
- Cantilever conditions
Assumed Values:
- $v_{me1}=(0.75/1.5)*(0.75*186+f_a)$ psi
- $v_{me2}=(0.75/1.5)*(f_a)$ psi
Calculated Values (kips):
- $V_r=190$
- $V_{tc}=186$
- $V_{bjs1}=307$
- $V_{bjs2}=133$
- $V_{dt1}=420$
- $V_{dt2}=635$
FEMA 273 Predicted Behavior: Toe crushing at 186 kips
ATC-43 Predicted Behavior: Flexural cracking/toe crushing at 186 kips
Actual Behavior: Flexural cracking/toe crushing, with a maximum capacity of 164 kips and final drift of 0.4%

Specimen: E5
Material: Brick
Loading: Monotonic
Provided Information:
- Prism $f'_{m}=1740$ psi, brick $f'_m=8280$ psi
- $L/h_{eff}=11.42ft /6ft = 1.90$
- Nominal $f_a=81$ psi
- Cantilever conditions
Assumed Values:
- $v_{me1}=(0.75/1.5)*(0.75*186+f_a)$ psi
- $v_{me2}=(0.75/1.5)*(f_a)$ psi
Calculated Values (kips):
- $V_r=150$
- $V_{tc}=156$
- $V_{bjs1}=289$
- $V_{bjs2}=88$
- $V_{dt1}=367$
- $V_{dt2}=680$
FEMA 273 Predicted Behavior: Rocking at 150 kips with “d” drift of 0.2%
ATC-43 Predicted Behavior: Flexural cracking/toe crushing at 156 kips
Actual Behavior: Flexural cracking/toe crushing, with a maximum capacity of 154 kips and final drift of 0.4%

Specimen: E6
Material: Brick
Loading: Monotonic
Provided Information:
- Prism $f'_{m}=1740$ psi, brick $f'_m=8280$ psi
- $L/h_{eff}=11.42ft /6ft = 1.90$
- Nominal $f_a=76$ psi
- Cantilever conditions
Assumed Values:
- $v_{me1}=(0.75/1.5)*(0.75*186+f_a)$ psi
- $v_{me2}=(0.75/1.5)*(f_a)$ psi
Calculated Values (kips):
- $V_r=141$
- $V_{tc}=147$
- $V_{bjs1}=284$
- $V_{bjs2}=82$
- $V_{dt1}=357$
- $V_{dt2}=675$
FEMA 273 Predicted Behavior: Rocking at 141 kips with “d” drift of 0.2%
ATC-43 Predicted Behavior: Flexural cracking/toe crushing at 147 kips
Actual Behavior: Flexural cracking/toe crushing, with a maximum capacity of 150 kips and final drift of 0.2%

Specimen: E7
Material: Brick
Loading: Monotonic
Provided Information:
- Prism $f'_{m}=1740$ psi, brick $f'_m=8280$ psi
- $L/h_{eff}=11.42ft /6ft = 1.90$
- Nominal $f_a=93$ psi
- Cantilever conditions
Assumed Values:
- $v_{me1}=(0.75/1.5)*(0.75*186+f_a)$ psi
- $v_{me2}=(0.75/1.5)*(f_a)$ psi
Calculated Values (kips):
- $V_r=173$
- $V_{tc}=177$
- $V_{bjs1}=302$
- $V_{bjs2}=101$
- $V_{dt1}=390$
- $V_{dt2}=692$
FEMA 273 Predicted Behavior: Rocking at 173 kips with “d” drift of 0.2%
ATC-43 Predicted Behavior: Flexural cracking/toe crushing at 177 kips
Actual Behavior: Flexural cracking/toe crushing, with a maximum capacity of 157 kips and final drift of 0.4%
4.1.2 Comments on FEMA 273 Component Force/Displacement Relationships

4.1.2.1 Conclusions from Review of the Research and Their Impact on the Evaluation Methodology

As the previous sections indicate, the FEMA 273 methodology leads to successful predictions in certain cases. In other cases, the predictions did not match the observed behavior. To help address this issue, some modifications were made in the Section 7.3 methodology in FEMA 306. Some of these issues and their resolution include:

- Rocking and toe crushing equations often yield very similar values; when they do differ, the lower value does not necessarily predict the governing mode. Section 7.3 in FEMA 306 thus identifies which mode will occur on the basis of aspect ratio, unless the axial stress is very high, since there have been no reported instances of rocking in stocky piers. The $L/h_{eff} > 1.25$ is a somewhat arbitrary threshold based simply on a review of test results.

- Stable rocking generally exceeds the proposed “d” drift value of $0.4h_{eff}/L$. Thus, this value is conservative (see Costley and Abrams, 1996 and Anthoine et al., 1995).

- Rocking does not appear to exhibit the FEMA 273 drop to the “c” capacity value in the above two tests nor, apparently, in the Magenes and Calvi (1995) tests. The only exception is Specimen W3 of Abrams and Shah (1992), which, after rocking for ten cycles at drifts of up to 0.5% ($0.5h_{eff}/L$), was then pushed to 0.8% drift ($0.8h_{eff}/L$) where it experienced toe crushing. The test was stopped at that point. Given the limited number of specimens, it is difficult to determine if this represents the drop from initial load to the “c” level, or a special, sequential mode. For simplicity, this case was combined with the rocking cases, and the “d” drift level was set to account for this level of toe crushing. In most cases, though, rocking capacities will not drop off significantly. The “d” drift value of $0.4h_{eff}/L$ was set based on Costley and Abrams (1996), with some conservatism (Abrams, 1997) to account for Specimen W3. The “c” drift value was conservatively set at 0.6, because of the limited test data (Abrams, 1997), but aside from Specimen W3, higher “c” values are probably likely.

- There are few pure bed-joint sliding tests. Specimen W1 of Abrams and Shah (1992) is one example, and Specimens MI2 and MI4 of Magenes and Calvi (1992) appear to be examples as well. The drop in lateral strength appears to occur at about 0.3-0.4% drift in W1 and MI4, so the proposed “d” value of 0.4 seems reasonable. The “c” of 0.6 also seems reasonable. The capacity for bed-joint sliding is based on the bond-plus-friction strength. After cracking, the bond capacity will be eroded, and the strength is likely to be based simply on the friction portion of the equation. Cyclic in-place push tests show this behavior; so does Specimen W1 of Abrams and Shah (1992). One could argue that the second cycle backbone curve of FEMA 273 (which, by definition, goes into the nonlinear, post-cracking range) should be limited only to the frictional capacity. But in many cases, other modes will be reached before the full bed-joint sliding capacity is reached. In some of these cases, interestingly, bed-joint sliding occurs after another mode has occurred. Manzouri et al. (1995), for example, show sequences such as initial toe crushing that progresses to bed-joint sliding at higher drift values. One explanation is that toe crushing degenerated into bed-joint sliding because the toe crushing and initial bed-joint sliding values were quite close. See Section 4.1.2.2 for further explanation.

- Mixed modes or, more accurately, sequences of different behavior modes are common in the experiments.

4.1.2.2 The Bed-Joint Sliding and Flexural Cracking/Toe Crushing/Bed-Joint Sliding Modes

The model of bed-joint sliding used in this document is shown in Figure 4-1. For estimating the strength and deformation capacity of the undamaged bed-joint sliding mode, FEMA 273 was used. The idealized relationship has a plateau at the bed-joint capacity $V_{bjs1}$, which includes the bond and friction components. After bond is lost, the residual strength is limited to 60% of $V_{bjs1}$. The actual backbone curve is likely to be smoother than the idealized model, since the loss of bond does not occur all at once in the entire masonry section. Instead, more heavily stressed portions crack, and shear demand is redistributed to the remaining
sections. The actual residual strength could be higher or lower than 0.6\(V_{bjs1}\). One measure of the residual capacity is \(V_{bjs2}\).

Figure 4-1 also shows the assumed changes to the force/displacement relationship following the damaging event. Insignificant damage is characterized by displacement during the damaging event that is between points A and B. Loss of bond is limited. Following the damaging event, the dashed “Insignificant Damage Curve” represents the force/displacement relationship. For damaging events that reach levels of initial displacement beyond point B, greater loss of bond occurs, and the subsequent damage curve achieves a lower strength. Eventually, with initial displacements beyond point C, the entire bond is lost and only friction remains. Thus, future cycles will no longer be able to achieve the original \(V_{bjs1}\) level, reaching only the \(V_{bjs2}\) level. With significant cyclic displacements, some erosion of the crack plane and deterioration of the wall is likely to lead to a small reduction in capacity below the \(V_{bjs2}\) level.

The varying level of bed-joint sliding strength is assumed in this document to be a possible explanation for some of the observed testing results in stocky walls, in particular results such as (1) Specimen W1 of Abrams and Shah (1992), in which bed-joint sliding was the only mode observed; (2) Manzouri et al. (1995), in which toe crushing behavior was followed by bed-joint sliding; and (3) Epperson and Abrams (1989), in which toe crushing was not followed by sliding. Figure 4-2 helps to explain the hypothesis.

In the top set of curves, toe-crushing strength substantially exceeds the \(V_{bjs1}\) level. As displacement occurs, the bed-joint sliding capacity is reached first, and it becomes the limit state. If displacement is such that heavy damage occurs, then in subsequent cycles, the strength will be limited to the \(V_{bjs2}\) level.
In the second set of curves, toe-crushing and initial bed-joint sliding strengths are similar. As displacement occurs, the toe-crushing strength is reached first, cracking and movement occur within the wall, some of the bond is lost, and the wall begins to slide. The initial force/displacement curve is thus similar to that for bed-joint sliding, except that the peak is limited by the toe-crushing strength. If displacement is such that *Heavy* damage occurs, then in subsequent cycles, the strength will be limited to the $V_{bjs2}$ level. This is one possible explanation for the Manzouri et al. (1995) tests.

In the third set of curves, toe-crushing strength is substantially lower than initial bed-joint sliding strength and the ductile mechanism of sliding is not achieved. This is one possible explanation for the Epperson and Abrams (1989) results, in which mortar shear strength was much higher and ductility was lower.
Section 7.3.2 in FEMA 306 makes use of the above hypotheses; cutoff values from the middle set of curves were based in part on review of the results shown in Section 4.1.1. Results are promising, but additional testing and verification of other tests should be done.

4.1.2.3 Out-of-Plane Flexural Response

The most comprehensive set of testing done to date on the out-of-plane response of URM walls was part of the ABK program in the 1980s, and it is documented in ABK (1981c). Input motions used in the ABK (1981c) were based on the following earthquake records: Taft 1954 N21E, Castaic 1971 N69E, Olympia 1949 S04E, and El Centro 1940 S00E. They were scaled in amplitude and were processed to represent the changes caused by diaphragms of varying stiffness to produce the final series of 22 input motion sets. Each set has a motion for the top of the wall and the bottom of the wall. Peak velocities range up to 39.8 in/sec; accelerations, up to 1.42g; and displacements, up to 9.72 inches. In ABK (1984), the mean ground input velocity for UBC Seismic Zone 4 was assumed to be 12 in/sec. For buildings with crosswalls, diaphragm amplification would increase this about 1.75-fold, to 21 in/sec. For buildings without crosswalls, wood roofs were assumed to have a velocity of about 24 in/sec and floors about 27 in/sec.

Since 1981, a significant number of ground motion records have been obtained, including a number of near-field records. In several instances, recent recordings substantially exceed the 12 in/sec value and even exceed the maximum values used by ABK (1981c). Of particular concern are near-field pulse effects and whether they were adequately captured by the original testing. When site-specific spectra and time histories that incorporate these effects are available, it may be possible to address this issue using the original research.

4.1.3 Development of $\lambda$-factors

One of the central goals of this document is to develop a method for quantitatively characterizing the effect of damage on the force/displacement relationship of wall components. Ideally, the most accurate approach would be to have two sets of cyclic tests for a component. One test would be of an initially undamaged wall displaced to failure. The second set would include walls initially displaced to various levels of damage (to represent the “damaging event”) and then retested to failure. This would allow for direct determination of the $\lambda$-factors contained in the Component Guides in FEMA 306. Unfortunately, as noted in Section 4.1.1 there have been almost no experimental tests done on damaged URM walls; typically, tests were done on undamaged walls and either stopped or continued only after the damaged wall was repaired.

In the absence of test results on damaged walls, hysteresis curves of initially undamaged walls were reviewed. In reviewing these tests, the goal was to characterize how force/displacement relationships changed from cycle to cycle as displacement was increased. Early cycles were considered to represent “damaging” events, and subsequent cycles represented the behavior of an initially-damaged component. Particular attention was given to tests in which multiple runs on a specimen were performed. In these cases, initial runs (representing not just a damaging cycle, but a damaging earthquake record) were compared with subsequent runs to determine the extent of strength and stiffness deterioration.

Using these tests, the following general approaches were used to estimate $\lambda$-factors for this project. The reloading stiffnesses (i.e., the stiffness observed moving from the fourth quadrant to the first) at different cycles or different runs were compared to the initial stiffness to determine $\lambda_K$. This variable is estimated to be the ratio of stiffness at higher cycles to the initial stiffness. The assumption made is that if testing had been stopped and the displacement reset to zero and then restarted, the stiffness of the damaged component would have been similar to the reloading stiffness. See Figure 4-3 for an example.

For determining $\lambda_Q$, the approach shown in Figure 4-1 and discussed in the previous section is applied where appropriate to determine $\lambda_Q$, the ratio of strength at higher cycles to initial strength. The loss of strength is roughly equal to the capacity at high drift levels divided by the peak capacity. FEMA 273 describes both deformation-controlled and force-controlled modes. In a purely force-controlled mode, there is, by definition, little or no ductility. Deformation progresses until a brittle failure results. Thus, there are few, if any, damage states between Insignificant and Extreme, and there would be little, if any, post-cracking strength. Further, until a brittle mode occurs, the component would be expected to be minimally affected by previous displacement. Review of available hysteresis curves shows, though, that even modes defined as force-
controlled by FEMA 273 (such as diagonal tension) do have some residual strength.

There is little available information for determining $\lambda_{\Delta}$, because retesting of damaged components to failure has not been done. Values were estimated using engineering judgment. In most cases, less-ductile modes are assumed to have higher $\lambda_{\Delta}$ values, even at higher damage levels. The basis of this assumption is the idea that in more-ductile modes, $\lambda_{\Delta}$ is assumed to be somewhat more dependent on cumulative inelastic deformation. In more-ductile modes, the available hysteretic energy has been dissipated in part by the damaging earthquake, and there is less available in the subsequent event. The result is the final displacement that can be achieved is reduced.

Values for $\lambda_{K^{*}}$, $\lambda_{Q^{*}}$, and $\lambda_{\Delta^{*}}$ are based, where possible, on tests of repaired walls. The values in URM1F, for example, are set at 1.0 because the hysteresis curves of repaired walls were equal to or better than those of the original walls. In most other cases, repairs typically involve injection of cracks, but since microcracking can never be fully injected, it may not be possible to restore

---

**Figure 4-3** Developing the initial portion of the damaged force/displacement relationship

---

Technical Resources
FEMA 307
complete initial stiffness. In the bed-joint sliding modes without tests, it was assumed that the strength could not be fully restored by injection, because the horizontal crack planes are closed and bond cannot be restored in these locations. It is important to recognize that injection of walls with many cracks or unfilled collar joints and cavities, may enhance strength, but it may also lead to less ductile behavior, because other modes may then occur prior to bed-joint sliding.

Values for $\lambda_{h/t}$ are based on a review of the ABK (1981c) document, the model proposed in Priestley (1985), and engineering judgment. At low levels of damage, the portions of wall between the crack planes are essentially undamaged, and the effective thickness, $t$, remains unchanged. At higher levels of damage, deterioration, crushing, and spalling of the corners of the masonry at crack locations reduces the effective thickness and the ability of the wall to resist movements imparted by the diaphragm.

4.2 Tabular Bibliography for Unreinforced Masonry

Table 4-1 contains a brief description of the key technical reports that address specific reinforced masonry component behavior. The component types and their behavior modes are indicated. The full references can be found in Section 4.4.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Specimen/Loading</th>
<th>Aspect Ratio ((L/h_{eff}))</th>
<th>Axial Stress (f_a) in psi</th>
<th>Predictive Equations</th>
<th>Repair</th>
<th>Component-Type</th>
<th>Behavior Modes Addressed¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrams (1992)</td>
<td>Based on Abrams and Shah (1992) and Epper-son and Abrams (1989)</td>
<td>2 1.5 1</td>
<td>75 50 50</td>
<td>Strength None</td>
<td>URM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abrams and Shah (1992)</td>
<td>3 cantilever brick piers with reversed static-cyclic loading</td>
<td></td>
<td></td>
<td>Strength None</td>
<td>URM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABK (1981c)</td>
<td>22 specimens with dynamic out-of-plane loading, including brick, grouted and ungrouted clay and concrete block</td>
<td>(h/t) from 14.0-25.2 2-23</td>
<td>None</td>
<td>Ferrocement surface coating on 2 specimens</td>
<td>URM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthoine et al. (1995)</td>
<td>3 brick piers in double curvature with reversed static cyclic loading</td>
<td>0.5 0.5 0.74</td>
<td>87 87 116</td>
<td>None None</td>
<td>URM2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costley and Abrams (1996b)</td>
<td>2 3/8th-scale brick buildings on shake table, each with two punctured walls lines in the in-plane direction</td>
<td>0.54-0.84 0.53-0.74 0.30-0.40 0.96-1.50</td>
<td>33-36 40-48 40-48 33-36</td>
<td>Strength None</td>
<td>URM2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epperson and Abrams (1989)</td>
<td>5 cantilever brick piers with monotonic loading</td>
<td>1.31 1.58 1.90 1.90 1.90</td>
<td>126 143 81 76 93</td>
<td>Strength None</td>
<td>URM1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingsley et al. (1996)</td>
<td>1 2-story, full-scale brick building with reversed static-cyclic loading</td>
<td>na na</td>
<td>None None</td>
<td>URM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magenes and Calvi (1992)</td>
<td>4 brick piers in double curvature with reversed static cyclic loading</td>
<td>0.75 0.75 0.5 0.5</td>
<td>163 97 181 100</td>
<td>Strength None</td>
<td>URM2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Behavior Modes Addressed:
- **A** - Axial
- **B** - Bending
- **C** - Combined
- **D** - Diagonal
- **E** - Earthquake
- **F** - Flexure
- **G** - Gravity
- **H** - Horizontal
- **I** - In-plane
- **J** - Joint
- **K** - Kerf
- **L** - Local
- **M** - Moment
- **N** - Nonlinear
- **O** - Out-of-plane
- **P** - Prestressed
- **Q** - Quasi-static
- **R** - Resistance
- **S** - Shear
- **T** - Thermal
- **U** - Torsion
- **V** - Vertical
- **W** - Welding
- **X** - X-direction
- **Y** - Y-direction
- **Z** - Z-direction

Column headers: a, b, c, d, e, f, g, h, i, j, k, l, m, n.
### Table 4-1 Summary of Significant Experimental Research or Research Summaries (continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Specimen/Loading</th>
<th>Aspect Ratio ((L/h_{eff}))</th>
<th>Axial Stress ((f_a\text{ psi}))</th>
<th>Predictive Equations</th>
<th>Repair</th>
<th>Component-Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magenes and Calvi (1995)</td>
<td>8 brick piers in double curvature tested on a shake table, some run multiple times with varying axial load</td>
<td>0.74</td>
<td>59</td>
<td></td>
<td>None</td>
<td>URM2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.74</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.74</td>
<td>152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.74</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manzourzi et. al. (1995)</td>
<td>4 virgin brick piers with reversed static-cyclic loading, 3 cantileved and 1 pair of piers with spandrels</td>
<td>1.7</td>
<td>150</td>
<td>Sophisticated finite-element modelling</td>
<td>Repair techniques include grout injection, pinning, and addition of rebar-filled chases</td>
<td>URM1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7</td>
<td>55</td>
<td></td>
<td>URM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7</td>
<td>85</td>
<td></td>
<td>URM1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.27</td>
<td>70</td>
<td></td>
<td>URM2</td>
<td></td>
</tr>
<tr>
<td>Rutherford &amp; Chekene (1997)</td>
<td>Contains extensive set of research summaries of URM enhancement</td>
<td>na</td>
<td>na</td>
<td></td>
<td>Uses FEMA 273 and provides equations for enhanced walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grout and epoxy injection, surface coatings, adhered fabrics, shotcrete, reinforced and post-tensioned cores, infilled openings, enlarged openings, and steel braking</td>
<td></td>
</tr>
<tr>
<td>Tomasevic and Weiss (1996)</td>
<td>4 1/4-scale brick buildings on shake table</td>
<td>na</td>
<td>na</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Compares effectiveness of various wall-diaphragm ties</td>
<td></td>
</tr>
</tbody>
</table>

1Behavior Mode:
- a Wall-pier rocking
- b Bed-joint sliding
- c Bed-joint sliding at wall base
- d Spandrel joint sliding
- e Rocking/toe crushing
- f Flexural cracking/toe crushing/bed-joint sliding
- g Flexural cracking/diagonal tension
- h Flexural cracking/toe crushing
- i Spandrel unit cracking
- j Corner damage
- k Preemptive diagonal tension
- l Preemptive toe crushing
- m Out-of-plane flexural response
- n Other: Includes complex modes and those reported as having “diagonal cracking”
4.3 Symbols for Unreinforced Masonry

Symbols used in the unreinforced masonry sections of FEMA 306 and 307 are the same as those given in Section 7.9 of FEMA 273 except for the following additions and modifications.

- **C**: Resultant compressive force in a spandrel, lb
- **L<sub>sp</sub>**: Length of spandrel, in.
- **<i>M</i><sub>spcr</sub>**: Expected moment capacity of a cracked spandrel, lb-in.
- **<i>M</i><sub>spun</sub>**: Expected moment capacity of an uncracked spandrel, lb-in.
- **<i>V</i><sub>spcr</sub>**: Expected diagonal tension capacity of a cracked spandrel, lb
- **<i>V</i><sub>spun</sub>**: Expected diagonal tension capacity of an uncracked spandrel, lb
- **<i>NB</i>**: Number of brick wythes in a spandrel
- **<i_NR>**: Number of rows of bed joints in a spandrel
- **<i>T</i>**: Resultant tensile force in a spandrel, lb
- **<i>V</i><sub>bjs1</sub>**: Expected shear strength of wall or pier based on bed joint shear stress, including both the bond and friction components, lb
- **<i>V</i><sub>bjs2</sub>**: Expected shear strength of wall or pier based on bed joint shear stress, including only the friction component, lb
- **<i>V</i><sub>sp</sub>**: Shear imparted on the spandrel by the pier, lb
- **<i>V</i><sub>dt</sub>**: Expected shear strength of wall or pier based on diagonal tension using <i>v<sub>me</sub></i> for <i>f<sup>'</i>dt</i>, lb
- **<i>V</i><sub>tc</sub>**: Expected shear strength of wall or pier based on toe crushing using <i>v<sub>me</sub></i> for <i>f<sup>'</i>dt</i>, lb
- **<i>W</i><sub>W</sub>**: Expected weight of a wall, lb
- **<i>b<sub>effcr</sub></i>**: Effective length of interface for a cracked spandrel, in.
- **<i>b<sub>effun</sub></i>**: Effective length of interface for an uncracked spandrel, in.
- **<i>b<sub>h</sub></i>**: Height of masonry unit plus bed joint thickness, in.

**b<sub>L</sub>** Length of masonry unit, in.

**b<sub>W</sub>** Width of brick unit, in.

**d<sub>sp</sub>** Depth of spandrel, in.

**<i>d<sub>effcr</sub></i>** Distance between resultant tensile and compressive forces in a cracked spandrel, in.

**<i>d<sub>effun</sub></i>** Distance between resultant tensile and compressive forces in an uncracked spandrel, in.

**f<sup>'</i>dt** Masonry diagonal tension strength, psi

**<i>v<sub>bjcr</sub></i>** Cracked bed joint shear stress, psi

**<i>v<bjun</i>** Uncracked bed joint shear stress in a spandrel, psi

**<i>v<sub>ccr</sub></i>** Cracked collar joint shear stress in a spandrel, psi

**<i>v<sub>cun</sub></i>** Uncracked collar joint shear stress in a spandrel, psi

**β**

=0.67 when <i>L/h<sub>eff</sub></i> < 0.67, =<i>L/h<sub>eff</sub></i> when 0.67 < <i>L/h<sub>eff</sub></i> < 1.0, and = 1.0 when <i>L/h<sub>eff</sub></i> > 1

**Δ<sub>s</sub>** Average slip at cracked spandrel (can be estimated as average opening width of open head joint), in.

**ε** Factor for estimating the bond strength of the mortar in spandrels

**γ** Factor for coefficient of friction in bed joint sliding equation for spandrels

**η** Factor to estimate average stress in uncracked spandrel. Equal to <i>NR/2</i> or, for more sophistication, use Σ<sub>i=1,NR</sub>[(<i>d<sub>sp</sub></i>/2 - <i>b<sub>h</sub></i>(i))/(d<sub>sp</sub>/2 - b<sub>h</sub>)]

**λ<sub>hlt</sub>** Factor used to estimate the loss of out-of-plane wall capacity to damaged URM walls

**μ<sub>Δ</sub>** Displacement ductility demand for a component, used in FEMA 306, Section 5.3.4, and discussed in Section 6.4.2.4 of FEMA 273. Equal to the component deformation corresponding to the global target displacement, divided by the effective yield displacement of the component (which is defined in Section 6.4.1.2B of FEMA 273).
### 4.4 References for Unreinforced Masonry


City of Los Angeles, 1991, *Seismic Reinforcement Seminar Notes*, City of Los Angeles Department of Building and Safety.
Chapter 4: Unreinforced Masonry


SEAOSC, 1986, “RGA (Rule of General Application) Unreinforced Masonry Bearing Wall Buildings (Alternate Design to Division 88),” *Earthquake Hazard Mitigation of Unreinforced Pre-1933 Masonry Buildings*, Structural Engineers Association of Southern California: Los Angeles, California.


5. **Infilled Frames**

5.1 **Commentary And Discussion**

There is a wealth of experimental data reported in the literature on infilled frames. Unfortunately, only a limited amount of the research has been performed under cyclic loading and conducted on specimens that reflect U.S. construction practice. For these test results, it is evident that infilled frames can possess stable hysteresis loops and continue to carry substantial lateral loads at significant interstory drifts. This is true in spite of the highly damaged appearance and even complete loss of some of the masonry units within an infill panel.

Most experimental results on infilled-frame systems show a mixture of behavior modes that take place at various stages of loading. At low interstory drift levels (0.2% - 0.4%), corner crushing and some diagonal cracking in the panel tend to occur first. This is followed by frame yielding (0.5% - 1.0% interstory drift) and possible bed-joint sliding. As the drift amplitude increases beyond about 1%, cracking in the infill panel becomes more extensive, along with further frame damage. The frame damage takes the form of cracking, crushing, and spalling of concrete in the case of reinforced concrete frames or prying damage to bolted semi-rigid connections in steel frames. The coexistence of several behavior modes makes it difficult to determine what $\lambda$-factors should be used for quantitative strength and deformation analysis. Therefore, it is necessary to resort to individual component tests to assess $\lambda$-values. The results of experiments conducted by Aycardi et al. (1994) are illustrative of the performance of nonductile reinforced concrete frames. These tests give results for each of the failure modes (except column shear).

In the experimental studies on infilled frames by Mander et al. (1993a,b), steel frames were used and were instrumented with numerous strain gauges so the behavior of the frame could be uncoupled from the behavior of the infill panel. It was, therefore, possible to plot the net lateral load-drift capacity of the brick masonry infill panel. These results were helpful in identifying the $\lambda$-factors for corner crushing, diagonal cracking and general shear-failure behavior modes for masonry. The bed-joint sliding behavior mode tends to occur mostly in steel frames with ungrouted/unreinforced masonry infill with low panel height-to-length aspect ratios. The experimental results of Gergely et al. (1994) were useful for identifying $\lambda$-factors for this behavior mode.

When investigating the out-of-plane behavior of infilled frame panels, it is difficult to enforce a complete failure, as evidenced by recent tests by Angel and Abrams (1994). It should be noted that these investigators first loaded their specimens in-plane before conducting their out-of-plane tests. Results of this study indicate that lateral strength capacity is generally well in excess of 200 psf. Thus, it is unlikely that out-of-plane failure should occur for normal infill height-to-thickness aspect ratios. These results suggest that if an out-of-plane failure is observed in the field, then some other (in-plane) behavior mode has contributed to the failure of the infill.

Dealing with infill panels with openings is difficult due to the many potential types of openings that may occur in practice. Evidently, when openings are present, the strength capacity is bounded by that of bare frame (lower bound) and that of a system with solid infill panels (upper bound). Although these results are derived from monotonic tests, they suggest that the deformation capacity is not impaired if openings exist.

5.1.1 **Development of $\lambda$-Factors for Component Guides**

The Component Damage Classification Guides and component modification factors ($\lambda$-factors) for infilled frames were based on an extensive review of research in the area of both nonductile reinforced concrete frames, as well as masonry structures. The principal references used in this work are listed in the tabular bibliography presented in Section 5.2. For each component behavior mode, three types of $\lambda$-factors are used: stiffness reduction factors ($\lambda_K$), strength reduction factor ($\lambda_Q$) and a displacement reduction factor ($\lambda_D$). Description of how each of these $\lambda$-factors were derived from experimental evidence and theoretical considerations is presented in what follows.

5.1.2 **Development of Stiffness Deterioration—$\lambda_K$**

As the displacement ductility of a member progressively increases, the member also softens. Even though the strength may be largely maintained at a nominal yield level, softening is manifest in the form of stiffness reduction. The degree of softening is generally related to the maximum displacement ductility the member has previously achieved.
There are several analytical models that can be used to give guidance on how one can assess the degree of softening in an element. For example, Chang and Mander (1994) describe several computational hysteretic models calibrated for reinforced concrete components. Utilizing their information obtained from a calibrated modified Takeda model, the \( \lambda_K \)-factor for stiffness reduction can be related by the following relationship:

\[
\lambda_K = \left( \frac{\Delta_{\text{max}}}{\Delta_y} \right)^{-\alpha} = (\mu_\alpha)^{-\alpha} \tag{5-1}
\]

where \( \Delta_{\text{max}} \) = maximum displacement in the displacement history, \( \Delta_y \) = yield displacement, \( \mu_\alpha \) = displacement ductility factor, and \( \alpha \) = an experimentally calibrated factor that is material- or specimen-dependent.

Strictly, \( \alpha \) should be established on a component-by-component basis. However, for reinforced concrete components there is a range of values from \( \alpha = 0.25 \) to \( \alpha = 1 \) that may be applicable, \( \alpha = 0.5 \) being typical for most specimens. Well detailed members tend to have low \( \alpha \) values, whereas higher \( \alpha \) values are common for poorly detailed members. Although specific research on infill panels is not developed to the same extent, it seems reasonable that similar trends would be found for these components.

### 5.1.3 The Determination of \( \lambda_Q \) for Strength Deterioration

In structural elements not specifically designed for seismic resistance, there is generally a lack of adequate transverse reinforcement necessary to provide adequate confinement and shear resistance. As a result, under reversed cyclic loading the strength of such elements deteriorates progressively. Furthermore, if the non-seismically designed frame elements have inadequate anchorage for the reinforcing steel, there can be a gradual loss in strength and then a sudden drop in strength when the anchorage zone or lap splice zone fails. An energy approach can be used to assess the loss of strength in a reinforced concrete column or beam element where inadequate transverse reinforcement is found. The energy-based approach advanced by Mander and Dutta (1997) has been used in developing this process. A summary of the underlying theoretical concepts is given below.

Assuming the moment capacity contributed by the concrete is gradually consumed by the propagating level of damage, then at the end of the i-th cycle it can be shown that the reduced strength \( F_i = \lambda_Q F_n \) can be evaluated through

\[
\lambda_Q = \frac{F_i}{F_n} = 1 - \frac{M_c}{M_n} \Sigma D_{ci} = 1 - \frac{M_n}{M_n} \Sigma \theta_{pc} \tag{5-2}
\]

in which \( \Sigma D_{ci} \) = accumulated damage, \( \Sigma \theta_{ci} \) = cumulative plastic drift, \( M_n \) = nominal moment capacity, \( M_c \) = the moment generated by the eccentric concrete stress block and \( \Sigma \theta_{pc} \) = cumulative plastic rotation capacity considering concrete fatigue alone. Using energy concepts where it is assumed that the finite energy reserve of an unconfined concrete section is gradually consumed to resist the concrete compression force, a work expression can be formulated as

\[
EWD = IWD \tag{5-3}
\]

where \( EWD \) = external work done on the section by the concrete compression force defined by the left hand side of the equation below, and \( IWD \) = internal work or energy absorption capacity of the section defined by the right hand side of the following equation

\[
C_c \times \left( \frac{\phi_p}{2} \right) \times 2N_c = A_g \int_0^{f'_c} \varepsilon d\varepsilon \tag{5-4}
\]

in which \( C_c \) = concrete compression force, \( \phi_p \) = plastic curvature, \( c \) = neutral axis depth, \( 2N_c \) = total number of reversals and \( A_g \) = gross area of the concrete section.

The integral in the above expression actually denotes the finite energy capacity of an unconfined concrete section which in lieu of a more precise analysis, can be approximated as 0.008 \( f'_c \) . Note also that the term in brackets in the above equation denotes the plastic strain at the location of the concrete compression force.

Assuming that in a cantilever column the plastic rotation is entirely confined to the plastic hinge zone (of length \( L_p \)), using the moment-area theorem and rearranging terms in the above equation, it is possible to solve for the cumulative plastic drift capacity as

\[
\Sigma \theta_{pc} = 0.016 \left( \frac{L_p}{D} \right) \left( \frac{C}{f'_c A_g} \right) \left( \frac{c}{D} \right) \tag{5-5}
\]

where \( \Sigma \theta_p = 2N_c \theta_p \) is the cumulative plastic drift defined as the sum of all positive and negative drift amplitudes up to a given stage of loading; and \( D \) = overall depth/diameter of the column.
The concrete damage model described so far is generally applicable to beam and/or column elements with adequate bonding between the longitudinal reinforcement and the surrounding concrete. Thus following Equation 5-2, the concrete strength continues to decay until the moment capacity of the eccentric concrete block is fully exhausted. At this point the residual moment capacity entirely consists of the steel contribution. This is schematically portrayed in Figure 5-1a. However, more often than not, older buildings possess lap splice zones at their column bases. Such splices are not always equipped with adequate lap length to ensure proper development of bond strength. The lap splice thus becomes the weak point in the column which shows a drastic reduction in the strength almost immediately following the lap splice failure. This is depicted in Figure 5-1b where the bond failure in the lap splice is assumed to occur over one complete cycle. The residual strength immediately after

\[ F_i = \mu_m N_f^c \]  

(5-6)

where \( N_f \) = number of equi-amplitude cycles required to produce failure at ductility amplitude \( \mu_\Delta \); \( \mu_m \) = monotonic ductility capacity; and \( c \) = fatigue exponent. Typical values of the latter are \( c = -1/3 \) for steel failure and \( c = -1/2 \) for nonductile reinforced concrete.

The above equation can be written in terms of a “damage fraction” \( D = n_d / N_f \) that can be sustained for \( n_d \) cycles of loading in the damaging earthquake:

\[ D = \frac{n_d}{N_f} = n_d \left( \frac{\mu_\Delta}{\mu_m} \right)^{-\frac{1}{c}} \]  

(5-7)

The remaining fatigue life then is \( (1 - D) \). The displacement-based \( \lambda_D \)-factor can thus be defined as

\[ \lambda_D = \frac{\mu_\Delta}{\mu_m} (1 - D)^{-c} = \left[ \frac{1}{n_d} \left( \frac{\mu_\Delta}{\mu_m} \right)^{-\frac{1}{c}} \right] \]  

(5-8)

In the above two equations superscripts \( d \) and \( r \) refer to the damaging earthquake and remaining life, respectively.

Thus for nonductile reinforced concrete failure taking \( c = -1/2 \) gives

\[ \lambda_D = \sqrt{\frac{1}{n_d} \left( \frac{\mu_\Delta}{\mu_m} \right)^2} \]  

(5-9)

For frictional or sliding behavior modes such as lap-slip failure of masonry infill panels, there is no limit to the displacement capability. Therefore, for these two behavior modes, \( \lambda_D = 1 \) at all times.

Although specific research on infill components is less developed, it is reasonable to assume that similar trends would be observed.
Figure 5-1  Energy-based damage analysis of strength reduction to define $\lambda_Q$
# Chapter 5: Infilled Frames

## 5.2 Tabular Bibliography for Infilled Frames

<table>
<thead>
<tr>
<th>References</th>
<th>Categories*</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrams, 1994</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Al-Chaar et al., 1994</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Aycardi et al., 1992</td>
<td>✓</td>
<td>✓ Nonductile concrete frame performance</td>
</tr>
<tr>
<td>Aycardi et al., 1994</td>
<td>✓</td>
<td>✓ Nonductile concrete frame performance</td>
</tr>
<tr>
<td>Axely and Bertero, 1979</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Benjamin and Williams, 1958</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bertero and Brokken, 1983</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bracci et al., 1995</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Brokken and Bertero, 1981</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Coul, 1966</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Crisafulli et al., 1995</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Dawe and McBride, 1985</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dhanasekar et al., 1985</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Flanagan and Bennett, 1994</td>
<td>✓</td>
<td>Steel frame-clay tile infill</td>
</tr>
<tr>
<td>Focardi and Manzini, 1984</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Gergely et al., 1993</td>
<td>✓</td>
<td>Steel frame-clay tile infill</td>
</tr>
<tr>
<td>Hamburger and Chakradeo, 1993</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hill, 1994</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Holnes, 1961</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Kadir, 1974</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Kahn and Hanson, 1977</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Klingner and Bertero, 1976</td>
<td>✓</td>
<td>Multistory infilled frame performance</td>
</tr>
<tr>
<td>Klingner and Bertero, 1978</td>
<td>✓</td>
<td>Multistory infilled frame performance</td>
</tr>
<tr>
<td>Kodur et al., 1995</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Liauw and Lee, 1977</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liauw, 1979</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liauw and Kwan, 1983a</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Liauw and Kwan, 1983b</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maghaddam and Dowling, 1987</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mainstone and Weeks, 1970</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*A = Modes of Failure, B = Strength, C = Stiffness, D = Ductility, E = Hysteretic Performance, F = Openings, G = Repairs, H = Experimental Performance of Infilled Frames, I = Steel and Concrete Frame Behavior
### Table 5-1 Tabular Bibliography for Infilled Frames (continued)

<table>
<thead>
<tr>
<th>References</th>
<th>Categories</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainstone, 1971</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Classical work on strut methods of analysis</td>
</tr>
<tr>
<td>Mallick and Garg, 1971</td>
<td>✓ ✓</td>
<td>Steel frames-brick infills under cyclic loading</td>
</tr>
<tr>
<td>Mander and Nair, 1993a</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Effect of ferrocement repairs</td>
</tr>
<tr>
<td>Mander et al., 1993b</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Low-cycle fatigue of steel frame connections</td>
</tr>
<tr>
<td>Mander et al., 1995</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Concrete frame-block infill experiments</td>
</tr>
<tr>
<td>Mehrabi et al., 1996</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Steel frame brick infills finite-element analysis</td>
</tr>
<tr>
<td>Mosalam et al., 1994</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Pseudo-dynamic tests</td>
</tr>
<tr>
<td>Parducci and Mezzi, 1980</td>
<td>✓ ✓</td>
<td>Classical text on design</td>
</tr>
<tr>
<td>Paulay and Priestley, 1992</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most recent work on RC in shear</td>
</tr>
<tr>
<td>Pavyakov, 1956</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Prawer and Lee, 1994</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Priestley, 1996</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Priestley et al., 1996</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Reinhorn et al., 1995</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Riddington and Stafford-Smith, 1977</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Riddington, 1984</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Sachanski, 1960</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Saneinejad and Hobbs, 1995</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Shapiro et al., 1994</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Shen and Zhu, 1994</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Shing et al., 1994</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Stafford-Smith, 1966</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Stafford-Smith and Carter, 1969</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Thomas, 1953</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Wood, 1978</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Yoshimura and Kikuchi, 1995</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Zarnic and Tomazevic, 1984</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Zarnic and Tomazevic, 1985a</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
<tr>
<td>Zarnic and Tomazevic, 1985b</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>Most up-to-date reference on analysis methods</td>
</tr>
</tbody>
</table>

*A = Modes of Failure, B = Strength, C = Stiffness, D = Ductility, E = Hysteretic Performance, F = Openings, G = Repairs, H = Experimental Performance of Infilled Frames, I = Steel and Concrete Frame Behavior*
5.3 References for Infilled Frames

This list contains references from the infilled frames chapters of both FEMA 306 and 307.


Flanagan, R.D. and Bennett, R.M., 1994, “Uniform Lateral Load Capacity of Infilled Frames,” *Proceed-
Chapter 5: Infilled Frames

ings of the Structures Congress ’94, Atlanta, Georgia, ASCE, 1: 785-790.


Klingner, R.E. and Bertero, V.V., 1976, Infilled frames in earthquake resistant construction, Earthquake Engineering Research Centre, University of California at Berkeley, Report No. EERC 76-32.


Chapter 5: Infilled Frames


Chapter 5: Infilled Frames


