About the Cover

After his Poquoson house suffered flood damage in November 2009, the owner decided to elevate the home to avoid future damages. The home was elevated an additional foot above the 1 foot freeboard required by the local ordinance. The finished floor is now 2 feet above the base flood elevation.
Acknowledgments

The following people are involved with the update of FEMA P-259.
The previous edition was produced in 2001.

Third Edition Authors and Key Contributors

- David Conrad, P.E., Atkins Global
- Omar Kapur, URS Group, Inc.
- Amit Mahadevia, URS Group, Inc.
- Desi Maldonado, P.E., Atkins Global
- Julia Moline, CFM, Dewberry
- Glenn Overcash, P.E., URS Group, Inc.
- Samantha Passman, URS Group, Inc.
- Manuel Perotin, P.E., CFM, Atkins Global
- Adam Reeder, P.E., CFM, Atkins Global
- Laura Seitz, CFM, URS Group, Inc.
- Adrienne Sheldon, P.E., CFM, URS Group, Inc.
- John Squerciati, P.E., CFM, Dewberry

Third Edition Reviewers

- Gene Barr, CFM
- Brooke Buchanan, P.E., CFM, FEMA Region VIII
- Jamin Buckingham, Wolfe House Movers
- William Coulbourne, P.E., Applied Technology Council
- Paul Gugenheim, P.E., Delta Structural Technology, Inc.
- Michael Hornick, FEMA Region IX
- John Ingargiola, CFM, FEMA Headquarters
- Christopher P. Jones, P.E., Durham, NC
- John Plisich, FEMA Region IV
- Ed Smith, FEMA Headquarters
- Jody Springer, FEMA Headquarters
- Paul Tertell, P.E., FEMA Headquarters
- Scott Tezak, P.E., TRC Solutions
- Gregory Wilson, CFM, FEMA Headquarters

Third Edition Technical Editing, Layout, and Illustration

- Deb Daly, Greenhorne & O’Mara
- Julie Liptak, Greenhorne & O’Mara
- Lee-Ann Lyons, URS Group, Inc.
- Billy Ruppert, URS Group, Inc.
- Devika Strother, URS Group, Inc.
Contents

Chapter 1. Introduction to Retrofitting
- 1.1 Goals and Intended Users ... 1-1
- 1.2 Organization of the Manual ... 1-2
- 1.3 Methods of Retrofitting ... 1-4
 - 1.3.1 Elevation .. 1-5
 - 1.3.1.1 Elevation on Solid Perimeter Foundation Walls 1-6
 - 1.3.1.2 Elevation on Open Foundation Systems 1-7
 - 1.3.2 Relocation ... 1-11
 - 1.3.3 Dry Floodproofing .. 1-12
 - 1.3.4 Wet Floodproofing .. 1-14
 - 1.3.5 Floodwalls and Levees ... 1-16
- 1.4 Considerations When Retrofitting .. 1-19
- 1.5 Retrofitting Process ... 1-19
 - 1.5.1 Other Retrofitting Guides .. 1-21

Chapter 2. Regulatory Requirements
- 2.1 National Flood Insurance Program .. 2-2
 - 2.1.1 Flood Insurance Rate Maps .. 2-3
 - 2.1.2 Flood Insurance Studies .. 2-7
- 2.1.3 Floodplain Management Regulations ... 2-9
- 2.1.4 Insurance Program .. 2-10
- 2.1.5 NFIP Flood-Prone Building Performance Requirements 2-11
- 2.2 Community Regulations and the Permitting Process 2-12
- 2.3 National Model Building Codes .. 2-13
- 2.4 Consensus Standards .. 2-14

Chapter 3. Parameters of Retrofitting
- 3.1 Determination of Homeowner Preferences 3-2
 - 3.1.1 The Initial Homeowner Meeting .. 3-2
 - 3.1.2 Initial Site Visit .. 3-4
 - 3.1.3 Aesthetic Concerns ... 3-5
CONTENTS

3.1.4 Economic Considerations ... 3-6
3.1.5 Risk Considerations ... 3-9
3.1.6 Accessibility for Individuals with Special Needs 3-9
3.2 Community Regulations and Permitting 3-10
 3.2.1 Local Codes .. 3-10
 3.2.2 Building Systems/Code Upgrades 3-10
 3.2.3 Off-Site Flooding Impacts ... 3-11
3.3 Technical Parameters ... 3-11
 3.3.1 Flooding Characteristics .. 3-13
 3.3.1.1 Flood Depth and Elevation .. 3-14
 3.3.1.2 Flood Flow Velocity .. 3-15
 3.3.1.3 Flood Frequency ... 3-16
 3.3.1.4 Rates of Rise and Fall .. 3-16
 3.3.1.5 Flood Duration .. 3-16
 3.3.1.6 Debris Impact ... 3-16
 3.3.2 Site Characteristics ... 3-17
 3.3.2.1 Site Location ... 3-17
 3.3.2.2 Vulnerability to Erosion .. 3-17
 3.3.2.3 Soil Type ... 3-18
 3.3.3 Building Characteristics .. 3-19
 3.3.3.1 Substructure ... 3-20
 3.3.3.2 Superstructure .. 3-20
 3.3.3.3 Support Services ... 3-21
 3.3.3.4 Building Construction ... 3-21
 3.3.3.5 Building Condition .. 3-21
3.4 Balancing Historic Preservation With Flood Protection 3-25
3.5 Multiple Hazards ... 3-25
 3.5.1 Earthquake Forces .. 3-26
 3.5.2 Wind Forces .. 3-26

Chapter 4. Determination of Hazards ... 4-1

4.1 Analysis of Flood-Related Hazards ... 4-1
 4.1.1 Determining Flood Elevations ... 4-3
 4.1.1.1 Riverine Areas ... 4-3
 4.1.1.2 Coastal Areas ... 4-6
 4.1.2 Flood Forces and Loads .. 4-8
 4.1.2.1 Flood Depth and Floodproofing Design Depth 4-8
 4.1.2.2 Hydrostatic Forces .. 4-10
 4.1.2.3 Lateral Hydrostatic Forces 4-11
CONTENTS

4.1.2.4 Saturated Soil Forces ... 4-12
4.1.2.5 Combined Saturated Soil and Water Forces 4-13
4.1.2.6 Vertical Hydrostatic Forces .. 4-14
4.1.2.7 Hydrodynamic Forces ... 4-16
4.1.2.8 High Velocity Hydrodynamic Forces 4-20
4.1.2.9 Impact Loads .. 4-21
4.1.2.10 Riverine Erosion ... 4-24
4.1.3 Site Drainage .. 4-25
4.1.4 Movable Bed Streams .. 4-30
4.1.5 Analysis of Non-Flood-Related Hazards 4-30
4.1.6 Wind Forces .. 4-31
4.1.7 Seismic Forces .. 4-35
4.1.8 Combining Forces ... 4-36
4.1.9 Protection of the Structure ... 4-36
4.1.10 Protection of Non-Structural Building Components and Building Contents ... 4-37
4.1.11 Land Subsidence .. 4-37

4.2 Geotechnical Considerations ... 4-38
4.2.1 Allowable Bearing Capacity ... 4-40
4.2.2 Scour Potential .. 4-42
4.2.2.1 Frost Zone Considerations ... 4-48
4.2.2.2 Permeability .. 4-48
4.2.2.3 Shrink-Swell Potential ... 4-50

Chapter 5. General Design Practices ... 5-1

5.1 Field Investigation ... 5-3
5.1.1 Local Building Requirements .. 5-3
5.1.2 Surveys .. 5-3
5.1.3 Structure Survey ... 5-3
5.1.4 Topographic Survey ... 5-4
5.1.5 Site Utilities Survey ... 5-5
5.1.6 Hazard Determinations .. 5-6
5.1.7 Documentation of Existing Building Systems 5-6
5.1.8 Homeowner Preferences .. 5-10
5.1.9 Homeowner Coordination ... 5-10
5.1.10 Maintenance Programs and Emergency Action Plans 5-10

5.2 Analysis of Existing Structure .. 5-11
5.2.1 Structural Reconnaissance ... 5-11
5.2.2 Footings and Foundation Systems ... 5-12
5.2.3 Bearing Capacity of Footings .. 5-13
5.2.4 Bearing Capacity of Foundation Walls 5-15
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.5</td>
<td>Lateral Loads</td>
<td>5-15</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Vertical Loads</td>
<td>5-17</td>
</tr>
<tr>
<td>5.2.7</td>
<td>Dead Loads</td>
<td>5-17</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Live Loads</td>
<td>5-19</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Roof Snow Loads</td>
<td>5-20</td>
</tr>
<tr>
<td>5.2.10</td>
<td>Calculation of Vertical, Dead, Live, and Snow Loads</td>
<td>5-20</td>
</tr>
<tr>
<td>5.2.11</td>
<td>Capacity versus Loading</td>
<td>5-24</td>
</tr>
<tr>
<td>5.2.12</td>
<td>Load Combination Scenarios</td>
<td>5-24</td>
</tr>
<tr>
<td>5.2.13</td>
<td>Strength Design Method</td>
<td>5-25</td>
</tr>
<tr>
<td>5.2.14</td>
<td>Allowable Stress Method</td>
<td>5-27</td>
</tr>
</tbody>
</table>

Chapter 5D. Dry Floodproofing

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5D.1</td>
<td>Emergency Operations Plan</td>
</tr>
<tr>
<td>5D.2</td>
<td>Inspection and Maintenance Plan</td>
</tr>
<tr>
<td>5D.3</td>
<td>Sealants and Shields</td>
</tr>
<tr>
<td>5D.4</td>
<td>Field Investigation</td>
</tr>
<tr>
<td>5D.5</td>
<td>Confirm Structure is Designed to Accommodate Dry Floodproofing Measures</td>
</tr>
<tr>
<td>5D.6</td>
<td>Selection and Design of Sealant Systems</td>
</tr>
<tr>
<td>5D.6.1</td>
<td>Coatings</td>
</tr>
<tr>
<td>5D.6.2</td>
<td>Wrapped Systems</td>
</tr>
<tr>
<td>5D.6.3</td>
<td>Brick Veneer Systems</td>
</tr>
<tr>
<td>5D.7</td>
<td>Selection and Design of Shield Systems</td>
</tr>
<tr>
<td>5D.7.1</td>
<td>Plate Shields</td>
</tr>
<tr>
<td>5D.8</td>
<td>Construction Considerations for Sealants and Shields</td>
</tr>
<tr>
<td>5D.9</td>
<td>Drainage Collection Systems</td>
</tr>
<tr>
<td>5D.9.1</td>
<td>French Drains</td>
</tr>
<tr>
<td>5D.9.2</td>
<td>Exterior Underdrain Systems</td>
</tr>
<tr>
<td>5D.9.3</td>
<td>Interior Drain System</td>
</tr>
<tr>
<td>5D.9.4</td>
<td>Types of Sump Pumps</td>
</tr>
<tr>
<td>5D.9.5</td>
<td>Infiltration versus Inundation</td>
</tr>
<tr>
<td>5D.9.6</td>
<td>Coordination with Other Floodproofing Methods</td>
</tr>
<tr>
<td>5D.9.7</td>
<td>Field Investigation</td>
</tr>
<tr>
<td>5D.9.8</td>
<td>Design</td>
</tr>
<tr>
<td>5D.10</td>
<td>Backflow Valves</td>
</tr>
<tr>
<td>5D.10.1</td>
<td>Field Investigation</td>
</tr>
<tr>
<td>5D.10.2</td>
<td>Design</td>
</tr>
<tr>
<td>5D.11</td>
<td>Emergency Power</td>
</tr>
<tr>
<td>5D.11.1</td>
<td>Field Investigation</td>
</tr>
<tr>
<td>5D.11.2</td>
<td>Design</td>
</tr>
<tr>
<td>5D.11.3</td>
<td>Construction</td>
</tr>
</tbody>
</table>
Chapter 5E. Elevation ... 5E-1
5E.1 Types of Residential Structures that Can Be Elevated 5E-2
 5E.1.1 Houses Over a Crawlspace ... 5E-2
 5E.1.2 Houses Over Basements .. 5E-8
 5E.1.2.1 Design of Openings in Foundation Walls for Intentional Flooding of Enclosed Areas Below the DFE 5E-11
 5E.1.3 Houses on Piers, Columns, or Piles 5E-13
 5E.1.4 Slab-on-Grade Houses .. 5E-13
 5E.1.4.1 Elevating a Slab-on-Grade Wood-Frame House 5E-14
 5E.1.4.2 Elevating a Slab-on-Grade Masonry House 5E-19
 5E.1.5 Heavy Building Materials/Complex Design 5E-19
5E.2 Field Investigation Concerns .. 5E-22
 5E.2.1 Property Inspection and Existing Data Review 5E-22
 5E.2.2 Code Search ... 5E-22
5E.3 Design .. 5E-24
5E.4 Construction Considerations .. 5E-30
 5E.4.1 Slab-on-Grade House, Not Raising Slab with House 5E-30
 5E.4.2 Slab-on-Grade House, Raising Slab 5E-31
 5E.4.3 House Over Crawlspace/Basement 5E-31
 5E.4.4 House on Piers, Columns, or Piles 5E-32

Chapter 5F. Floodwalls and Levees .. 5F-1
5F.1 Floodwalls .. 5F-2
 5F.1.1 Types of Floodwalls ... 5F-2
 5F.1.1.1 Gravity Floodwall .. 5F-2
 5F.1.1.2 Cantilever Floodwall .. 5F-4
 5F.1.1.3 Buttressed Floodwall .. 5F-6
 5F.1.1.4 Counterfort Floodwall ... 5F-7
 5F.1.2 Field Investigation for Floodwalls .. 5F-8
 5F.1.3 Floodwall Design ... 5F-10
 5F.1.3.1 Floodwall Design (Selection and Sizing) 5F-10
 5F.1.3.2 Floodwall Design (Simplified Approach) 5F-29
 5F.1.4 Floodwall Appurtenances .. 5F-31
CONTENTS

Chapter 5F. Floodwall Construction

5F.1.4.1 Floodwall Closures ... 5F-31
5F.1.4.2 Drainage Systems ... 5F-39
5F.1.5 Floodwall Seepage and Leakage .. 5F-42
5F.1.5.1 Seepage Through the Floodwall .. 5F-42
5F.1.5.2 Seepage Under the Floodwall ... 5F-42
5F.1.5.3 Leakage Between the Floodwall and Residence 5F-43
5F.1.6 Floodwall Architectural Details .. 5F-43
5F.1.7 Floodwall Construction ... 5F-47

5F.2 Levees .. 5F-48
5F.2.1 Levee Field Investigation ... 5F-48
5F.2.2 Levee Design .. 5F-49
5F.2.2.1 Standard Levee Design Criteria .. 5F-49
5F.2.2.2 Initial Levee Design Phases ... 5F-51
5F.2.3 Levee Seepage Concerns .. 5F-51
5F.2.3.1 Scouring/Levee Slope Protection ... 5F-52
5F.2.3.2 Interior Levee Drainage ... 5F-53
5F.2.3.3 Levee Maintenance .. 5F-54
5F.2.3.4 Levee Cost .. 5F-54
5F.2.4 Levee Construction ... 5F-56
5F.2.4.1 Levee Soil Suitability ... 5F-56
5F.2.4.2 Levee Compaction Requirements 5F-56
5F.2.4.3 Levee Settlement Allowance .. 5F-56
5F.2.4.4 Levee Borrow Area Restrictions ... 5F-56
5F.2.4.5 Access Across Levee .. 5F-57

Chapter 5R. Relocation .. 5R-1
5R.1 Step 1: Select the House Moving Contractor 5R-2
5R.2 Step 2: Analyze the Existing Site and Structure 5R-4
5R.3 Step 3: Select, Analyze, and Design the New Site 5R-5
5R.4 Step 4: Prepare the Existing Site ... 5R-6
5R.5 Step 5: Analyze and Prepare the Moving Route 5R-6
5R.6 Step 6: Prepare the Structure .. 5R-7
5R.7 Step 7: Prepare the New Site ... 5R-10
5R.8 Step 8: Move the Structure .. 5R-11
5R.9 Step 9: Restore the Old Site ... 5R-13

Chapter 5W. Wet Floodproofing .. 5W-1
5W.1 Protection of the Structure ... 5W-2
5W.1.1 Foundations ... 5W-3
Chapter 6. Case Studies

6.1 Case Study #1: Residential Retrofit in Riverine Floodplain Using Elevation or Relocation ... 6-1
 6.1.1 Description of Property ... 6-1
 6.1.2 Structure Information .. 6-2
 6.1.3 Retrofit Options Selection .. 6-4
 6.1.4 Load Calculations .. 6-9
 6.1.5 Supporting Documentation .. 6-15
 6.1.6 Real World Examples ... 6-23

6.2 Case Study #2: Residential Retrofit in Coastal A Zone Using Elevation or Acquisition ... 6-24
 6.2.1 Description of Property ... 6-24
 6.2.2 Structure Information .. 6-24
 6.2.3 Retrofit Options Selection .. 6-26
 6.2.4 Load Calculations .. 6-30
 6.2.5 Supporting Documentation .. 6-33
 6.2.6 Real World Examples ... 6-39

6.3 Case Study #3: Residential Retrofit Outside of the Floodplain Using Dry or Wet Floodproofing ... 6-40
 6.3.1 Description of Property ... 6-40
 6.3.2 Structure Information .. 6-40
 6.3.3 Retrofit Options Selection .. 6-43
CONTENTS

6.3.4 Load Calculations .. 6-46
6.3.5 Supporting Documentation .. 6-51
6.3.6 Real World Examples .. 6-57

6.4 Case Study #4: Residential Retrofit Outside of the Floodplain Using Floodwalls or Levees 6-59
6.4.1 Description of Property .. 6-59
6.4.2 Structure Information .. 6-59
6.4.3 Retrofit Options Selection .. 6-60
6.4.4 Load Calculations .. 6-64
6.4.5 Drainage Requirements .. 6-64
6.4.6 Supporting Documentation .. 6-66
6.4.7 Real World Examples ... 6-70

Appendices
Appendix A. Sources of FEMA Funding .. A-1
Appendix B. Understanding the FEMA Benefit-Cost Analysis Process .. B-1
Appendix C. Sample Design Calculations .. C-1
Appendix D. Alluvial Fan Flooding .. D-1
Appendix E. References .. E-1
Appendix F. Other Resources .. F-1
Appendix G. Summary of NFIP Requirements and Best Practices .. G-1
Appendix H. Acronyms .. H-1

List of Figures

Chapter 1

Figure 1-1. Elevation on solid perimeter foundation walls .. 1-6
Figure 1-2. Elevation of existing residence on extended foundation walls 1-7
Figure 1-3. Elevation on piers ... 1-8
Figure 1-4. Elevation on posts or columns ... 1-8
Figure 1-5. Elevation on piles .. 1-9
Figure 1-6. Structure elevated on piles .. 1-10
Figure 1-7. Structure placed on a wheeled vehicle for relocation to a new site 1-11
Figure 1-8. Structure to be relocated ... 1-12
Figure 1-9. Dry floodproofed structure ... 1-13
Figure 1-10.	Wet floodproofed structure	1-15
Figure 1-11.	Structure protected by floodwall and levee	1-17
Figure 1-12.	Home protected by a levee	1-17
Figure 1-13.	Primary steps in retrofitting process	1-20

Chapter 2

Figure 2-1.	Typical DFIRM for riverine flooding	2-4
Figure 2-2.	Typical DFIRM for coastal flooding showing the Limit of Moderate Wave Action (LiMWA)	2-5
Figure 2-3.	Typical riverine floodplain cross section	2-7
Figure 2-4.	Wave height transect showing LiMWA, MoWA, and MiWA	2-8

Chapter 3

Figure 3-1.	Preliminary Floodproofing/Retrofitting Preference Matrix	3-3
Figure 3-2.	Survey to identify the low point of floodwater entry into a typical residential structure	3-5
Figure 3-3.	Preliminary Cost Estimating Worksheet	3-8
Figure 3-4.	Retrofitting Screening Matrix	3-12
Figure 3-5.	Instructions for Retrofitting Screening Matrix	3-13
Figure 3-6.	Measuring mud lines or high water marks to establish flood depth	3-14
Figure 3-7.	Hydrostatic and buoyancy forces	3-15
Figure 3-8.	Large, fast-moving waves combined with erosion and scour to destroy this Gulf of Mexico home during Hurricane Opal	3-18
Figure 3-9.	Lateral and buoyancy forces resulting from saturated soil	3-19
Figure 3-10.	Preliminary Building Condition Worksheet	3-23

Chapter 4

Figure 4-1.	Flood-related hazards	4-2
Figure 4-2.	House and stream location on the DFIRM	4-4
Figure 4-3.	House location on flood profile for Big Branch (Stream 21)	4-5
CONTENTS

Figure 4-4. Coastal DFIRM showing house location and flood elevation 4-7
Figure 4-5. Flood depth and design depth ... 4-10
Figure 4-6. Hydrostatic forces .. 4-11
Figure 4-7. Diagram of hydrostatic forces ... 4-11
Figure 4-8. Combination soil/water hydrostatic and buoyancy forces 4-13
Figure 4-9. Hydrostatic Force Computation Worksheet .. 4-15
Figure 4-10. Hydrodynamic and impact forces ... 4-16
Figure 4-11. Equivalent Hydrostatic Force Computation Worksheet 4-19
Figure 4-12. Hydrodynamic Force (High Velocity) Computation Worksheet 4-21
Figure 4-13. Impact Force Computation Worksheet .. 4-24
Figure 4-14. Rectangular area enclosed by a floodwall or levee 4-26
Figure 4-15. Rectangular area partially enclosed by a floodwall or levee 4-27
Figure 4-16. Interior Drainage Computation Worksheet ... 4-29
Figure 4-17. Non-flood-related natural hazards ... 4-31
Figure 4-18. Wind-induced pressures on a building ... 4-32
Figure 4-19A. Basic wind speed map .. 4-33
Figure 4-19B. Regions where wind design is required ... 4-34
Figure 4-20. Seismic design process ... 4-35
Figure 4-21. Seismic design causes and effects .. 4-36
Figure 4-22. Geotechnical Considerations Decision Matrix 4-39
Figure 4-23. Localized scour at piers, posts, and piles ... 4-42
Figure 4-24. Scour action on a ground level building ... 4-43
Figure 4-25. Process for estimating potential scour depth 4-44
Figure 4-26. Flow Angle of Attack .. 4-46
Figure 4-27. Terminating stratum ... 4-47
Figure 4-28. Additional embedment for foundation member 4-47
Chapter 5

Figure 5-1. Design process ... 5-2
Figure 5-2. Mechanical, Electrical, Plumbing, and Related Building Systems Data Sheet.............. 5-7
Figure 5-3. Structural Reconnaissance Worksheet ... 5-12
Figure 5-4. Foundation system loading ... 5-13
Figure 5-5. Building Weight Estimating Worksheet ... 5-19
Figure 5-6. Column tributary area ... 5-22
Figure 5-7. Wall/girder tributary area .. 5-22

Chapter 5D

Figure 5D-1. Process of selection and design for dry floodproofing 5D-2
Figure 5D-2. A way to seal an existing brick-faced wall is to add an additional layer of brick with a seal in between ... 5D-4
Figure 5D-3. A wrapped house sealing system can be used to protect against fast transient low-level flooding ... 5D-5
Figure 5D-4. A shield hinged at its bottom could prevent low-level flooding from entering a garage or driveway ... 5D-6
Figure 5D-5. A door opening may be closed using a variety of materials for shields.......... 5D-7
Figure 5D-6. A shield can help prevent low-level flooding from entering through a doorway 5D-7
Figure 5D-7. Where a window is exposed to a flood, bricking up the opening could eliminate the hazard ... 5D-8
Figure 5D-8. Dry floodproofed homes should have an effective drainage system around footings and slabs to reduce water pressure on foundation walls and basements 5D-8
Figure 5D-9. Illustration of hydrostatic force .. 5D-10
Figure 5D-10. Existing building structural evaluations .. 5D-11
Figure 5D-11. This house located in the SFHA was displaced from its foundation into the roadway adjacent to it ... 5D-12
Figure 5D-12. The photo on the right shows the house’s original location 5D-12
Figure 5D-13. Typical design strip for reinforced masonry .. 5D-13
Figure 5D-38. A watertight door used to protect mechanical rooms for a hospital subject to floodwaters

Figure 5D-39. Flood shields that can be raised and lowered to protect a hospital mechanical room from floodwaters

Figure 5D-40. Moveable floodwalls in storage that can be deployed by filling baffles with water

Figure 5D-41. The location to which the moveable floodwalls shown in Figure 5D-40 would be deployed

Chapter 5E

Figure 5E-1. Existing wood-frame house on crawlspace foundation to be elevated with extended walls and piers

Figure 5E-2. Step 1 of elevating an existing wood-frame house on extended foundation walls and piers

Figure 5E-3. Step 2 of elevating an existing wood-frame house on extended foundation walls and piers

Figure 5E-4. Step 3 of elevating an existing wood-frame house on extended foundation walls and piers

Figure 5E-5. Cross-section of elevated wood-frame house on extended piers and crawlspace walls

Figure 5E-6. Step 1 of elevating an existing wood frame house on new or extended pier foundations

Figure 5E-7. Step 3 of elevating an existing wood-frame house on new or extended pier foundation

Figure 5E-8. Cross-section of elevated wood-frame house on new or extended pier foundation

Figure 5E-9. Elevated wood-frame house with new masonry-enclosed area on top of an abandoned and filled-in basement

Figure 5E-10. Cross-section of elevated wood-frame house with extended masonry-enclosed area on top of an abandoned and filled-in basement

Figure 5E-11. Cross-section of elevated wood-frame house on new reinforced piers on top of the existing filled-in basement

Figure 5E-12. Elevated wood-frame house set on new reinforced piers on top of the existing filled-in basement

Figure 5E-13. Typical opening for solid foundation wall

Figure 5E-14. A house where flood openings have been covered by insulation and drywall
CONTENTS

Figure 5E-15. NFIP-compliant house built on solid foundation walls with attached garage.............. 5E-13
Figure 5E-16. Existing wood-frame house with slab and stem-wall foundation 5E-14
Figure 5E-17. Step 1 of elevating an existing wood-frame house without the slab using a new first floor constructed of wood trusses ... 5E-15
Figure 5E-18. Step 2 of elevating an existing wood-frame house without the slab using a new first floor constructed of wood trusses ... 5E-16
Figure 5E-19. Step 3 of elevating an existing wood-frame house without the slab and with extended stem wall using a new first floor constructed of wood trusses 5E-16
Figure 5E-20. Cross-section of elevated wood-frame house (slab not raised) with extended stem-wall foundation and newly installed wood truss floor ... 5E-17
Figure 5E-21. Step 1 of elevating an existing wood-frame house with stem wall foundation and the slab intact ... 5E-18
Figure 5E-22. Step 3 of elevating an existing wood-frame house with stem wall foundation and the slab intact ... 5E-19
Figure 5E-23. Cross-section of elevated wood-frame house with stem wall foundation and the slab intact ... 5E-20
Figure 5E-24. Design process for an elevated house on foundation walls 5E-21
Figure 5E-25. Elevation Field Investigation Worksheet ... 5E-23

Chapter 5F

Figure 5F-1. Typical residential floodwall ... 5F-3
Figure 5F-2. Typical residential floodwall ... 5F-3
Figure 5F-3. Gravity and cantilever floodwalls .. 5F-4
Figure 5F-4. Buttress and counterfort floodwalls .. 5F-4
Figure 5F-5. Stability of gravity floodwalls .. 5F-5
Figure 5F-6. Concrete cantilever floodwall reinforcement .. 5F-5
Figure 5F-7. Stability of cantilever floodwalls .. 5F-6
Figure 5F-8. Typical section of a brick-faced concrete floodwall .. 5F-7
Figure 5F-9. Seepage underneath a floodwall ... 5F-9
Figure 5F-10. Reducing phreatic surface influence by increasing distance from foundation to floodwall and adding foundation drain .. 5F-9
Figure 5F-11. Floodwall design process ... 5F-11
Figure 5F-12. Failure by sliding .. 5F-12
Figure 5F-13. Failure by overturning .. 5F-12
Figure 5F-14. Failure due to excessive soil pressure 5F-13
Figure 5F-15. Forces acting on a floodwall ... 5F-14
Figure 5F-16. Typical floodwall reinforcing steel configuration 5F-29
Figure 5F-17. Typical floodwall closures ... 5F-32
Figure 5F-18. Closure variables .. 5F-32
Figure 5F-19. Sample patio drainage to an outlet .. 5F-40
Figure 5F-20. Sample patio drainage to a sump ... 5F-40
Figure 5F-21. Typical gravity floor drain .. 5F-41
Figure 5F-22. Typical floodwall with check valve ... 5F-41
Figure 5F-23. Waterstop .. 5F-42
Figure 5F-24. Floodwall to house connection ... 5F-43
Figure 5F-25. Floodwall supporting columns .. 5F-44
Figure 5F-26. Typical step detail .. 5F-45
Figure 5F-27. Floodwall Inspection Worksheet ... 5F-47
Figure 5F-28. Typical residential levee .. 5F-50
Figure 5F-29. Drainage toe details ... 5F-52
Figure 5F-30. Drain pipe extending through levee 5F-53
Figure 5F-31. Interior storage area ... 5F-54
Figure 5F-32. Levee Cost Estimating Worksheet ... 5F-55
Figure 5F-33. Compacted lifts ... 5F-56
Figure 5F-34. Access over the levee ... 5F-57

Chapter 5R

Figure 5R-1. House relocation .. 5R-1
Figure 5R-2. Relocation process .. 5R-2
Figure 5R-3. Relocation contractor selection checklist ... 5R-3
Figure 5R-4. Clearing pathways beneath the structure for lifting supports 5R-6
Figure 5R-5. Pathways for lifting beams ... 5R-8
Figure 5R-6. Beams supported by cribbing are placed at critical lift points 5R-8
Figure 5R-7. Hydraulic jacks installed to lift structure from foundation 5R-9
Figure 5R-8. Structure is separated from its foundation ... 5R-9
Figure 5R-9. Foundation preparation at new site ... 5R-10
Figure 5R-10. New foundation wall construction begins .. 5R-11
Figure 5R-11. Trailer wheel sets are placed beneath the lifting beams 5R-11
Figure 5R-12. Trailer is used to pull the house to the street ... 5R-12
Figure 5R-13. House is lowered and connected to the foundation after foundation walls are completed ... 5R-12

Chapter 5W

Figure 5W-1. Elevated air conditioning compressor ... 5W-6
Figure 5W-2. Flood enclosure protects basement utilities from shallow flooding 5W-8
Figure 5W-3. Flood-Resistant Retrofitting Field Investigation Worksheet 5W-9
Figure 5W-4. Wet floodproofing of utilities design process ... 5W-11
Figure 5W-5. An improperly anchored tank; tethered only by a supply line 5W-14
Figure 5W-6. Fuel tank anchored from two sides ... 5W-14
Figure 5W-7. Backflow valve – a check valve and gate valve with an effluent pump bypass 5W-16

Chapter 6

Figure 6-1. The Truman house .. 6-3
Figure 6-2. Preliminary Floodproofing/Retrofitting Preference Matrix for the Truman house 6-5
Figure 6-3. The Truman house after elevation, including extended foundation walls and flood vents ... 6-7
Figure 6-4. Hydrostatic Force Computation Worksheet for the elevated Truman house 6-8
Figure 6-5.	Equivalent Hydrostatic Force Computation Worksheet for the Truman house	6-9
Figure 6-6.	Impact Force Computation Worksheet for the Truman house	6-10
Figure 6-7.	Moment diagram for the Truman house	6-14
Figure 6-8.	Cross section of displaced soil and footer	6-14
Figure 6-9.	Topographic map showing the location of the Truman plot	6-16
Figure 6-10.	FIRM showing the location of the Truman plot	6-17
Figure 6-11.	FIS Excerpt: Discharge table for the Truman house	6-18
Figure 6-12.	FIS excerpt: Flood profile for the Truman house	6-19
Figure 6-13.	Elevation certificate excerpt for the Truman house	6-20
Figure 6-14.	Truman house tax card	6-21
Figure 6-15.	Sample BCA report excerpt for the Truman house elevation and relocation projects	6-22
Figure 6-16.	Relocation of an existing building to another location	6-23
Figure 6-17.	Elevation of an existing home above the BFE	6-23
Figure 6-18.	The Chester house, before mitigation	6-24
Figure 6-19.	Preliminary Floodproofing/Retrofitting Preference Matrix for the Chester house	6-27
Figure 6-20.	The Chester house, after mitigation	6-29
Figure 6-21.	Timber pile plan for the elevated Chester house	6-29
Figure 6-22.	Impact Force Computation Worksheet for the Chester house	6-30
Figure 6-23.	Topographic map for the Chester house	6-33
Figure 6-24.	DFIRM excerpt and FIS excerpt: Summary of stillwater elevations for the Chester house	6-34
Figure 6-25.	Elevation certificate excerpt for the Chester house	6-35
Figure 6-26.	Tax card for the Chester house	6-36
Figure 6-27.	Sample BCA Report excerpt for the Chester house elevation and acquisition	6-38
Figure 6-28.	House elevated on timber piles	6-39
Figure 6-29.	Elevation on timber piles	6-39
Figure 6-30.	Plan drawing for the Borges house	6-40
CONTENTS

Figure 6-31. Elevation drawings from the front, back, and side of the Borges house 6-41
Figure 6-32. Preliminary Floodproofing/Retrofitting Preference Matrix for the Borges house 6-44
Figure 6-33. Hydrostatic Force Computation Worksheet for the Borges house 6-47
Figure 6-34. Moment diagram for the Borges house, slab only .. 6-51
Figure 6-35. Topographic map showing the location of the Borges house 6-52
Figure 6-36. FIRMette for the Borges house .. 6-53
Figure 6-37. Elevation certificate excerpt for the Borges house .. 6-54
Figure 6-38. Tax card for the Borges house ... 6-55
Figure 6-39. Sample BCA report excerpt for dry and wet floodproofing of the Borges house 6-56
Figure 6-40. Example of a flood shield over a door ... 6-57
Figure 6-41. Example of a flood shield over a door ... 6-57
Figure 6-42. Example of flood vents ... 6-58
Figure 6-43. Example of flood vents ... 6-58
Figure 6-44. Valley house ... 6-60
Figure 6-45. Preliminary Floodproofing/Retrofitting Preference Matrix for Valley house 6-61
Figure 6-46. Floodwall dimensions for the Valley house floodwall ... 6-62
Figure 6-47. Plan drawing for Valley house floodwall or levee ... 6-63
Figure 6-48. Valley House levee cross-sectional dimensions .. 6-64
Figure 6-49. Interior Drainage Computation Worksheet for Valley House floodwall or levee 6-65
Figure 6-50. Topographic map showing location of Valley house .. 6-66
Figure 6-51. FIRMette for Valley house .. 6-67
Figure 6-52. Elevation certificate excerpt for Valley house .. 6-68
Figure 6-53. Tax card for Valley House ... 6-69
Figure 6-54. Interior sump pump for a residential floodwall .. 6-70
Figure 6-55. Brick-faced residential floodwall and access stairs .. 6-70
Figure 6-56. Residential levee .. 6-71
Figure 6-57. Driveway access over a residential levee .. 6-71
List of Tables

Chapter 1
Table 1-1. Advantages and Disadvantages of Elevation .. 1-10
Table 1-2. Advantages and Disadvantages of Relocation ... 1-12
Table 1-3. Advantages and Disadvantages of Dry Floodproofing ... 1-14
Table 1-4. Advantages and Disadvantages of Wet Floodproofing ... 1-16
Table 1-5. Advantages and Disadvantages of Floodways and Levees 1-18

Chapter 2
Table 2-1. Summary of Key NFIP Requirements for Zone A ... 2-12

Chapter 3
Table 3-1. Relative Costs of Elevating a Home .. 3-6
Table 3-2. Relative Costs of Relocation ... 3-7
Table 3-3. Relative Costs of Floodwalls and Leves ... 3-7
Table 3-4. Relative Costs of Wet Floodproofing ... 3-7
Table 3-5. Relative Costs and Risks of Floodproofing Methods .. 3-8
Table 3-6. Flood Risk .. 3-9

Chapter 4
Table 4-1. Floodway Data Summary Table for Big Branch (Stream 21) 4-6
Table 4-2. Summary of Coastal Analysis for the Atlantic Ocean Flooding Source 4-8
Table 4-3. Effective Equivalent Fluid Weight of Submerged Soil and Water 4-12
Table 4-4. Soil Type Definitions Based on USDA Unified Soil Classification System........... 4-13
Table 4-5. Drag Coefficients for Ratios of Width to Height (w/h) ... 4-17
Table 4-6. Depth Coefficient (C_D) by Flood Hazard Zone and Water Depth 4-23
Table 4-7. Values of Blockage Coefficient (C_B) ... 4-23
Table 4-8. Typical Allowable Bearing Capacity by Soil Type Shown in Table 4-4 4-41
CONTENTS

Table 4-9. Scour Factor for Flow Angle of Attack, K ... 4-46
Table 4-10. Typical Values of Coefficient of Permeability K for Soils .. 4-49

Chapter 5

Table 5-1. Approximate Bearing Capacity for Masonry Wall Types ... 5-16
Table 5-2. Presumptive Vertical Load-Bearing Capacities for Different Materials 5-16
Table 5-3. Weights of Construction Types .. 5-18

Chapter 5D

Table 5D-1. Essential Equipment/Appliances to Operate from Emergency Power Source 5D-43
Table 5D-2. Typical Electrical Appliance Loads .. 5D-45
Table 5D-3. Example of Maximum Generator Sizing Procedure .. 5D-46
Table 5D-4. Example Step Sequence Manual Start – Minimum Generator Sizing 5D-46
Table 5D-5. Minimum Panel Bus Sizes .. 5D-48
Table 5D-6. Emergency Panel Specification Criteria ... 5D-49

Chapter 5F

Table 5F-1. Soil Factors for Floodwall Design ... 5F-13
Table 5F-2. Assumed Soil Factors for Simplified Floodwall Design ... 5F-30
Table 5F-3. Typical Floodwall Dimensions for Clean, Dense Sand and Gravel Soil Types (GW, GP, SW, SP) .. 5F-30
Table 5F-4. Typical Floodwall Dimensions for Dirty Sand and Gravel of Restricted Permeability Soil Types (GM, GM-GP, SM, SM-SP) .. 5F-31
Table 5F-5. Moment (β) and Deflection (α) Coefficients .. 5F-35
Table 5F-6. Stone Protection Layer Guidance ... 5F-52

Chapter 6

Table 6-1. Summary of Flood Elevations and Discharges for the Truman House 6-4
Table 6-2. Summary of Dead Load Calculations for the Truman House 6-11
Table 6-3. Summary of Horizontal and Vertical Load Combinations for the Truman House 6-12
Table 6-4. Stillwater Elevations for the Chester House .. 6-26
Table 6-5. Summary of Horizontal and Vertical Load Combinations for the Chester House 6-32
Table 6-6. Summary of Damages for the Borges House .. 6-43
Table 6-7. Summary of Horizontal and Vertical Load Combinations for the Borges House Combination ... 6-49
Table 6-8. Summary of Damages for Valley House ... 6-60

List of Equations

Chapter 4

Equation 4-1: Flood Depth .. 4-9
Equation 4-2: Common Definition of Design Flood Elevation ... 4-9
Equation 4-3: Floodproofing Design Depth ... 4-10
Equation 4-4: Lateral Hydrostatic Forces .. 4-12
Equation 4-5: Submerged Soil and Water Forces ... 4-14
Equation 4-6: Buoyancy Forces .. 4-15
Equation 4-7: Conversion of Low Velocity Flow to Equivalent Head 4-17
Equation 4-8: Conversion of Equivalent Head to Equivalent Hydrostatic Force 4-17
Equation 4-9: High Velocity Hydrodynamic Pressure ... 4-20
Equation 4-10: Total Hydrodynamic Force .. 4-20
Equation 4-11: Normal Impact Loads .. 4-22
Equation 4-12: Runoff Quantity in an Enclosed Area .. 4-26
Equation 4-13: Runoff Quantity From Higher Ground into a Partially Enclosed Area 4-27
Equation 4-14: Seepage Flow Rate Through a Floodwall or Levee 4-28
Equation 4-15: Minimum Discharge for Pump Installation .. 4-28
Equation 4-16: Allowable Bearing Capacity ... 4-40
Equation 4-17: Maximum Potential Scour at Embankment Toe .. 4-44
Equation 4-18: Localized Scour Around Vertical Pile .. 4-45
CONTENTS

Equation 4-19: Localized Scour Around Vertical Enclosure ... 4-45
Equation 4-20: Volume of Seepage .. 4-49

Chapter 5

Equation 5-1: Determining Footing Size ... 5-14
Equation 5-2: Maximum Loading of Existing Footing ... 5-14
Equation 5-3: Bearing Capacity of Existing Strip Footing ... 5-14
Equation 5-4: Bearing Capacity of Existing Strip Footing ... 5-15
Equation 5-5: Calculation of Live Loads .. 5-20
Equation 5-6: Calculation of Tributary Area for Load-bearing Walls .. 5-20
Equation 5-7: Calculation of Tributary Area for Center Girder ... 5-21
Equation 5-8: Calculation of Tributary Area for Columns ... 5-21
Equation 5-9: Calculation of Wall/Column Loads .. 5-23
Equation 5-10: Calculation of Wall/Column Loads .. 5-23
Equation 5-11: Calculation of Total Load Carried by the Wall or Column to the Footing or Foundation ... 5-24

Chapter 5F

Equation 5F-1: Buoyancy on a Floodwall ... 5F-15
Equation 5F-2: Floodwall Weight ... 5F-16
Equation 5F-3: Footing Weight .. 5F-16
Equation 5F-4: Weight of Soil Over Floodwall Toe .. 5F-17
Equation 5F-5: Weight of Soil Over Floodwall Heel .. 5F-17
Equation 5F-6: Weight of Water Above Floodwall Heel ... 5F-18
Equation 5F-7: Total Gravity Forces Per Linear Foot of Wall .. 5F-18
Equation 5F-8: Net Vertical Force ... 5F-19
Equation 5F-9: Sliding Forces ... 5F-20
Equation 5F-10: Frictional Force ... 5F-21
Equation 5F-11: Cohesion Force .. 5F-21
Equation 5F-12: Saturated Soil Force Over the Toe............................. 5F-22
Equation 5F-13: Sum of Resisting Forces to Sliding 5F-22
Equation 5F-14: Factor of Safety Against Sliding 5F-23
Equation 5F-15: Sum of Overturning Moments 5F-24
Equation 5F-16: Sum of Resisting Moments 5F-25
Equation 5F-17: Factor of Safety Against Overturning 5F-26
Equation 5F-18: Eccentricity ... 5F-26
Equation 5F-19: Soil Pressure ... 5F-27
Equation 5F-20: Cross-Sectional Area of Reinforcing Steel 5F-28
Equation 5F-21: Plate Thickness Due to Bending Stresses 5F-34
Equation 5F-22: Plate Thickness Due to Deflection Stresses 5F-34
Equation 5F-23: Bending Moment ... 5F-36
Equation 5F-24: Bending Stress .. 5F-36
Equation 5F-25: Shear Force .. 5F-37
Equation 5F-26: Shear Stress .. 5F-37
Equation 5F-27: Plate Deflection for a One-Way Span 5F-38
Equation 5F-28: Allowable Deflection ... 5F-38

Chapter 5W
Equation 5W-1: Net Buoyancy Force on a Tank 5W-17
Equation 5W-2: Concrete Volume Required to Offset Buoyancy 5W-17