Protecting Manufactured Homes from Floods and Other Hazards

A Multi-Hazard Foundation and Installation Guide

FEMA P-85, Second Edition / November 2009
Protecting Manufactured Homes from Floods and Other Hazards

A Multi-Hazard Foundation and Installation Guide

FEMA P-85, Second Edition / November 2009
Preface

The Federal Emergency Management Agency (FEMA) first published *Manufactured Home Installation in Flood Hazard Areas* (FEMA 85) in 1985. Since then, manufactured homes have become better built, and natural hazards like flood, wind, and earthquake (seismic) events are better understood.

To benefit from the advances made in the last 24 years, FEMA 85 has been updated to reflect the requirements of the most current codes and standards and to provide a *best practices* approach in reducing damages from natural hazards. While the original version of FEMA 85 concentrated on flood and wind events, this version also addresses seismic hazards and recommends several multi-hazard resistant foundation designs. Designs are included for wood-framed foundations, conventional concrete and masonry pier foundations, and ground anchors. The ground anchor foundations are based on results from a series of first-of-its-kind saturated and dry soil anchor tests. The anchor tests were conducted with the support of the U.S. Department of Housing and Urban Development (HUD), the Manufactured Housing Institute (MHI), the Systems Building Research Alliance (SBRA, formerly the Manufactured Housing Research Alliance [MHRA]), and several ground anchor manufacturers. A detailed example showing step-by-step procedures on how to design a foundation for a manufactured home is also included.

This guidance is also valuable to designers of alternate foundations allowed by the HUD 24 CFR 3285 *Model Manufactured Home Installation Standards*, especially for homes located in Special Flood Hazard Areas (SFHAs) for which certain 24 CFR 3285 foundation designs are not applicable (24 CFR 3285.303, Table 1, Note 4, et al.).

The foundation designs discussed in Chapter 10 and shown in Appendix H of this guide are but one group of acceptable foundation solutions. They should not be considered mandatory or all inclusive. Alternative foundation systems, designed to resist equivalent loads and provide equivalent performance, should be considered equally acceptable.

Limitations of the Guide

This manual has been prepared to assist in protecting manufactured homes from floods and other hazards. Builders, installers, architects, and engineers using this guide assume responsibility for the resulting designs and the performance during a natural hazard event.

The foundation designs and analyses presented in the guide are based on load combinations contained in the American Society of Civil Engineers (ASCE 7-05) and the 2006 version of the International Residential Code® (IRC®).
Acknowledgments

The Federal Emergency Management Agency would like to acknowledge the significant contributions made by the following individuals in developing the Second Edition of this publication.

John Ingargiola
FEMA Building Science Branch

Edward Laatsch
FEMA Building Science Branch

Marcus Barnes
FEMA Building Science Branch

Lois Forster
FEMA Floodplain Management Branch

Brad Loar
FEMA Region IV

Mike Mahoney
FEMA Building Science Branch

Cliff Oliver
FEMA Acquisition Branch

John Plisich
FEMA Region IV

Mike Robinson
FEMA Floodplain Management Branch

Paul Rooney
FEMA Data and Dissemination Management Section

Juanita Thompson
FEMA Floodplain Management Branch

Phil Bergeldt
Florida Department of Highway Safety and Motor Vehicles, Mobile Home and Recreational Vehicle Construction

Mike Blanford
HUD Office of Policy Development and Research

Jason McJury
HUD Office of Manufactured Housing Programs

Rick Mendlen
HUD Office of Manufactured Housing Programs

Kelly Cobeen
Cobeen & Associates

Bill Coulbourne
Applied Technology Council

Deb Daly
Greenhorne & O’Mara

Bill Farish
Clayton Homes

Jeff Inks
Manufactured Housing Institute

Joseph Klein
Dewberry

Emmanuel Levy
Systems Building Research Alliance (formerly Manufactured Housing Research Alliance)

Julie Liptak
Greenhorne & O’Mara
ACKNOWLEDGMENTS

Thayer Long
Manufactured Housing Institute

Dave Low
DK Low and Associates

Bonnie Manley
American Iron and Steel Institute

Therese McAllister
National Institute of Standards and Technology

Ken Morris
Oklahoma Water Resources Board

Mark Nunn
Manufactured Housing Institute

George Porter
Manufactured Housing Resources

Jim Rossberg
American Society of Civil Engineers

Chuck Sanders
former Alabama State NFIP Coordinator

Adrienne Sheldon
URS

John Squerciati
Dewberry

Bill Turney
Florida Manufactured Housing Association

Frank Walter
Manufactured Housing Institute

Mark Weiss
Manufactured Housing Association for Regulatory Reform

Jimmy Yeung
Greenhorne & O’Mara

Naomi Chang Zajic
Greenhorne & O’Mara

Brian Zelenko
URS
Table of Contents

Preface .. i

Acknowledgments ... iii

1 Introduction ... 1-1

1.1 Purpose and Scope of the Guide .. 1-1

1.2 Background ... 1-3

1.2.1 Manufactured Homes in the United States .. 1-3

1.2.2 National Flood Insurance Program .. 1-5

1.2.3 Performance of Manufactured Homes in Wind and Flood Events 1-6

1.2.3.1 Performance of Pre-1994 Manufactured Homes .. 1-6

1.2.3.2 Performance of Post-1994 Manufactured Homes 1-7

1.2.3.3 Performance of Manufactured Homes During Hurricane Charley (2004) in Florida .. 1-8

2 Manufactured Homes .. 2-1

2.1 Manufactured Home Characteristics .. 2-1

2.1.1 Chassis Support System ... 2-1

2.1.2 Integrated Support System .. 2-2

2.1.3 Envelope Construction ... 2-2

2.1.4 Double Section .. 2-3

2.2 Types of Foundation Systems .. 2-3

2.2.1 Typical Foundation Systems .. 2-5

2.2.1.1 Typical Installation ... 2-5

2.2.1.2 Piers and Ground Anchors .. 2-6

2.2.1.3 Perimeter Wall Foundations ... 2-7

2.2.2 Proprietary Systems .. 2-7

2.3 Utilities and Mechanical Equipment ... 2-8

2.3.1 Utilities Placement .. 2-8
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.2</td>
<td>Mechanical Access</td>
<td>2-9</td>
</tr>
<tr>
<td>2.4</td>
<td>Attachments – Carports, Decks, Porches, and Awnings</td>
<td>2-10</td>
</tr>
<tr>
<td>3</td>
<td>Regulatory Requirements</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction to the NFIP</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Identifying and Mapping Flood Hazards</td>
<td>3-2</td>
</tr>
<tr>
<td>3.3</td>
<td>The NFIP’s Community Rating System (CRS)</td>
<td>3-8</td>
</tr>
<tr>
<td>3.4</td>
<td>NFIP Definitions Related to Manufactured Homes</td>
<td>3-8</td>
</tr>
<tr>
<td>3.5</td>
<td>General NFIP Floodplain Management Requirements for Manufactured Homes</td>
<td>3-9</td>
</tr>
<tr>
<td>3.6</td>
<td>NFIP Requirements for Manufactured Homes in Riverine and Inland Flood Zones</td>
<td>3-10</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Approximate A Zones</td>
<td>3-11</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Elevation in A, A1-30, AE, and AH Zones</td>
<td>3-13</td>
</tr>
<tr>
<td>3.6.3</td>
<td>3-Foot Pier Foundation</td>
<td>3-14</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Elevation in Zone AO</td>
<td>3-16</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Anchoring</td>
<td>3-17</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Flood Damage-Resistant Materials</td>
<td>3-18</td>
</tr>
<tr>
<td>3.6.7</td>
<td>Utilities and Mechanical Equipment</td>
<td>3-18</td>
</tr>
<tr>
<td>3.6.8</td>
<td>Enclosed Areas</td>
<td>3-19</td>
</tr>
<tr>
<td>3.6.9</td>
<td>Floodways</td>
<td>3-20</td>
</tr>
<tr>
<td>3.7</td>
<td>NFIP Requirements for Manufactured Homes in Coastal Flood Areas</td>
<td>3-22</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Elevation and Anchoring</td>
<td>3-23</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Fill</td>
<td>3-25</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Enclosed Areas and Breakaway Walls</td>
<td>3-25</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Setbacks</td>
<td>3-26</td>
</tr>
<tr>
<td>3.8</td>
<td>Existing Manufactured Homes in Flood Hazard Areas</td>
<td>3-27</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Relocation</td>
<td>3-27</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Evacuation</td>
<td>3-28</td>
</tr>
<tr>
<td>3.8.2.1</td>
<td>Manufactured Home Substantially Improved or Returned to a Different Site or Pad in an Existing Manufactured Home Park</td>
<td>3-29</td>
</tr>
<tr>
<td>3.8.2.2</td>
<td>Manufactured Home Placed in a New Manufactured Home Park or Subdivision</td>
<td>3-30</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

3.9 HUD Manufactured Home Construction and Safety Standards .. 3-30
3.10 HUD Model Manufactured Home Installation Standards .. 3-32
3.11 Model Building Code Requirements ... 3-34
 3.11.1 IRC 2006 .. 3-34
 3.11.2 NFPA 5000 .. 3-35
 3.11.3 NFPA 501 ... 3-36
 3.11.4 NFPA 225 ... 3-36

4 Site and Development Options .. 4-1
 4.1 Step 1: Compiling Site Information .. 4-2
 4.2 Step 2: Reviewing Basic Siting Information .. 4-4
 4.3 Step 3: Hazard Analysis and Risk Assessment ... 4-4
 4.3.1 Flooding .. 4-5
 4.3.1.1 Accessibility .. 4-6
 4.3.2 Other Hazards .. 4-8
 4.4 Step 4: Protecting Properties In and Near Hazard-Prone Areas 4-10
 4.4.1 Placement Options .. 4-10
 4.4.1.1 Flood-Prone Areas ... 4-10
 4.4.1.2 Areas Subject to Landslides .. 4-12
 4.4.2 Design and Construction Techniques ... 4-12
 4.4.2.1 Flood-Prone Areas ... 4-12
 4.4.2.2 Dam Failure Inundation Areas .. 4-12
 4.4.2.3 Areas Subject to Landslides .. 4-13
 4.4.2.4 Areas Subject to Seismic Events .. 4-13
 4.4.2.5 Areas Subject to Wind/Debris Hazards ... 4-13
 4.5 Step 5: Deciding on Property Development: Proceed or Reject 4-13

5 Natural Hazards – Design Considerations .. 5-1
 5.1 Flood Data .. 5-1
 5.2 Flood Characteristics .. 5-5
 5.2.1 Frequency, Duration, and Rate of Rise .. 5-5
TABLE OF CONTENTS

5.2.2 Flood Elevation and Depth .. 5-7
5.2.3 Hydrostatic (Buoyancy) Forces .. 5-8
5.2.4 Hydrodynamic Forces ... 5-9
5.2.5 Erosion and Scour ... 5-12
5.2.6 Debris Impact Forces ... 5-13
5.3 Wind .. 5-14
5.3.1 Wind Forces on Structures .. 5-15
5.3.2 Wind Forces in Combination with Flood Forces 5-15
5.4 Earthquakes .. 5-16
5.4.1 Design Philosophy ... 5-16
5.4.2 Design Standard .. 5-16
5.5 Evaluation of Multi-Hazards .. 5-17
5.5.1 Load Combinations (ASCE 7) ... 5-18
 5.5.1.1 Strength Design (Load and Resistance Factor Design) 5-18
 5.5.1.2 Allowable Stress Design (also known as Working Stress Design) 5-19
6 Soils .. 6-1
6.1 Bearing Capacity .. 6-1
6.2 Effects of Flood Duration and Frequency on Soil 6-2
6.3 Soil Liquefaction .. 6-2
6.4 Recommended Soil Testing and Criteria for Manufactured Home Installations 6-3
7 Ground Anchors .. 7-1
7.1 Types of Anchors and Installed Configurations 7-2
 7.1.1 Types of Anchors .. 7-2
 7.1.1.1 Helical Earth Anchors .. 7-2
 7.1.1.2 Concrete Anchors ... 7-2
 7.1.1.3 Cross Drive Anchors ... 7-2
 7.1.2 Anchor Construction and Capacity ... 7-3
 7.1.3 Anchor Selection .. 7-3
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.4</td>
<td>Anchor Installation</td>
<td>7-4</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Anchor Performance</td>
<td>7-5</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Anchors and Other Foundation Elements</td>
<td>7-8</td>
</tr>
<tr>
<td>7.2</td>
<td>FEMA Anchor Test Program</td>
<td>7-8</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Anchors in Saturated Soils</td>
<td>7-8</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Anchor Test Results</td>
<td>7-9</td>
</tr>
<tr>
<td>7.3</td>
<td>Recommended Ground Anchor Certification, Performance, and Design Values</td>
<td>7-11</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Recommended Ground Anchor Certification Performance</td>
<td>7-11</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Recommended Ground Anchor Design Values</td>
<td>7-11</td>
</tr>
<tr>
<td>7.4</td>
<td>Ground Anchors in Seismically Active Areas</td>
<td>7-13</td>
</tr>
<tr>
<td>8</td>
<td>Foundation Systems</td>
<td>8-1</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>8-1</td>
</tr>
<tr>
<td>8.2</td>
<td>Enclosed Foundations</td>
<td>8-2</td>
</tr>
<tr>
<td>8.3</td>
<td>Open Foundations and Breakaway Walls</td>
<td>8-3</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Pier Systems</td>
<td>8-3</td>
</tr>
<tr>
<td>8.3.1.1</td>
<td>Reinforced Pier Systems</td>
<td>8-4</td>
</tr>
<tr>
<td>8.3.1.2</td>
<td>Unreinforced Pier Systems</td>
<td>8-5</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Pile Foundations</td>
<td>8-7</td>
</tr>
<tr>
<td>8.4</td>
<td>Bracing</td>
<td>8-9</td>
</tr>
<tr>
<td>8.5</td>
<td>Footings</td>
<td>8-10</td>
</tr>
<tr>
<td>8.6</td>
<td>Foundation Materials Selection</td>
<td>8-11</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Wood Foundations</td>
<td>8-12</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Concrete Foundations</td>
<td>8-12</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Steel Foundations</td>
<td>8-13</td>
</tr>
<tr>
<td>8.6.4</td>
<td>Masonry Foundations</td>
<td>8-13</td>
</tr>
<tr>
<td>8.7</td>
<td>Foundation Selection and Flood Resistance</td>
<td>8-13</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Flooding Types</td>
<td>8-14</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Flood Characteristics</td>
<td>8-14</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Flood Hazard Zones</td>
<td>8-15</td>
</tr>
</tbody>
</table>
9 Recommended Design Process and Criteria for Manufactured Home Foundations in SFHAs

9.1 Performance Criteria

9.2 Design Criteria

9.3 Design Process

9.3.1 Step 1: Determine Design Criteria

9.3.2 Step 2: Select a Design Methodology and Assess Load Combinations and Failure Modes

9.3.3 Step 3: Select Foundation Type and Material

9.3.4 Step 4: Determine Forces at Connections and on Foundation Components

9.3.5 Step 5: Specify Connections and Framing Methods Along with Component Dimensions to Satisfy Load Conditions

9.3.6 Step 6: Note All Design Assumptions and Details on Drawings

10 Recommended Foundations

10.1 Design Criteria for Recommended Foundations

10.1.1 Reinforced Masonry Perimeter Foundation Walls

10.1.2 Wood Framed Perimeter Foundation Walls

10.1.3 Braced Masonry Pier Designs

10.1.4 Wood H-Frame Designs

10.1.5 Ground Anchor Designs

10.2 Summary of Recommended Foundations

10.3 Floodwater Velocity Design Considerations for Pier Foundations

10.4 Recommended Foundation Designs for Seismic Areas

10.4.1 Concrete Masonry Pier Foundation Designs
10.4.2 Masonry Wall Foundation Designs ... 10-7
10.4.3 Wood Framed Foundation Designs ... 10-8

10.5 Design Drawings ... 10-8

Appendices
Appendix A: References
Appendix B: Sources for Flood Information
Appendix C: Flood Velocity Determination
Appendix D: Definitions
Appendix E: Acronyms and Abbreviations
Appendix F: Example Calculations
Appendix G: Wind Zone Comparisons (HUD’s MHCSS and ASCE 7-05)
Appendix H: Pre-Engineered and Prescriptive Foundation Designs

Figures

Chapter 1
Figure 1-1. Basic wind zone map for manufactured housing..................................... 1-4
Figure 1-2. Inadequate turnbuckle anchor installed by the homeowner on this pre-1994 manufactured home, coupled with lack of elevation and an unreinforced foundation system, led to severe damage.. 1-7
Figure 1-3. The addition to this manufactured home was destroyed, causing considerable damage to the rest of the home... 1-7
Figure 1-4. Reinforced masonry pier foundation system under a manufactured home installed after 1994 that performed well... 1-8
Figure 1-5. Manufactured home in Cudjoe Key, Florida, built and installed after 1994, survived Hurricane Georges with only minor damage caused by the loss of an awning. ... 1-8

Chapter 2
Figure 2-1. Traditional chassis system.. 2-2
Figure 2-2. Integrated floor system consisting of steel-reinforced perimeter framing........ 2-2
Figure 2-3. Main construction features of a typical manufactured home. 2-4
Figure 2-4. One section of a double-section manufactured home being transported. 2-5

TABLE OF CONTENTS
TABLE OF CONTENTS

Chapter 3
- Figure 3-1. Sample DFIRM. .. 3-4
- Figure 3-2(a). Sample FIS Summary of Discharges table. 3-5
- Figure 3-2(b). Sample FIS Floodway Data. 3-5
- Figure 3-2(c). Sample FIS Flood Profile. 3-6
- Figure 3-3. Manufactured home with lowest floor elevated to the BFE. 3-14
- Figure 3-4. Manufactured home on reinforced pier foundation 36 inches high. 3-16
- Figure 3-5. DFIRM showing the floodway (cross-hatched area in Zone AE). 3-21
- Figure 3-6. Manufactured home with the bottom of the lowest horizontal structural member elevated to the BFE. 3-24
- Figure 3-7. Mean high tide line development restriction. 3-27
- Figure 3-8. Coastal development well-suited to the land: generous setbacks, in combination with deep lots and avoidance of dune areas, should afford protection from erosion and flooding for years to come. 3-27
- Figure 3-9. Certification plate for manufactured homes built after June 15, 1976. 3-31

Chapter 4
- Figure 4-1. Portions of an FIS and a FIRM. 4-7
- Figure 4-2. Floodplain/floodway schematic. 4-11

Chapter 5
- Figure 5-1. Example of a FIRM. .. 5-2
- Figure 5-2. FIS Summary of Discharges table. 5-3
- Figure 5-3. FIS Stream Flood Profile. .. 5-4
- Figure 5-4. FIS Floodway Data table. ... 5-4
- Figure 5-5. Buoyancy forces acting on a structure. 5-9
- Figure 5-6. Failure due to sliding. .. 5-10
- Figure 5-7. A manufactured home destroyed by the hydrodynamic forces of flooding. 5-10
- Figure 5-8. Failure of a modular home due to high winds. The home lifted off of its foundation (concrete slab) when the connections failed. 5-14
Figure 5-9. A manufactured home that failed during a high-wind event.............5-15

Chapter 7
Figure 7-1. Cross drive anchor ...7-2
Figure 7-2. Single and double helix ground anchors with strap connection and single helix anchor with a closed-eye connection ...7-3
Figure 7-3. Electric anchor drive machine ...7-4
Figure 7-4. Typical ground anchor installation ...7-5
Figure 7-5. In line ground anchor installation ..7-6
Figure 7-6. Typical response for an axially loaded anchor7-7
Figure 7-7. Typical response for a non-axially loaded anchor used with a stabilizer plate...7-8
Figure 7-8. Failed foundation system that used masonry piers7-9
Figure 7-9. Three graphics showing the anchor configurations described in Tables 7-2 and 7-3. ..7-11

Chapter 8
Figure 8-1. A manufactured home elevated on a perimeter foundation wall8-2
Figure 8-2. Reinforced masonry and concrete piers8-5
Figure 8-3. Bolted connection between frame and reinforced pier8-6
Figure 8-4. Manufactured home on a pile foundation8-7
Figure 8-5. Pile driving methods ..8-8
Figure 8-6. Diagonal bracing ..8-10
Figure 8-7. Knee bracing ...8-10

Chapter 9
Figure 9-1. A home that was partially submerged and displaced from its foundation by hydrostatic forces. ...9-5

Tables
Chapter 3
Table 3-1. Common SFHA Designations for Riverine or Inland Flood Zones3-6
Table 3-2. Common SFHA Designations for Coastal Flood Areas3-6

Chapter 4
Table 4-1. Information Checklist ..4-2
Table 4-2. Partial Listing of Local, Regional, and State Responsibilities4-4
Chapter 5
Table 5-1. Sources for Information About Past Flood Events .. 5-6
Table 5-2. Load Combination Nomenclature (ASCE 7) .. 5-17

Chapter 7
Table 7-1. Soil Classifications Using a Standard Torque Probe (STP) 7-4
Table 7-2. Dry Site Anchor Data .. 7-10
Table 7-3. Wet Site Anchor Data .. 7-10
Table 7-4. Recommended Design Loads – from FEMA Ground Anchor Testing Program ... 7-12
Table 7-5. Recommended Design Stiffness for Tested Anchors 7-12

Chapter 8
Table 8-1. Recommended Manufactured Home Foundation Selection for Lake/Pond Flooding (for very low velocity less than 1 fps) .. 8-16
Table 8-2. Recommended Manufactured Home Foundation Selection for Riverine Flood Zones (and maximum flood flow velocity) .. 8-17
Table 8-3. Recommended Manufactured Home Foundation Selection for Coastal Flood Zones .. 8-18

Chapter 9
Table 9-1. Design Standards and Publishers for Building Materials 9-6

Chapter 10
Table 10-1. Summary of Recommended Foundations .. 10-5
Table 10-2. Design Flood Flow Velocity for Concrete Masonry Unit Foundations 10-6
Table 10-3. Foundation Drawings .. 10-8