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Requirements for the Federal Emergency Management Agency (FEMA) Risk Mapping, 
Assessment, and Planning (Risk MAP) Program are specified separately by statute, regulation, 
or FEMA policy (primarily the Standards for Flood Risk Analysis and Mapping). This document 
provides guidance to support the requirements and recommends approaches for effective and 
efficient implementation. Alternate approaches that comply with all requirements are acceptable. 

For more information, please visit the FEMA Guidelines and Standards for Flood Risk Analysis 
and Mapping webpage (www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-
mapping). Copies of the Standards for Flood Risk Analysis and Mapping policy, related 
guidance, technical references, and other information about the guidelines and standards 
development process are all available here. You can also search directly by document title at 
www.fema.gov/library.  

http://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping
http://www.fema.gov/guidelines-and-standards-flood-risk-analysis-and-mapping
http://www.fema.gov/library
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1.0 Topic Overview 
This guidance document supports the standards related to statistical simulation methods. In 
studies where flood levels are determined by numerical modeling of the physical processes, this 
is done by simulating a large number of storms over a long period of record and then deriving 
flood statistics from that simulation. Recent FEMA Flood Map Project flood statistics have been 
derived through three types of simulation methods. These methods involve storm 
parameterization and random selection: the Joint Probability Method (JPM), the Empirical 
Simulation Technique (EST), and the Monte Carlo method, and are all described below, but the 
focus is on the JPM approach, which has been widely used in recent FEMA studies. The state-
of-the-practice for the JPM is given much more coverage in this document than the other 
methods as it is the recommended approach. However, all methods are acceptable. If other 
methods become available, they should be evaluated for their ability to provide accurate 
estimates of flood statistics and their use should be discussed with the FEMA Project Monitor.  

2.0 Joint Probability Method (JPM) 
In recent years, it has been recognized that of the presently available methods, JPM is preferred 
for the tropical storm (or hurricane) environment. The JPM approach has the conceptual 
advantage of considering all possible storms consistent with the local climatology, each 
weighted by its appropriate rate of occurrence. In brief, the most basic JPM approach adopts a 
parametric storm description involving hurricane descriptors such as central pressure, size, and 
translation speed. For each of the several parameters, probability distributions (not necessarily 
mutually independent) are developed through an analysis of the local climatology. These 
distributions are each discretized into a small number of representative values, and all possible 
parameter combinations are simulated using a hydrodynamic model constructed to faithfully 
represent the bathymetry, topography, and ground cover of the study site.  

Capturing the full range of physical mechanisms controlling flood levels in the JPM can impose 
a heavy computational burden on the analyses. The hurricane central pressure (storm intensity), 
pressure radius (storm size), forward speed, and heading are the 4 most basic hurricane 
parameters, which should be represented. Holland’s B, which affects the shape of the storm’s 
wind field, may also be important. Details on these and other storm parameters are covered in 
subsequent subsections. To cover a reasonable number of possible values for each of these 
storm parameters, one might need to use 3 to 5 values for each of the five parameters, but this 
gives 35 to 55 = 243 to 3125 storms, each of which must be represented at several landfall 
locations, resulting in thousands or tens of thousands of storms, Because the number of storms 
grows rapidly with the number of JPM parameters, it is desirable to limit this. Some studies, 
such as the FEMA Mississippi study (FEMA, 2008) have represented Holland’s B as part of the 
uncertainty model for this reason.  

The FEMA and USACE efforts (FEMA 2008; Resio 2007) independently developed new and 
highly efficient methods of implementing the JPM approach in such a way as to minimize the 
number of storms requiring simulation. It was found that the simulation effort could be reduced 
by an order of magnitude or more. Doing so yielded stillwater level results that differed from 
those of the full JPM set by less than the uncertainty in the hydrodynamic and meteorological 
models being used, making it a worthwhile trade-off. . The two approaches are both known as 
Optimal Sampling methods (OS), denoting their common intent of choosing storms for 
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simulation in such a way as to accurately cover the entire storm parameter space through 
optimal parameter selection with associated weighting and interpolation methods. The full JPM 
and JPM-OS methods are discussed below. 

2.1 JPM Overview  
A JPM storm surge flood study of a regional area, such is typically done for recent FEMA storm 
surge studies, requires two types of knowledge: first, the Mapping Partner requires a knowledge 
of the storm climatology of the study region in order to be able to characterize the storms 
governing the flood hazard; second, the analyst requires a knowledge of the effects produced 
by a particular storm throughout the study region. The former type of knowledge is obtained by 
a study of the storm history within the vicinity of the study site. The second type of knowledge is 
provided by use of a validated hydrodynamic model capable of simulating the details of flooding 
for any storm affecting the region.  

Knowledge of the local storm characteristics introduces two problems of practical importance, 
which will be seen to color much of the JPM-OS discussion to follow. Knowledge of the local 
storms is based on local storm data. However, data must usually be taken from outside the 
immediate study area in order to obtain a sample of reasonable size upon which statistics can 
be based; a particular county, for example, may not have been the site of hurricane landfall 
within the entire historical record. This raises the question of how far afield one can go in 
assembling a sample: clearly, storms from distant points may not be of the same character as 
local storms. So the unavoidable problem is to balance sample error on the one hand, versus 
population error on the other. Small samples are subject to large variability in a random 
historical record, while a larger sample from distant points may be corrupted with storms unlike 
those belonging to the local population.  

The role of the JPM is to create a computation scheme that considers all possible hypothetical 
storms to be constructed from a small number of storm parameters embedded in a storm model 
of winds and pressures. Current practice is to consider enough defining parameters as sufficient 
to specify an idealized storm. The following paragraph discusses some of the commonly 
relevant parameters. Figure 1 shows a characterization of a storm as it approaches the coast 
with parameters such as the direction of storm motion, θ, a track location parameter, such as 
by-passing distance, d, the speed of storm translation, Vf, a measure of intensity such as the 
central pressure deficit, ΔP, and a measure of the storm size such as the radius to maximum 
winds, Rmax, or the pressure scaling radius, Rp. Figure 1 does not show the Holland B parameter, 
which changes the shape of the wind and pressure fields and affects the maximum wind speed 
for a given pressure deficit. 
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Figure 1. Characterization of a storm as it approaches the coast with commonly relevant 
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Storm strength is characterized by the central pressure deficit, or the difference between the 
pressure at an assumed storm eye and the ambient pressure at the storm periphery. Storm size 
is measured by some length parameter which approximates the radial distance from the eye to 
the zone of maximum wind speed. The relative sharpness of the peak of the radial pressure 
profile may be controlled by a fitting factor (Holland’s B). The storm track, in its simplest straight-
track form, might be characterized by three kinematic parameters: the direction of storm motion, 
a shoreline crossing point (or bypass distance), and a speed of storm translation. Many other 
parameters could be added to this mix. For example, storm surge occurs in superposition with 
astronomic tide; consequently, tide amplitude and phase might be enlisted as additional 
parameters. Storm tracks are not straight, and speeds are not constant. Storms are not simple 
circular affairs accurately captured by idealized analytical forms of radial profiles. Therefore, any 
number of higher-order parameters could be invoked to permit one to capture the possible 
range of real events, but each additional parameter will increase the number of model storms 
needed. In this document, only the basic parameters are addressed. 

Working, then, with a relatively small set of parameters, the JPM procedure generally proceeds 
as follows (using numbers chosen for illustration only, not for guidance):  

 First, develop probability distributions for each storm parameter. The probability 
distributions are derived from a storm sample which, in its simplest form, can be thought 
of as a list of all storms and their parameters recorded during a selected period, within a 
region surrounding the study site. Familiar distribution forms are fit to the data as 
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appropriate. These empirical distributions need not be independent. For example, the 
distribution of storm size is commonly taken to be conditional upon the central pressure 
deficit, so that stronger storms tend to be associated with smaller radii. More 
significantly, all other parameters are always taken to be conditional upon track direction 
in the case of a site that is affected by both entering and exiting storms (such as the 
Florida peninsula).  

 Second, establish the overall rate of storm occurrence in both space and time. In a 
sense to be made more precise later, let this be the number of storms passing per unit 
length of space per unit time; storms per mile per year, for example (typically a small 
number).  

 Third, for a basic JPM (not-OS) study, subdivide each distribution into a small number of 
discrete pieces; one might imagine representing pressure, radius, forward speed, and 
track angle by a half dozen, or so, values of each.  

 Fourth, construct all possible hypothetical storms by simply taking all possible 
combinations of these elementary storm quantities. With, say, six values for each of the 
four parameters mentioned in Step 3, above, one constructs 1296 “storms.” These 
storms constitute the simulation set.  

 Fifth, simulate all of these storms, each on multiple tracks so as to allow every storm 
type to affect all points in the study area. That is, a particular storm may pass through 
any point along the coastline of the site, so that random track position must be 
accounted for. In the simplest case, this might be done by adopting a track spacing 
dependent upon the storm size, and replicating the tracks for a particular storm by 
parallel displacement. Usually, for small study sites, track position is distributed uniformly 
over space.  

 Sixth, for each such storm determine a corresponding rate of occurrence. This is just the 
product of (1) the overall rate of occurrence from Step 2, above; (2) the probability 
masses of each of the four parameter chunks from Step 3 (reflecting dependence as 
appropriate); and (3) the selected spacing between tracks adopted in Step 5. That is, 
each simulated track is taken to represent all possible tracks which could occur over a 
zone extending half way to its neighboring tracks on each side. The track spacing is 
chosen small enough to provide smooth coverage of the site; tracks spaced too far apart 
will produce a fluctuating surge estimate, underestimating the potential at points 
between the simulated surge peaks. On the other hand, tracks spaced too close 
together would necessitate an excessive number of simulations, imposing an 
unnecessary computational cost. It has been found that track spacing equal to the radius 
of maximum winds provides good results in the FEMA Mississippi study (FEMA 2008, 
Coastal Documentation and Main Engineering Report Section 3.3.10). Since storm radii 
may be only a few tens of miles while the site may extend for a hundred or more miles, 
each storm must be simulated on several tracks in order to cover the area (the number 
of tracks will be greater for the small storms in the simulation set than for large storms). 
In practice, ten or more tracks per storm may be required. This brings the number of 
storm simulations in the example to 10 ×1296, or nearly 13,000 model runs, each 
requiring a number of hours.  
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 Seventh, at each point of interest in the hydrodynamic grid – the target sites selected for 
the final statistical analysis and the mapping effort – record the highest surge computed 
for each storm, and tag it with the rate of occurrence of that storm.  

 Eighth, for each target site, construct a histogram of rate versus surge height, by 
accumulating the storm rates into the bins of surge height. Such bins might be 
constructed with widths of 0.1 ft., for example, so that a histogram with bins running from 
0 to 500 would handle surge elevations up to 50 feet. The accumulated rates in the bins 
constitute an estimate of the density distribution of surge height.  

 Ninth, for each histogram (one for each target site) sum the rates from the top bin down 
to the bottom bin. The result of this step is an estimate of the cumulative surge 
distribution. To find the 1% surge elevation, for example, one simply locates the bin 
having a summed rate nearest 0.01. For example, if this occurs at bin 232, the estimate 
of the 1% surge elevation would be 23.2 feet, following the assumptions made in this 
example.  

The sections to follow develop the JPM-OS approach in a more rigorous way than outlined here. 
The essential difference between the foregoing bullets and the OS method, to be described 
below, is in Steps 3 and 4, above. Rather than constructing the storm simulation set by simply 
subdividing each parameter distribution into a small number of chunks and simulating all 
possible combinations, the OS approach is to select the storms (combinations of parameters) 
and their weights in a much more intelligent way, so as to reduce the computational burden by 
about an order of magnitude. 

2.1.1 Summary of the JPM Approach 
The JPM method is now summarized in more formal terms in preparation for the subsequent 
discussions. As noted above, the approach relies on probabilistic descriptions of storm 
occurrence and storm characteristics to define a set of synthetic storms, together with a 
numerical method to calculate the coastal flood elevations that would be generated by those 
storms. The numerical method includes representations of the storm tracks, the evolution of 
storm characteristics (referenced to the characteristics at landfall), the wind and pressure 
model, the surge model, and so forth, represented symbolically as  

 𝜂(𝛥𝑃, 𝑅𝑝, 𝑉𝑓 , landfall location, 𝜃, … ) =  𝜂(𝑋)  (1) 

where η is the surge elevation at a point and the vector X represents all pertinent storm 
characteristics including the central pressure deficit, ΔP; the storm radius, Rp; the forward speed 
of storm motion, Vf; the storm track direction, θ; landfall location; and others as may be of 
significance such as Holland’s B parameter, astronomic tide factors, and so forth. The landfall 
location and track angle determine the proximity of the storm to a particular coastal site. The 
annual rate of occurrence of a flood elevation at the site in excess of η is defined in terms of the 
combined probabilities of the storm parameters and is given by the multiple integral:  

 𝑃[𝜂max(1 𝑦𝑟) > 𝜂 ] =  𝜆 ∫ … ∫ 𝑓𝑥𝑥
(𝑥)𝑃[𝜂(𝑥) > 𝜂]𝑑𝑥 (2) 
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where λ is the mean annual rate of all storms of interest for that site, 𝑓𝑥(𝑥) is the joint probability 
density function of the storm characteristics of these storms, and 𝑃[𝜂(𝑥) > 𝜂]is the conditional 
probability that a storm with characteristics 𝑥 will generate a flood elevation in excess of η. This 
integral over all possible storms determines the fraction of storms that produce flood elevations 
in excess of the value of interest, using the total probability theorem (Benjamin and Cornell, 
1970). The entire expression, including λ, is actually a rate with dimensions of events per unit 
time, but is commonly thought of as an annual probability to a good approximation.  

Evaluation of the JPM integral (Equation 2) by use of conventional brute-force numerical-
integration approaches is problematic since each evaluation of the integrand involves the costly 
evaluation of 𝜂(𝑥) for one set of parameters, 𝑥, (that is, the simulation of one storm), and since 
the evaluation of the 5-dimensional (or higher) integral in the equation requires that the 
integrand be evaluated a very large number of times.  

2.1.2 JPM Parameter Selection 
As suggested above, the JPM approach adopts a parameterized representation of tropical 
storms, which at a minimum usually involves:  

 a measure of intensity: the central pressure deficit, ΔP (usually given in millibars). 

 a measure of storm size: the radius to maximum winds, Rmax, or the pressure scaling 
radius, Rp (usually given in kilometers).  

 the speed of storm translation, Vf  

 the direction of storm motion, θ (direction of motion typically measured counterclockwise 
from north)  

 a track location parameter, such as the shoreline crossing point Xc or a by-passing 
distance  

Storm parameters should be defined with respect to a specified reference condition; in 
particular, observed values at landfall (with respect to a nominal shoreline for the study site) 
should be used as the basis for parameter descriptions.  

The number of parameters to be accounted for in a JPM analysis can be increased indefinitely, 
as greater and greater complexity is added to the description of a storm and additional factors 
such as rainfall intensity and spatial pattern are included in the list of flood mechanisms. As will 
be shown in a subsequent section, however, one quickly reaches a limit of what can be treated 
by simulation of combinations of all parameters owing to the curse of dimensionality. If only five 
parameters are to be considered, and if each of these is represented by only six values over its 
significant range, then there would be a total of 65 combinations, or 7,776 in all, each 
representing a synthetic storm. Modern hydrodynamic models for waves and surge might 
require a number of hours to simulate a single storm even using a high performance computing 
cluster, so that efforts of this sort are not feasible. The entire goal of the OS variants of the JPM 
approach is to provide a sufficiently accurate representation of the storm climatology, while 
reducing the size of the simulation storm set to fall below a feasible limit.  
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The Mapping Partner must include all important parameters for a JPM study at a site, typically 
including at least the first five enumerated in the list above. Storm surge and storm likelihood 
are both known to vary appreciably with respect to each of these parameters, and all major 
JPM-based studies of hurricane surge since the original NOAA studies of the 1970s (Ho and 
Myers 1975, Myers 1975) have utilized at least these first five parameters, such that using fewer 
terms is unlikely anywhere in the United States. But the Mapping Partner should recognize that 
little can be gained by adding parameters if the available data is not sufficient to develop the 
required probability distributions. Similarly, it would be unrealistic to simulate an excessive 
number of parameter combinations to represent a joint probability distribution that is not known 
well because of data limitations; although resolution/precision might be gained, accuracy would 
not.  

Note that although the distributions of storm parameters will usually be defined in terms of 
shoreline crossing values (or an equivalent for bypassing storms), the storm simulations may 
treat the parameters as variable during the course of a simulation. In particular, pressure may 
be assumed to vary in a prescribed manner both before and after landfall (filling), as may 
Holland’s B parameter if it is used as a basic JPM parameter. Similarly, while track angle 
statistics are based on values at landfall, the simulated tracks may be curved in a defined 
manner to better represent pre-landfall behavior (this may be of importance for representation of 
wind wave generation, pertinent to the estimation of wave radiation stresses to be included in 
the surge simulations). 

2.1.3 Storm Data Selection 
These guidelines are focused on tropical storms, for which the quality of the historical record 
has varied greatly over time. Furthermore, not all storm parameters are known equally well. For 
example, kinematic parameters (based on storm location, from which direction and forward 
speed can be derived) may be known reasonably well for older storms, although the 
corresponding central pressures, radii, and B factors, may be absent or known only very 
approximately. This variability of the quality of the record and disparity in data availability require 
the Mapping Partner to begin a study with a careful review of data sources.  

Following the precedent of the post-Katrina FEMA (FEMA, 2008) and US Army Corps of 
Engineers (USACE) studies (Resio 2007), it is typically recommended that flood studies for 
tropical storms be based primarily on data recorded since roughly 1940. This corresponds to the 
modern era of aircraft reconnaissance, and is thought to be much more reliable than older data, 
especially for both pressure and radius. Although data regarding the kinematic parameters of 
older storms may be useful, particularly storm tracks and counts, the Mapping Partner should 
review them critically before including them in the development of parameter statistics. It is 
noted, too, that storm counts may be unreliable and underestimated for earlier decades, except 
for nearshore tracks; some distant storms may have been missed, leading to a misestimate of 
storm density if counts are made over large areas. However, in cases where older historical 
records show large deviations from more recent data, such as a significant increase in storm 
rate, an extension of the period of record may be needed.  

Basic data for tracks and pressures (but not including radius or B) can be found in the HURDAT 
data files maintained by the National Oceanic and Atmospheric Administration’s (NOAA’s) 
National Weather Service (NWS) Hurricane Research Center (HRC). Note that while track data 
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should be adequate for JPM studies, pressure data should be checked against other sources, 
including the more detailed storm summaries compiled by NOAA. Pressures inferred from the 
National Weather Service’s (NWS’s) hurricane database (HURDAT) windspeeds (by back-
computation from a windspeed vs. pressure formula) should not be relied upon. The HURDAT 
track data consists of latitude and longitude of the hurricane center at six hour intervals. From 
these, the necessary data for forward speed and track direction can be determined. HURDAT is 
the official database of hurricane data for the North Atlantic and Gulf of Mexico, and can be 
obtained (along with descriptive information defining the database structure) from the HRC 
webpage at www.nhc.noaa.gov.  

Other data sources include a special storm compilation produced for FEMA by NWS (NWS-38), 
and used as the source of JPM information in earlier FEMA studies. Although not up to date, 
this document includes valuable information regarding storm radii and pressures which is 
lacking in the HURDAT database. The Mapping Partner should not, however, adopt the NWS-
38 statistical summaries for a new study, but should follow the procedures outlined in these new 
guidelines.  

Other data sources must be searched by the Mapping Partner to supplement HURDAT and 
NWS-38. Data available from the many NOAA divisions including HRC, NHC, the Hurricane 
Research Division (HRD), and the National Climatic Data Center (NCDC) should be 
interrogated. For modern tropical storms, the National Hurricane Center (NHC) publishes 
detailed storm summary papers in their Tropical Cyclone Report series, as well as numerous 
storm analyses available at http://www.nhc.noaa.gov.  

Additionally, private sources of data exist, which may be sources of data or data analyses not 
otherwise readily available, and should be considered by Mapping Partners. In particular, 
detailed parameter evaluations and determination of “best winds” and “best tracks” may have 
been made by such private organizations for storms of interest (note, however, that these 
parameter selections may be conditional upon other assumptions made regarding wind models, 
and so should be interpreted carefully for application in a study using different methods). 

2.1.4 Approaches for Definition of the Sample and Statistical Analysis 
Two approaches have been used in recent studies for definition of the hurricane sample and the 
statistical analysis of the hurricane data.  

The approach here called the “capture zone” approach is perhaps the more conventional of the 
two approaches. In this approach, all hurricanes that make landfall along a particular segment of 
the coastline are counted, and are given equal weight in the calculations. Alternatively, the 
capture zone might be chosen to consist of a spatial region, such as a circular window 
surrounding the study site. The definition of the capture zone is extremely important, and must 
be chosen with two competing factors in mind. First, the zone must be large enough to capture 
a significant number of storms, adequate for estimation of parameter statistics. Second, the 
zone must be small enough to ensure parameter homogeneity throughout the zone. These 
conflicting requirements represent the problem of sample error, on the one hand, and population 
error on the other.  

http://www.nhc.noaa.gov/
http://www.nhc.noaa.gov/index.shtml
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The second approach is here called the Chouinard Kernel Approach (or, more briefly, the 
Chouinard approach). It was introduced by Chouinard and his co-workers (Chouinard, et al, 
1997a, 1997b) for use in mapping the hazard from hurricane-induced waves and winds for the 
offshore-oil industry, but is also appropriate for hurricane surge studies. In this approach, each 
hurricane is given a weight that decreases as the distance from the hurricane to the point under 
consideration increases. Thus, data from hurricanes that passed near the point under 
consideration are given more weight than those that passed far from the point. This technique 
minimizes population error, by emphasizing events that occurred near the site, while also 
alleviating sample error by allowing additional data to be taken from a distance. The function 
used to calculate this weight (the kernel function) is typically a Gaussian probability density 
function, but other shapes may be used if there is reason for them. When using a Gaussian 
kernel, the scaling parameter that controls the width of the kernel (the kernel width) is then 
numerically identical to the standard deviation.  

One of the most important steps in the Chouinard approach is the determination of the optimal 
kernel size, which provides the optimal compromise between high geographical resolution and 
statistical precision (i.e., low statistical uncertainty). This is effectively the same as the problem 
of choosing the size of the capture zone in the alternate approach mentioned earlier. Chouinard 
and his co-workers as well as the post-Katrina FEMA study of Mississippi, used a statistical 
technique known as cross-validation (to be described below) to determine the optimal kernel 
size, but other techniques may also be used.  

The two main advantages of the Chouinard approach are that (1) it includes an objective 
procedure to achieve an optimal tradeoff between spatial resolution and statistical precision, 
and that (2) the weight given to a specific storm -- and, therefore, the calculated statistics -- 
varies gradually as the site of interest is moved or as the kernel width is varied. The second 
advantage is particularly important in wave-hazard mapping, but it also avoids the problems that 
may arise if an important historical hurricane happens to occur near the boundary of the capture 
zone and so may or may not be included in the sample depending upon a small difference in 
capture zone size. It is best if the adopted method is not sensitive to fine considerations such as 
this. The main disadvantage of the Chouinard approach is that it is more complex than the 
capture zone approach.  

There are also two approaches for counting hurricanes for the purpose of rate calculations and 
for defining the distribution of pressure (and the distributions of other storm characteristics that 
show a significant geographical variation through the study region). One approach (the point-
based approach) considers the minimum distance to the location of interest (which will typically 
be the mid-point of the coastal segment of interest) and computes the distribution of the 
corresponding parameters; this is the approach used by Chouinard et al. (1997a, 1997b). For 
applications on open water, one determines the time of the track’s closest approach to the 
location of interest and uses the values of the parameters which existed at that time. In 
application to surge calculations, where interest is focused on the hurricane’s characteristics at 
landfall, the track is considered to be linear with the heading it had at landfall. This linearized 
track is then used to determine the minimum distance to the site of interest, and the storm 
characteristics at landfall are assumed everywhere along the linearized track. In the point-based 
approach, one may calculate either the omni-directional rate (storms/km/yr) or the directional 
rate (storms/km/directional-degree/yr). The directional rate is required for surge calculations, 
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and can be obtained directly from the omnidirectional rate by combination with the observed 
distribution of angles.  

The second approach (line based) measures distances along the coastline of the region of 
interest. This approach appears simple, but is dependent on the geometry of the coastline. Even 
if the coastline is simple enough to be idealized as straight, the directional rate is a function of 
the offshore directional rate and of the coastline’s orientation (the proportionality factor is the 
cosine of the angle between the track heading and the landward perpendicular to the coastline), 
while the directional rate obtained using the point-based approach is identical to the offshore 
directional rate (ignoring any possible effects of the land mass on the geometry of the pre-
landfall tracks). In the second approach, then, the distribution of heading must be calculated as 
an additional step.  

The most common methodology is to use the Chouinard approach in conjunction with point-
based counting of hurricanes and critical parameters such as the central pressure, and the 
capture zone approach in conjunction with line-based counting for parameters. In principle, one 
could use the Chouinard approach with line-based counting and one could use a rectangular 
kernel of arbitrarily selected size (equivalent to the capture zone approach) with point-based 
counting. The Chouinard approach is recommended for determination of storm rates and central 
pressures due to the importance of these parameters and their tendency to vary spatially, 
though the increased level of effort should be weighed against the advantages of the method. 
Any new methodologies should be discussed with the Project Monitor.  

2.1.5 Geographical Variation of Storm Statistics 
In principle, one would expect that the statistical characteristics of hurricanes in the study region 
would vary as a function of location to some degree. In the Gulf of Mexico, these variations may 
be due to variations in location relative to the Yucatan and Florida straits and to the loop current. 
Along the Atlantic coast, these variations may be due to variations in latitude and associated 
variations in water temperature, prevailing winds, etc.  

In many situations, however, the available hurricane data may not be sufficient for resolving 
these variations, even when there are physical arguments that suggest their existence. In these 
situations, it is more realistic and sufficient to consider only one distribution of storm parameters 
over the entire study region.  

In the Chouinard approach, the kernel size parameter provides direct information regarding the 
smallest scale of geographical variation that can be resolved with the available data, with an 
optimal tradeoff between geographical resolution and statistical precision. In the capture zone 
approach, one may need to perform additional calculations to determine if there is significant 
geographical variation in parameters. For instance, one may divide the capture zone and use 
standard statistical tests to determine whether the capture zone can be treated as having a 
unique distribution for each parameter. One may also test whether the sample distribution of 
distance to a suitably defined reference point is consistent with the assumption of a uniform 
spatial distribution. Care should be taken to ensure spatial variations in parameters that may 
affect values at study boundaries are accounted for so that results will reasonably match those 
of neighboring studies.  
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In some situations, it may be necessary to take data from a broader region, i.e., a region 
broader than the study region, the capture zone, or the kernel size. For instance, the conditional 
distribution of Rmax given ΔP is often determined using data from a much larger region, such as 
the Gulf of Mexico or the North Atlantic, in order to obtain a sufficient sample; see FEMA, 2008, 
and Vickery and Wadhera, 2008, for illustrations of this. Still another example of use of an 
expanded zone to better define a parameter is the model for Holland’s B conditional upon Rmax 
and latitude (Vickery and Wadhera, 2008). In these situations, it is more important that the 
Mapping Partner obtain a reasonable estimate of the nature of the conditional dependence of 
the parameter on other hurricane characteristics, than on location. 

2.1.6 Storm Rate (Space and Time) and the Probability Distributions of Heading and 
Distance 

In the characterization of hurricanes for surge analysis, it is convenient to define the minimum 
intensity of interest (in terms of a minimum pressure deficit and then develop statistical models 
for the frequency and characteristics of the storms exceeding that intensity. The choice of this 
cutoff will influence the range of relative validity of the computed flood statistics. For example, if 
only storms with low probably of occurrence (such as those affecting the 1% and 0.2% annual 
chance events) are of interest, it may be possible to truncate the storm sample so as to include 
only stronger storms. By not considering weaker storms, the estimates of higher probability 
events (such as the 10% annual chance event) may be unrealistic. In order to capture more 
frequent events, weaker storms would need to be included in the tropical storm range. Choice in 
target frequencies and frequency cutoffs should be discussed with the FEMA Project Monitor.  

This section considers the overall rate of storms, or storm density, in both space and time; 
subsequent sections then consider the several hurricane characteristics.  

It is generally assumed that hurricane occurrences in time are a Poisson process (Parzen, 
1962), although data indicates that this is not strictly true. More importantly for practical 
applications, hurricanes that generate surge in excess of a certain high value of interest (say, 10 
feet) at a particular location are assumed to be a Poisson process. The only parameter in this 
Poisson model is the rate of storms, which has units of storms per unit distance per unit time 
(e.g., storms/km/year). If heading is considered as part of the rate calculations, then the rate has 
units of storms per unit distance per unit angle per unit time (e.g., storms/km/direction-
degree/year). 

As in many situations involving the study of rare events, the Poisson assumption is actually not 
necessary for the calculation of rare surge exceedances at a given location, and the results 
obtained using the Poisson assumption are generally not invalidated by deviations of hurricanes 
from the assumption of independence of storm rate from other parameters implied by the 
Poisson assumption.  

In the Chouinard approach, the rate at the point of interest is proportional to a weighted count of 
the observed data in the storm catalog, with weights that depend on the distance from the storm 
to the site and its deviation from the direction of interest. Storms that pass farther from the site 
of interest or that have directions different from the direction of interest receive lower weight. 
The resulting expressions for the directional and omni-directional rates, respectively, are as 
follows:  
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where the summation extends over all storms in the catalog, T is the duration of the catalog (in 
years), and the kernel weight functions are taken as normal-distribution shapes, as follows:  

𝑤(𝑑𝑖) =  
1

√2𝜋ℎ𝑑

𝑒𝑥𝑝 [−
1

2
(

𝑑𝑖

ℎ𝑑
)

2

] 

(4) 

𝑤(𝜃𝑖 − 𝜃) =
1

√2𝜋ℎ𝜃

𝑒𝑥𝑝 [−
1

2
(

𝜃𝑖 − 𝜃

ℎ𝜃
)

2

]  

and 

Chouinard and Liu (1997a) introduced a powerful technique to determine the optimal kernel 
sizes for the calculation of rates, namely least-squares cross-validation. They also consider a 
related technique, maximum cross-validated likelihood, but the former is preferred because it is 
more robust. Maximum cross-validated likelihood was used to determine the optimum kernel 
size for the post-Katrina study (FEMA, 2008), where it was used to determine the optimal 
kernel-size for the distribution of ΔP. 

To calculate the optimal kernel width hd for the omni-directional rate, the data are partitioned at 
random into two samples (the estimation sample and the validation sample) using a 
randomization scheme in which each storm is assigned to the estimation sample with probability 
p and to the validation sample with probability 1-p. The estimation sample is used to estimate 
the predicted rate using Equations 3 and 4. The validation sample is then used to calculate the 
observed rate. The two rates are then adjusted for the size of the two samples (i.e., for the 
effect of p), and the difference between the two rates is squared. The random partitioning of the 
sample is repeated many times (say, 500 to 1000 times) and the squared difference is summed 
over all these random partitions. The resulting quantity is the cross-validated square error 
(CVSE); the optimal choice of kernel width hd is the one that yields the lowest CVSE. For the 
post-Katrina Mississippi study, the observed rate was calculated by counting the number of 
storms in the validation sample falling within 40 km of the site and then dividing that count by 80 
km and by the number of years in the storm catalog. The probability p was set to 0.9 to avoid a 
large change to the size of the estimation sample. The resulting optimal kernel size is not 
sensitive to these choices, as long as they are within reasonable bounds (Chouinard and Liu, 
1997a). Similarly, the results for directional rates are not sensitive to the choice of angular 
interval.  
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In the Capture Zone approach, hurricanes are counted if they cross the coastline (or an 
idealized representation of the coastline) within the capture zone. The resulting count is divided 
by the size of the hurricane catalog and by the length of coastline, obtaining a rate of hurricanes 
per unit length per unit time. The distribution of heading is then estimated based on the 
empirical distribution of headings observed at landfall. As indicated earlier, this distribution of 
headings depends on the geometry of the coastline and cannot be compared directly with the 
distribution obtained using point-based counting. If it is suspected that the rate is not constant 
within the capture zone, the distribution of distance to some suitable reference point is 
computed based on the associated empirical distribution.  

If the storm rate is truly constant within the study region, then the distance to any conveniently 
defined reference point (e.g., the mid-point of the region of interest) is drawn from a uniform 
distribution. This is the most common situation in practice, and will usually be assumed by the 
Mapping Partner, but it is not always the case. If point-based counting indicates significant 
variations in rate within the study region, or if the line-based counting indicates significantly 
different rates for sub-divisions of the capture zone or a distribution of distance that deviates 
from uniform, then this deviation from uniformly distributed distances must be taken into 
account. The JPM-OS techniques described in the next section may be easily adapted to 
include this non-uniform distribution of distance.  

2.1.7 Storm Intensity 
In probabilistic surge studies, the intensity of the storm is characterized by the pressure deficit 
ΔP, which is defined as the difference between the far-field atmospheric pressure and the 
central pressure of the storm. The far-field pressure is commonly taken as a fixed value (usually 
1013 mb) if better data are not available. Consequently, pressure deficits can be estimated from 
central pressures reported in HURDAT and elsewhere, by simply subtracting from 1013 mb if 
data on far-field pressure is not available, though it has become common practice to use the 
true far-field pressure whenever possible.  

The lower-bound ΔP of the data used in this step should be consistent with the minimum ΔP 
used for the definition of the rate. That is, the storm rate must correspond to the rate of storms 
with intensities exceeding the cutoff ΔP. In addition, if the statistical distribution shape used 
includes a lower-bound parameter, this parameter should be selected in a consistent manner.  

The distribution shape used for ΔP should be consistent with the observed empirical distribution. 
The most common distribution shapes in recent studies are the Type-I Extreme-Value 
distribution (also known as Fisher-Tippett or Gumbel) and the three-parameter (or truncated) 
Weibull distribution (e.g., Resio, 2007, FEMA, 2008, Vickery and Blanton, 2008). It is 
recommended that one of these distributions be adopted by the Mapping Partner, in accordance 
with the apparent quality of fit with the study data. Nevertheless, the Mapping Partner may 
choose another distribution type if the data shows that an improvement would be achieved.  

The complementary cumulative distribution function (CCDF) of the Type-I distribution is given by 
the equation  

 𝑃[Δ𝑃 > 𝑥] = 1 − 𝑒𝑥𝑝[−𝑒−α(x−U)] (5) 
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where U is the mode of the distribution and 1/α is a parameter that measures the scale of the 
distribution; both of these have units of pressure. Note that the Type-I distribution is defined for 
all real values of ΔP (not just for values above the lower-bound used for the calculation of rate. 
Strictly speaking, the CCDF should be normalized so that P [ΔP > ΔP0]=1, where ΔP0 is the 
lower-bound value of ΔP used in the calculation of storm rate.  

Similarly, the CCDF of the three-parameter Weibull distribution is given by 

 𝑃[Δ𝑃 > 𝑥] = 𝑒𝑥𝑝[−(𝑥 𝑢⁄ )𝑘+ (Δ𝑃0 𝑢)⁄ 𝑘
]   𝑥 > Δ𝑃0  (6) 

where u is a scale parameter, k is a shape parameter, and ΔP0 is the lower-bound value of ΔP 
introduced above; u has units of pressure, while k is dimensionless.  

For annual exceedance frequencies of 0.2% or greater (that is, more frequent), the dominant 
storms tend not to fall too far in the upper tails of the distributions; instead, rarity is more the 
result of combined moderate parameter values and randomly close proximity, rather than of an 
extreme value for any one parameter (example: despite its severity, Katrina was a Category 3 
storm at landfall). Therefore, the choice of distribution shape used for ΔP is likely to have only a 
moderate effect on the results, whatever form is chosen.  

In the Chouinard approach for estimation of the distribution of ΔP, the distribution parameters u 
and k are estimated from all the storm data using the method of maximum weighted likelihood, 
where the weights depend on the distance between the track of storm i and the point under 
consideration, and possibly subject to the monotonicity constraint described earlier. Specifically, 
the weighted log-likelihood is of the form 

 ln(𝑊𝐿) =  ∑ 𝑤(𝑑𝑖) ln[𝑓ΔP(Δp
𝑖
; 𝑢, 𝑘)]𝑖  (7) 

where di is the distance between the point under consideration and the linearized track of storm 
i (associated with pressure deficit Δpi at landfall), w(dl) is a Gaussian distance-dependent weight 
(which is given by Equation (4) introduced earlier, although the kernel size hd need not 
necessarily the same as for the calculation of rate), and fΔP (Δp;u,k) is the Weibull probability 
density function (obtained by differentiating the cumulative function shown above); the 
summation extends over all storms with ΔP exceeding the lower cutoff of the data set.  

Following Chouinard et al. (1997a, 1997b), a technique known as maximum cross-validated 
likelihood is utilized to determine the optimal kernel size hd for the estimation of the Weibull 
parameters. As was done for the calculation of the cross-validated squared error for rates, the 
data are partitioned into two samples (the estimation sample and the validation sample) using a 
randomization scheme. The estimation sample is used to estimate the Weibull parameters u 
and k by determining the values of u and k that maximize the log-likelihood function in Equation 
6, possibly subject to a monotonicity constraint. The validation sample is then used to calculate 
the observed log-likelihood. These observed log-likelihoods are then summed over all random 
partitions of the sample. The resulting quantity is the cross-validated likelihood (CVL; the 
optimal choice of kernel width hd is the one that yields the highest CVL).  

This analysis may yield an optimal distance-kernel size that is smaller than the optimal kernel 
size obtained for the directional rates, but the slope in the upper portion of the CVL vs. kernel 
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size has been found to be nearly flat. This result indicates that the cross validation provides only 
a weak upper bound for the kernel size. In the Mississippi study, the optimal kernel size that 
was obtained for the directional rates was used for all calculations involving kernels, and it is 
recommended that the Mapping Partner make a similar assumption unless there is an apparent 
need for a more detailed analysis for other parameters. Such more detailed analyses are 
sometimes needed for parameters that exhibit their own sensitivities, such as storm heading 
and rate. Several recent FEMA studies along the Florida Peninsula, for instance, relied on 
several different kernel sizes (FEMA 2013, FEMA 2014b).  

Once the optimal kernel size is selected, the best-estimate values of the Weibull parameters u 
and k are obtained by maximizing Equation 6, possibly subject to a monotonicity constraint.  

In the line-based approach, a suitable distribution shape is chosen to fit the empirical distribution 
of ΔP, using standard statistical methods (e.g., method of moments, maximum likelihood, linear 
regression on the transformed data). It is also important to investigate geographical variation in 
the distribution parameters, although the data limitations often yield no statistically significant 
differences.  

In both the Chouinard and Capture Zone approaches, the estimated parameters have a high 
statistical uncertainty as a result of limitations in the data. In these situations, the 
exchangeability axiom of modern decision theory suggests that one should use the mean or 
“predictive” CCDF of ΔP (i.e., the expected value of the CCDF, averaged over the joint 
distribution of the distribution parameters), not the best-estimate value obtained above. The 
reader is referred to McGuire et al. (2005) for an elaboration of this issue in the context of 
earthquakes. Experience with the three-parameter Weibull distribution indicates that there is a 
significant difference between the mean and best-estimate CCDF because the CCDF is a highly 
nonlinear function of the distribution parameters, and that the mean CCDF is significantly higher 
(e.g., Risk Engineering, 2008). In the post-Katrina Mississippi study (FEMA, 2008), a re-
sampling technique known as bootstrapping (Efron and Tibshirani, 1993) was employed for the 
calculation of the mean or predictive CCDF. This approach is very general and is easy to 
implement. Other approaches, such as standard methods for the propagation of uncertainty 
may also be employed. 

2.1.8 Storm Track: Forward Speed of Translation 
The forward speed of the storm affects the wind field, making it more asymmetrical. It has an 
additional effect on surge (beyond the effect on wind speeds), in that it helps determine duration 
of high water (and so, perhaps, overtopping and filling volumes). There are physical arguments 
that suggest a positive correlation between forward speed and ∆P, but the available data 
generally show a weak or non-existent correlation. Storms making landfall in the Atlantic 
seaboard tend to have somewhat higher forward speed than those in the Gulf of Mexico as a 
result of differences in the steering winds. 

The associated probability distributions can be taken as normal or log-normal by the Mapping 
Partner, based on examination of the associated empirical distribution. Given the associated 
coefficients of variation and the moderate importance of forward speed in the calculations, the 
practical effect of choosing a different distribution is anticipated to be small. 
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2.1.9 Storm Size 
The radial dimension of the tropical storm wind field has a large effect on surge, as 
demonstrated by Irish et al. (2008). Recent studies have utilized a single parameter to 
characterize this size, although there is a trend toward allowing this parameter to vary as a 
function of quadrant.  

Two parameters are commonly used to represent storm size, namely the radius of maximum 
winds, Rmax, and the characteristic radius Rp of the exponential pressure profile, where the 
pressure profile is written as 

 𝑝(𝑟) = 𝑃0 +  ∆𝑃 exp [− (
𝑅𝑝

𝑟
)

𝐵
]  (8) 

in which P0 is the central pressure and B is Holland’s shape parameter (Holland, 1980), to be 
discussed below; B is often taken as unity, although it can have a notable influence on winds 
and surge. There is only a slight difference between these two radius measures for typical 
cases, and some studies have ignored the difference, or failed to recognize it. The difference 
may be large for the profiles of real hurricanes, however, as these may have quite irregular 
shapes. Consequently, the Mapping Partner should take care to distinguish between them in 
collection and analysis of the study data.  

Most studies find a weak negative correlation between Rmax (or Rp) and ∆P. In the post-Katrina 
Mississippi study, an expression of the form 

 ln[𝑅𝑝,𝑚𝑒𝑑𝑖𝑎𝑛] = 4.37 − 0.29 ln[∆𝑃] (9) 

was obtained using linear least squares regression. Similarly, Vickery and Wadhera (2008) 
obtained relations of the form 

 ln[𝑅𝑝,𝑚𝑒𝑑𝑖𝑎𝑛] = 𝑎 − 𝑏∆𝑃2 + 𝑐 𝜓 (10) 

for Atlantic and Gulf of Mexico hurricanes, where ψ is latitude; the parameters a and b vary with 
region. Other recent FEMA studies have developed their own relationships based on historical 
data. The Mapping Partner shall make a similar determination for the study data, as appropriate. 
Most studies model the conditional distribution of Rp given ∆P as lognormal, the associated 
standard deviation of σln[Rp|∆P] is generally found to be approximately 0.4 to 0.5. Vickery and 
Wadhera (2008) find that stronger hurricanes exhibit a lower standard deviation and provide 
equations for σln[Rp|∆P] as a function of ∆P. 

Although correlation between Rp and ∆P is weak — or apparently non-existent for certain 
subsets of the data such as Gulf of Mexico hurricanes at landfall (Vickery and Wadhera, 2008) 
— most studies assume a negative correlation. Storm physics modeling also provides support 
for a negative correlation (Shen, 2006). Consequently, it is recommended that the Mapping 
Partner should assume a correlation, although some effort may be required to assemble the 
necessary data and it may prove necessary to enlarge the capture zone so as to make the 
correlation apparent. Note that this matter is discussed at some length in NWS-38 (Ho, et al., 
1987) which may also be consulted for guidance. 



 

Statistical Simulation Methods November 2016 
Guidance Document 77  Page 17 

2.1.10 Other Physical Parameters 
The wind fields of real hurricanes vary widely with both distance and azimuth from the storm 
center, and cannot be completely characterized by only two parameters, namely ∆P and Rmax. 
The natural choice for the next major parameter to include in a JPM analysis is Holland’s B 
parameter, which was introduced in Equation 8 above. Higher values of B produce more highly 
peaked wind fields, with higher values of the peak wind speed. On the other hand, this peak 
value occurs over a narrower spatial reach. As a result of these counteracting effects, the 
sensitivity of peak surge and surge hazard to B is not clear at present. According to Irish et al., 
(2009), the effect of changing B from 0.9 to 1.9 is to give a change of the order of 15% in peak 
surge. It is recommended that this matter be given attention by the Mapping Partner through 
numerical experiments with the hydrodynamic model and alternate choices of B. There have 
been few statistical studies for B. Vickery and Wadhera (2008) find a weak correlation with ∆P, 
Rmax, latitude, and sea-surface temperature. Unless a preliminary sensitivity investigation 
suggests otherwise, the Mapping Partner may adopt a simplified representation of B for the JPM 
simulations, such as (1) using a single mean value of B, (2) allowing B to vary probabilistically in 
the synthetic storm population, or (3) via the post-computation error approach to be discussed 
later. If B is found to be important, then it may need to be represented as a JPM parameter. 
However, the relative cost of this, versus representing other parameters in greater detail, such 
as tides and model resolution, should be weighed carefully.  

Additional parameters have been used to describe hurricanes, for instance, Cox and Cardone 
(2007) use a double-exponential model to describe the hurricane wind field in hindcast studies. 
This model has the form 

 𝑝(𝑟) =  𝑃0 +  (∆𝑃 − ∆𝑃2) exp [− (
𝑅𝑝,1

𝑟
)

𝐵1
] +  ∆𝑃2 exp [− (

𝑅𝑝,2

𝑟
)

𝐵2

]  (11) 

Storms that are better represented by a double exponential model tend to have a broader radial 
wind and pressure profile, such as Hurricanes Dennis (2005), Katrina (2005), and Ike (2008). 
This tends to enhance storm surge, especially beyond the radius of maximum wind. This model 
introduces three additional parameters, whose statistics (potentially including correlations with 
other parameters) must be determined. Currently, most historical hurricane data sets do not 
include these additional parameters, making the necessary calculations impossible, but there 
are re-analysis efforts under way that will determine these values in the future. However, the 
burden of expanding the full JPM to include 3 additional parameters could be significant, making 
it unclear at what point or under what circumstances the expansion of the JPM space will be 
worthwhile. Approximate methods to account for the effect of this distribution may also be 
performed, however this field has not yet been well-explored. Three recent FEMA studies, 
covering all the western coast of the Florida peninsula, included the bulk effect of this broader 
wind field through a customized, spatially variable uncertainty model (FEMA 2013, FEMA 
2014a, FEMA 2014b, FEMA 2016a). This was done due to evidence that these parameters had 
an important role in storm surge generation in the area. Future studies may attempt to include 
these additional parameters or may follow the path taken by the post-Katrina FEMA study for 
Mississippi to use a simpler representation of these parameters. Like Holland’s B, however, the 
relative importance and cost of the additional parameters should be weighed against the 
benefits to the study.  
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2.1.11 Treatment of Parameter Correlations 
In principle, all hurricane characteristics are correlated to some degree. Most probabilistic surge 
studies, however, consider only the correlation between ∆P and Rmax. The main reason for 
modeling the pressure-radius correlation--despite statistical r2 values on the order of only 0.3—
is that these are the two most important hurricane parameters for surge calculations (other than 
landfall location, taken independent by assumption). Allowing for the inverse pressure-radius 
correlation ensures that extremely intense storms are not assigned extremely large radii in 
construction of the JPM storm simulation set. The important major correlation of parameters 
with track angle has been commonly treated by the simple artifice of dividing the storm sample 
into entering and exiting populations; within each subpopulation, independence with angle is 
assumed. 

2.2 Storm Simulation Set – JPM-OS Methods 
At least four distinctly different JPM approaches have been used for FEMA flood insurance 
studies. As noted earlier, the original work by Ho and Myers (Ho and Myers, 1975; Myers, 1975) 
adopted a direct JPM approach based on the idea of dividing each parameter distribution into a 
small number of segments, and then simulating all possible combinations (all possible storms). 
As noted earlier, the only difficulty with this approach is that the number of simulations that are 
required quickly becomes prohibitive, especially when considered in light of the computational 
demands made by modern high-resolution hydrodynamic models such as ADCIRC. 

In the post-Katrina efforts of the USACE (for Louisiana) and FEMA (for Mississippi) greatly 
improved JPM methods were developed, permitting a JPM analysis to be performed with only 
about one tenth the number of simulations as would be required with the direct JPM approach. 
These are now known as Optimal Sampling methods. These guidelines correspond to the 
approach used in the FEMA Mississippi study, called the Quadrature Method, although the 
USACE’s approach for Louisiana, called the Response Surface Method, is also entirely 
appropriate for new FEMA studies. Experience gained during the post-Katrina work showed that 
the two approaches are capable of giving nearly identical results with a similar level of effort. 
These guidelines focus on the Quadrature Method since it is more readily automated than the 
Response Surface Method which requires a greater degree of expert judgment in the selection 
of storms. Recently, a third approach has been followed in a study of North Carolina (see 
Vickery and Blanton, 2008). It is not described in detail here, but it is noted that it is not, strictly 
speaking, an optimal sampling approach. It is more akin to a traditional JPM approach in that 
the parameter distributions are discretized and all combinations are simulated. Furthermore, it 
departs from the other approaches in that number and locations of the tracks are not 
established in a defined pattern, but are distributed over the coastal area using Monte Carlo 
simulation, with the assumption of a Poisson occurrence rate. Whereas the Quadrature and 
Response Surface methods have been compared and found consistent, such a comparison with 
the North Carolina approach has not yet been made.  

2.2.1 Summary of the Response Surface Method 
This approach takes advantage of the following three observations from sensitivity studies 
performed during the post-Katrina studies: (1) the calculated surge ηm is a fairly smooth function 
of the storm parameters; (2) ηm is most sensitive to ∆P, Rp, and track location (or along-coast 
distance between storm track and location of interest); and (3) the sensitivity of ηm to heading 
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angle θ and forward velocity Vf is weaker and may be approximated as linear. Furthermore, the 
variation of ηm as a function of these parameters is fairly smooth. These observations are 
confirmed by the sensitivity analyses documented in FEMA (2008) and by model runs cited by 
Resio (2007). 

As a result of these observations, it is possible to perform surge calculations for a moderate 
number of synthetic storms—with carefully selected combinations of parameters--and then to 
interpolate between the calculated surge elevation (in the JPM dimensions) to obtain the surge 
elevation for any desired combination of parameters. The computational cost for this 
interpolation is minimal. As a result, one can discretize the domain of the JPM integral very 
finely, even in five dimensions.  

The main difficulty in the response-surface JPM-OS scheme resides in the experimental design 
(i.e., the selection of the parameter combinations for the synthetic storms) in a manner that 
provides enough points in the highly dimensional JPM parameter space, without requiring a very 
large number of synthetic storms, and then implementing a robust interpolation scheme that 
works reliably for all target sites of interest. This selection process and interpolation scheme 
treats ∆P and Rp as the primary variables for each selected track, and takes advantage of the 
weak sensitivity to heading angle θ and forward velocity Vf, which are treated as linear. The 
interpolation between tracks is more delicate and requires special treatment, as described by 
Irish et al. (2009). 

The application of the Response Surface Method in Louisiana and Texas is summarized in 
Resio (2007), Resio et al. (2009), and Irish et al. (2009). These publications provide details on 
the application of the method and show typical results. In particular, it has been found that the 
approach yields results that are essentially indistinguishable from the Quadrature Method (Toro, 
et al, 2010).  

2.2.2 Summary of the Quadrature Method 
Gaussian quadrature is a well-known technique for approximation of integrals of the form  

 I = ∫ f(x) p(x)dx (12) 

where f(x) is often a probability density function (i.e., it is positive and it integrates to unity) and 
p(x) is a function belonging to a particular family of functions. The quadrature approximates the 
integral as a finite weighted summation of the form I ≈ ∑I wi p(xi), where the nodes xi and the 
corresponding weights wi are selected in a manner that maximizes the accuracy of the 
approximation, while keeping the number of nodes small. In the context of the JPM-OS 
Quadrature method, each node can be thought of as one synthetic storm. The weight 
associated with each node is multiplied by the annual rate of storms to obtain the annual rate for 
that synthetic storm.  

In one-dimensional Gaussian Quadrature, the number of nodes, the nodal locations, and the 
weights are selected so that the summation will evaluate the integral exactly if p(x) is a 
polynomial of a certain degree and f(x) is a particular probability distribution (e.g., a standard 
normal probability density). This technique is used frequently in one dimension. Miller and Rice 
(1983) provide implementation details and results for a variety of commonly used probability 
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distributions. The improvement in calculation efficiency (number of function evaluations needed 
for a specified accuracy) can be very great compared to simpler methods. 

It is also possible to fix the weights wi to arbitrary values (e.g., equal weights or 1/6, 2/3, 1/6) 
and then calculate the nodal values xi so that polynomials of a certain degree are integrated 
exactly (or, equivalently, so that distribution moments up to a certain order are preserved by the 
xi, wi pairs). In addition, it is possible to fix the nodal values and then compute the required 
weights.  

Unfortunately, extension of these so-called zero-error one-dimensional rules to more than one 
dimension is problematic. It is easy to apply a one-dimensional quadrature for each parameter 
and then generate all possible multi-dimensional parameter combinations. These so-called 
product rules result in a large number of nodes. Furthermore, if Gaussian Quadrature is used, 
many of these combinations will have very low weights. The more efficient techniques to 
generate multi-dimensional Gaussian Quadratures often lead to some weights being negative, 
which create stability problems and make it impossible to interpret the weights in terms of the 
occurrence rates of synthetic storms. 

The product rules mentioned above have some practical applications. In particular, one can use 
a product rule to construct a JPM Reference Case which is then used -- together with a fast 
surge code such as SLOSH or a low resolution ADCIRC model to validate a more efficient multi-
dimensional Quadrature. In addition, a product rule constructed from 3- and 4-point quadratures 
with equal weights is being used in the recent surge study for North Carolina (Vickery and 
Blanton, 2008). In contrast to Gaussian Quadrature, Bayesian Quadrature (also termed 
Gaussian-Process quadrature) defines the family of functions p(x) as all possible realizations of 
a random process having a certain auto-covariance function, and seeks to minimize the 
integration error in a mean-squared sense instead of trying to make it equal to zero. The main 
advantage of the probabilistic formulation of the quadrature problem is that the formulation is 
easy to apply in multiple dimensions. In addition, it is possible to control the accuracy of 
integration in each dimension by adjusting the parameters of the auto-covariance function. 

The Quadrature JPM-OS approach, as applied to date, uses Bayesian Quadrature in 
conjunction with more traditional numerical-integration schemes to transform the JPM integral 
into a discrete summation with a moderate number of nodes. The result is a set of synthetic 
storms, where each synthetic storm is defined by its parameters at landfall (i.e., ∆P, Rp, Vf, track 
location, etc.), and each synthetic storm has an associated annual recurrence rate. Typically, a 
few hundred synthetic storms (rather than a few thousand) are sufficient to attain the desired 
accuracy. For numerical reasons, the calculation of the optimal nodal locations and associated 
weights is performed in standard multi-dimensional normal distribution space. The nodal 
locations are then mapped into the physical space of ∆P, Rp, Vf, etc. 

2.2.3 The Quadrature Method of Storm Selection 
This section presents the recommended Quadrature method, based upon its use in the post-
Katrina Mississippi study. It is anticipated that the method will evolve as it is exercised in future 
studies.  
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The quadrature approach to define a representative set of synthetic storms and their associated 
annual rates and uses a combination of traditional and sophisticated numerical-integration 
schemes. The process may be summarized in the following fundamental steps: 

 Discretize the distribution of ∆P into broad slices, roughly corresponding to Saffir-
Simpson hurricane Categories and compute the probability mass contained in each 
slice. 

 Within each ∆P slice, discretize the joint probability distribution of ∆P (within slice), Rp, 
Vf, θ, and any other JPM variables using Bayesian Quadrature. Details on this step are 
provided subsequently. 

 Discretize the distribution of landfall location by replicating each of the synthetic storms 
defined in the previous two steps at spatial offsets equal to Rp (measured perpendicular 
to the storm track). To avoid aliasing, apply a random perpendicular offset (with a 
uniform distribution between 0 and Rp) to each replicated set of storms. Sensitivity 
studies indicate that a spacing of Rp is small enough to capture the peak surge at all grid 
locations. 

 Compute the probability pi assigned to each synthetic storm as the product of the 
probabilities resulting from the previous three steps. Then, compute the rate li assigned 
to each synthetic storm as the probability pi computed above times the rate per unit 
length times the storm spacing. 

These steps are discussed in more detail in what follows. 

2.2.3.1 Inputs 
The first set of inputs to the Bayesian Quadrature algorithm consists of the probability-
distribution information for the hurricane characteristics at landfall, namely ∆P (within slice), Rp, 
Vf, and θ, and possibly other characteristics. For each hurricane characteristic, this information 
consists of the distribution shape (e. g., Weibull, Gumbel, lognormal) and distribution 
parameters. For dependent hurricane characteristics such as Rp, these distribution parameters 
are functions of ∆P.  

The second set of inputs consists of information on the characteristics of the surge response. 
Because of the probabilistic nature of the Bayesian Quadrature method, this information is of a 
probabilistic nature, and consists of the correlation distances of the term 

 P [hm (∆P, Rp, etc.) > h]  (13) 

in Equation 1 along the various dimensions. The higher the sensitivity of the quantity P [hm (∆P, 
Rp, Vf, θ, etc.) > h] to a particular hurricane characteristic, the lower the corresponding 
correlation distance. These correlation distances are not specified in the physical units of the 
hurricane characteristics. Instead, they are specified in the corresponding normal-distribution 
space used internally by the Bayesian Quadrature algorithm. Estimates of these correlation 
distances could be obtained from sensitivity results, such as those generated for the Mississippi 
study, but have been specified on the basis of judgment. The following values are suggested for 
guidance for the choice of correlation distances in a new FEMA study: 
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 Sensitive (important): Pressure and Radius: correlation distances of 1 to 3 

 Insensitive (less important): Forward speed, direction: correlation distances of 4 to 6 

In a relative sense, the Quadrature JPM-OS algorithm tends to spread the sampling nodes more 
widely along those directions with lower correlation distances, providing a closer match to the 
marginal probability distributions in those directions. Thus, it is important to specify correlation 
distances that relate to the importance of the various physical quantities, in order to obtain an 
optimal allocation of effort among the various dimensions. 

In an absolute sense, numerical experiments in one dimension show that low values of the 
correlation distance cause the algorithm to be more cautious and to tend towards equal weights, 
while high values provide a wide range of weights and sample points that extend farther into the 
distribution tails, approaching those obtained by Gaussian Quadrature. The ideal choice is 
somewhere in between. 

It is reasonable to assume that relative parameter importance is likely to be similar in a new 
study to their importance as estimated by detailed sensitivity tests in the post-Katrina Mississippi 
study. Consequently, the assumptions used there should be reviewed by the Mapping Partner 
and can be followed unless there is reason the suspect that alternate choices should be used.  

An additional input is the number of nodes to generate. In the Mississippi application, different 
numbers of nodes, and somewhat different correlation distances, were employed for the various 
∆P slices. The number of nodes in a slice ranged from five to seven, and can be followed as 
precedent for a new study. 

2.2.3.2 Algorithmic Steps 
The first algorithmic step employed in the Bayesian Quadrature is the selection of the optimal 
nodal locations (in normal-distribution space) and the associated weights. This is achieved by 
using two nested optimizations, both of which seek to minimize the variance of the integration 
error. At the inner level of nesting, there is the optimization to determine the best weights (for 
given nodal locations). This is done in closed form, by solving an optimization problem not too 
different from linear least squares. At the outer level, there is the search for the best set of nodal 
locations. This is done using a numerical optimization scheme. Details on the formulation and 
implementation of both optimizations are provided in Toro et al. (2007, 2010). 

The second step is the mapping of the nodal locations from standard normal-distribution space 
to the physical space of ∆P, Rp, Vf, etc. This is done by using the so-called Rosenblatt 
transformation (see, for example, Madsen et al., 1986; Melchers, 1999). In one dimension, this 
transformation simply maps each normally-distributed nodal value by finding the value of the 
physical quantity that has the same value of the cumulative distribution. Extension to multiple 
dimensions is straightforward, as one can usually write the joint cumulative distribution of the 
hurricane characteristics as a product of marginal and conditional distributions, e.g., F∆P FRp|∆P 
FVf, etc., allowing the sequential application of the one-dimensional transformation. The 
Rosenblatt transformation allows practical implementation of Bayesian Quadrature for virtually 
any choice of joint probability distributions, as required for JPM-OS.  
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2.2.3.3 Verification of the Storm Selection Step 
Because the Quadrature JPM-OS formulation involves some simplifying assumptions regarding 
the properties of the auto-covariance functions, and because the parameters of this function are 
chosen on the basis of judgment, it is recommended that the accuracy of the synthetic storm set 
be validated. This may be done by creating a larger (typically a few thousand) reference set of 
synthetic storms using a conventional JPM formulation, calculating surge for both sets using a 
fast hydrodynamic program such as NOAA’s SLOSH model, and comparing the resulting flood 
hazard. 

The verification performed in the Mississippi study (FEMA 2008) provides good guidance in this 
regard, and should be studied by the Mapping Partner. The following are some of the key 
features of this exercise. The probability distributions for the Reference JPM scheme were 
discretized using one-dimensional Gaussian Quadrature and then all combinations were 
generated (i.e., a product rule was used). The number of points in these quadratures varied as a 
function of importance, using 6 nodes for ∆P, 5 nodes for Rp|∆P, 3 nodes each for forward 
speed and for heading, and a track spacing equal to Rp. Surge calculations for the JPM-OS 
scheme and the Reference scheme were performed and compared for a large number of grid 
points distributed throughout the study region; comparisons were performed for the surges 
associated with both the 1% and 0.2% annual exceedance chances. Whereas the Reference 
scheme involved several thousand storm simulations, satisfactory OS schemes of less than 200 
storms were identified, showing deviations from the Reference results of better than 1 foot of 
surge. 

It may be possible to streamline this verification by reducing the number of grid points 
considered or by using a parametric surge model (e.g., Irish et al., 2008). The reduction in the 
number of grid points brings only moderate savings. The use of the parametric source model 
brings significant savings, but may only be appropriate for uncomplicated coastlines. 

There are other simple procedures to verify the adequacy of the JPM-OS storm selection and 
rates, as follows: 

 Comparison of statistical moments of the original (continuous) distributions to those 
calculated from the JPM-OS discretization. As a minimum, the marginal moments up to 
order three and the covariance between ∆P and Rp should be checked. 

 Graphical examination of the cumulative distribution of calculated surge obtained at 
several grid points. Ideally, this distribution should have no large jumps in the regions of 
interest (the region between 10% and 0.2% annual exceedance chances). Large jumps 
indicate that the hazard is controlled by one (or a few) synthetic storms, suggesting that 
the JPM-OS storm set needs to be refined. 

Given the limited practical experience with the JPM-OS discretization, these simpler procedures 
would not constitute a replacement for a SLOSH-based or parametric-model based verification 
of the selected JPM-OS storm set. 

In past studies, these verification exercises have been performed prior to introducing the 
contributions of the small random error terms in the calculated surge (to be discussed below). 
This is conservative, in the sense that the JPM-OS procedure is likely to be more accurate than 
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the verification tests indicate. The effect of integration over the small error terms is to make P 
[hm (∆P, Rp, Vf, θ, etc.) > h] a smoother function of the hurricane characteristics, making it easier 
to integrate numerically. 

2.2.4 Development of a Complete Storm History 
Both the Response-Surface and Quadrature JPM-OS approaches characterize each synthetic 
storm by means of the values of the storm’s characteristics (i.e., ∆P, Rp, Vf, θ, landfall location, 
etc.) at landfall (or at some arbitrary location prior to landfall). The numerical ocean-response 
models require a complete history of hurricane characteristics and eye coordinates for a period 
of several days prior to landfall. 

In recent studies, the storm characteristics prior to landfall have been treated as deterministic 
functions of the characteristics at landfall. These functions have included some weakening 
immediately prior to landfall. In the models used recently for the central Gulf of Mexico, all but 
the storms with very small radius begin to weaken, increase their radius, and decrease their 
Holland’s B over the last 90 miles prior to landfall (Resio et al., 2009). Similar models have been 
developed for storms affecting North Carolina (see Vickery and Blanton, 2008). In principle, 
these variations in storm characteristics should also be treated as random, but this is difficult to 
do within the present JPM-OS formulation, without unrealistically enlarging the dimensionality of 
the problem (beyond the adequacy of the data). 

It is also important to use realistic track geometries, mostly for the purpose of calculating the 
waves that tend to accompany the surge and which, in fact, contribute to the surge through the 
intermediate mechanism of the wave’s radiation stresses. In the central Gulf of Mexico, 
examination of the tracks from strong storms indicates that they tend to enter the Gulf through 
the Florida or Yucatan straits and then follow simple tracks, which may be easily mimicked 
using simple deterministic algorithms. These algorithms generate a track for any given landfall 
location and heading. Specifically, a historical hurricane’s track can be used as the base 
offshore path, and then the exact track can be constrained to the desired landfall location and 
heading by modeling the track as a damped harmonic oscillator. Solution to such equations is 
readily achieved by standard methods. A similar approach has been followed for North Carolina 
(see Vickery and Blanton, 2008), but with models that exhibit significantly less weakening just 
prior to landfall. Although the tracks are idealized, they are chosen to follow the main trends of 
the observed track history — the landfall track configurations are, of course, directly determined 
by the parameter selections at landfall, so idealization of the offshore track segments is 
acceptable. Note that this treatment is superior to the approach used in early flood insurance 
studies, which assumed simple fixed straight tracks throughout the duration of a storm.  

2.3 Second Order Concerns 

2.3.1 Small Random Contributions - Overview of the Approach 
The procedures described in Section 2.2 will not always include all factors which contribute to a 
best estimate of surge height. In order to minimize the number of storms to be simulated, some 
minor or secondary factors may be treated by an approximate method. Furthermore, random 
uncertainties associated with modeling errors in both meteorology and hydrodynamics also 
affect the best estimates.  
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The relationship given in Equation 2 can be expanded to include these factors by inclusion of 
the term ε (the probability integral is here shown as the discrete summation over the simulation 
storm set): 

 𝑃[𝜂𝑚𝑎𝑥(1 𝑦𝑟) > 𝜂]  ≈  ∑ 𝜆𝑖𝑃[𝜂(𝑥𝑖) + 𝜀 > 𝜂]𝑛
𝑖=1  (13) 

where 𝜀 might consist of several constituents, such as: 

𝜀1 – representing the astronomical tide level as a random function of time, estimated from a 
local hurricane season tide prediction, and characterized by a standard deviation around 
zero mean. 

𝜀2 – representing variations in surge response caused by random variations of the Holland’s 
B parameter that are not represented in the modeling. The standard variation for this term 
may be dependent upon the computed surge elevation. 

𝜀3 – representing random errors in the computed surge caused by lack of skill of the 
numerical modeling. This can be estimated by comparisons of predictions with high-water 
marks. 

𝜀4 – representing variations in the surge due to a wide range of departures in the real 
behavior of hurricane wind and pressure fields that are not represented by the PBL or other 
meteorological model used to describe the storms. This can be evaluated by comparing the 
results of surge modeling done using hand-crafted ‘best winds’ with the findings for the 
same storms as represented using the PBL model chosen for the simulations. 

These and other components of 𝜀, as necessary, are taken to be independent, and so can be 
combined into a single term having a standard deviation given (with obvious notation) by: 

 𝜎𝜀 =  √𝜎𝜀1
2 + 𝜎𝜀2

2 + 𝜎𝜀3
2 + 𝜎𝜀4

2  (14) 

For each of these components, and others as may be identified, the Mapping Partner shall 
estimate the standard deviations. For example, a Mapping Partner could follow the precedent 
set in the post-Katrina Mississippi study. Note that tide cannot always be treated as a small 
linear addition (see the following subsection). However, when it can, the necessary sigma is 
easily estimated from local tide predictions, restricted to hurricane season. One of the effects of 
introducing these secondary factors is that they smooth out the P[ ] term in Equation 2, making 
numerical evaluation somewhat easier. 

2.3.2 Alternate Method for Large Amplitude Tides 
In the event that tide amplitudes are not small compared to the 1% stillwater elevation level 
(SWEL), or if the Mapping Partner has reason to doubt the validity of representing tides as a 
secondary factor owing to great distances of inland propagation of storm surge and the like, 
treating tide as a small additive correction will not be appropriate. No simple method has been 
identified to handle the tide in such cases. Note, too, that in some cases the tide may be small 
compared to the 1% SWEL, but not compared to the 10% and 2% SWELs. The relative error in 
those cases may then be greater, although still smaller in an absolute sense. Whether these 
other levels must be given the same degree of attention as the 1% and 0.2% SWELs in a 
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particular study, should be determined by the Mapping Partner in consultation with the FEMA 
Project Monitor. 

When representation of tides as a secondary factor is inadequate, the Mapping Partner may 
adopt any of several alternate methods. Detailed discussion of incorporating tides into surge is 
presented in Coastal Water Levels (FEMA 2016b). These include linear superposition, random 
tide phase assignment to individual storms, running each storm at several tide phases, or the 
more complex approach detailed in FEMA’s User’s Manual for the FEMA Coastal Flooding 
Storm Surge Model (FEMA, 1988). The approach is discussed in full detail in Chapter 8 of 
Volume 1 of that document. There are also computer codes (presented in Volume 3) which may 
be used to help guide new work. In brief, the procedure recommended is to simulate a small 
number of representative storms not only at mid-tide (as is done for the full storm simulation 
set), but also at other tide levels and relative phases. These hydrodynamic simulations properly 
incorporate the interactions of surge and tide throughout the study area, and can be compared 
with estimates based on linear addition. The comparison of these two calculations is then used 
to define regression expressions that are used to adjust the estimates obtained by linear 
addition so as to better approximate the full simulations. The approach is relatively time 
consuming, and should be accounted for in the initial study scoping with concurrence of the 
FEMA Project Officer. 

2.4 Surge Frequency Determination 

2.4.1 Overland Distribution of Target Sites 
Surge statistics are required at enough points distributed throughout the study region to permit 
accurate mapping of flood zones and to permit the prior determination of overland wave crests. 

The simplest selection of target points would correspond to the nodes of the hydrodynamic 
model, since surge elevations are computed at each node throughout the simulation of a storm. 
However, many modern models are typically run with extremely fine resolution, so that several 
hundreds of thousands of grid points might fall within the area of interest. Such extreme density 
may not be required for preparation of flood hazard maps. Consequently, the Mapping Partner 
may select an adequate subset of points for the statistical analyses. This introduces further 
complications, however, in areas where surges and SWELs change rapidly, as is often the case 
in coastal areas with barrier islands and other major topographic features, and the Mapping 
Partner must take care to properly account for these smaller-scale spatial variations. As a 
practical matter, however, given the availability of large computers and inexpensive data 
storage, it may be simplest just to include all points for analysis and, in a later step, produce a 
SWEL surface from which the necessary mapping information can be easily extracted. Usage of 
all points in the domain has become standard practice in all FEMA studies since 2010.  

2.4.2 Construction of the Simulated Density Distribution Histograms 
Once the JPM-OS storm simulations have been completed, and any necessary adjustments for 
secondary factors such as large amplitude tide have been accounted for (but exclusive of the 
small factors treated as random error terms), the final determination of flood frequency at a 
given point follows using the methods which have been used in past FEMA studies and which 
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are detailed in the FEMA Coastal Flooding Hurricane Storm Surge Model documentation 
(FEMA, 1988) and in the report of the post-Katrina Mississippi study (FEMA 2008). 

Focusing on a single site within the study region, the key idea is to construct a histogram of 
accumulated rate versus peak surge elevation similar to the example shown in Figure 2. The 
histogram consists of bins of elevation with suitably small widths (such as 0.1 feet) extending 
from zero to a bin exceeding the largest surge of interest. Then the rate associated with each of 
the simulated storms (as determined using the Quadrature method outline above) is 
accumulated into the particular bin corresponding to the peak surge at the site for that storm. 
With a fine resolution of bin width, many bins will, of course, remain empty, and the final 
histogram is an estimate of the surge probability density function. 

 
Figure 2. Histogram generated for a single JPM point based on surges and storm rates 

Were there no small secondary factors to be accounted for this estimate of the density 
distribution is then summed from the top down, to produce the corresponding estimate of the 
cumulative distribution.  

The surge elevations at any frequency of interest are obtained from the cumulative distribution, 
by simply entering the distribution at the specified frequency on the vertical axis, and reading 
across to the curve and down to the nearest bin. The nearest bin will give the corresponding 
surge elevation to the bin resolution. 

More details on this topic can be found in Coastal Water Levels.  

2.4.3 Histogram Adjustment for Secondary Random Factors 
In order to account for the secondary (epsilon) terms, one adopts an extremely simple 
procedure. Consider, as shown in the upper portion of Figure 3 the accumulated rate contained 
in a single bin of the density histogram. The assumption is that owing to the small random 
variation associated with the secondary terms, this quantity of rate could be smeared over an 
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interval of elevation bins above and below the original bin. This redistribution is shown in the 
lower portion of Figure 3, and is simply a discrete approximate to the Gaussian having a width 
determined by the composite standard deviation given by Equation 14. 

 
Figure 3. Example of redistribution of the accumulated rate within a single bin to account for 

secondary random processes 

This same sort of redistribution is performed for each bin in the original histogram. Note that in 
general the contribution of a particular factor may not be constant, but may be dependent upon 
the magnitude of the surge and on the bin location. Once the redistribution of bin rates has been 
completed, the revised density distribution is summed from the top down, as described before, 
to yield the cumulative distribution shown in Figure 4, below. Keep in mind that this distribution 
is unique to a site, so that many thousands of such computations will be needed, depending 
upon the density of target sites selected for mapping purposes.  

3.0 Empirical Simulation Technique (EST) 
The USACE developed the EST for use in storm surge analysis in the 1990s, however it has 
since shifted to using the JPM in major studies since Hurricane Katrina. EST is particularly well-
suited for dealing with sparser storm datasets since it relies on random walks of the available 
data and limits the amount of parametric fitting. However, the method is still highly sensitive to 
individual storms and has been found to generally be inferior to the JPM for tropical cyclones in 
the United States (Divoky & Resio 2007, Resio et al. 2008).  

A full discussion of the method can be found in Scheffner et al. (1996). At the heart of the 
technique is the empirical estimation of the cumulative distribution using nonparametric plotting 
position methods. Alternate life-cycle simulations are based on bootstrap resampling-with-
replacement from a historical data set and supplemented by a random walk variation. The 
random sampling of the finite-length historical-event database generates a larger long-period 
database, which is especially useful in assessing the importance of variability. The only 
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assumption is that future events will be statistically similar in magnitude and frequency to those 
particular storms that constitute the database.  

The EST begins with an analysis of historical storms that have affected the study area. The 
selected events are then parameterized to define relevant input parameters that are used to 
define the dynamics of the storms (the components of the so-called input vectors) and factors 
that may contribute to the total response of the storm, such as tidal amplitude and phase. 
Associated with the storms are the response vectors that define the storm-generated effects. 
Input vectors  

 
Figure 4. Determination of the 1% stillwater elevation (SWEL) from the top-down integrate 

rate histogram 

are sets of selected parameters that define the total storm; response vectors are sets of values 
that summarize the effects. Basic response vectors are determined from observational data, or 
numerically by simulating the historical storms using the selected hydrodynamic model.  

These sets of input and response vectors are used subsequently as the basis for the long-term 
surge history estimations. These are made by repeatedly sampling the space spanned by the 
input vectors in a random fashion, and estimating the corresponding response vectors. The 
number of storms occurring in a particular year is assumed to be governed by a Poisson 
distribution. Moderate variation from the historical record is permitted by the use of random 
displacements in the input vector space. The final step of the procedure is to extract statistics 
from the simulated long records by performing an extremal analysis as though the simulated 
records were physical records. This has commonly been done using plotting position methods. 
More recent work has focused attention on the need to extend the upper tails in an appropriate 
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way in order to reach the extreme levels of interest in a coastal study, in cases for which the 
historical database is limited. 

4.0 Monte Carlo Method 
As discussed above for the JPM approach, the Monte Carlo method is based on probability 
distributions established for the parameters needed to characterize a storm. Unlike the JPM, 
however, these probability distributions are not discretized. Instead, storms are constructed by 
randomly choosing values for each parameter by generating random values uniformly 
distributed between 0 and 1, and then entering the cumulative distributions at those values and 
selecting the corresponding parameter values. Each storm selected by this Monte Carlo 
procedure is simulated with the hydrodynamic model. Simulating a large number of storms in 
this way is analogous to simulating a long period of history, with the frequency connection 
established through the rate of storm occurrence estimated from a local storm sample.  
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