Foundation Analysis and Design

Michael Valley, S.E.
FOUNDATION DESIGN

Proportioning Elements for:

- Transfer of Seismic Forces
- Strength and Stiffness
- Shallow and Deep Foundations
- Elastic and Plastic Analysis
Load Path and Transfer of Seismic Forces

soil pressure

Force on a pile EQ on unloaded pile

Unmoving soil EQ Motion

deflected shape soil pressure

Inertial force

Pile supporting structure
Load Path and Transfer of Seismic Forces

foundation force transfer

- Passive earth pressure
- Friction
- EQ motion
Load Path and Transfer of Seismic Forces

Soil to foundation force transfer

EQ Motion

Deep

Motion

Soil pressure

Bending moment
Load Path and Transfer of Seismic Forces

vertical pressures - shallow

Overturning moment

EQ motion
Load Path and Transfer of Seismic Forces

vertical pressures - deep

Overturning moment

EQ Motion
Reinforced Concrete Footings: Basic Design Criteria (concentrically loaded)

(a) Critical section for flexure

(b) Critical section for one-way shear

(c) Critical section for two-way shear

Outside face of concrete column or line midway between face of steel column and edge of steel base plate (typical)

extent of footing (typical)

d/2 (all sides)
Footing Subject to Compression and Moment: Uplift Nonlinear

(a) Loading

(b) Elastic, no uplift

(c) Elastic, at uplift

(d) Elastic, after uplift

(e) Some plastification

(f) Plastic limit
Example 7-story building: shallow foundations designed for perimeter frame and core bracing.
Shallow Footing Examples

Soil parameters:
- Medium dense sand
- (SPT) N = 20
- Density = 120 pcf
- Friction angle = 33°

Gravity load allowables
- 4000 psf, B < 20 ft
- 2000 psf, B > 40 ft

Bearing capacity (EQ)
- $2000B$ concentric sq.
- $3000B$ eccentric
- $\phi = 0.7$
Footings proportioned for gravity loads alone

- **Corner:** 6'x6'x1'-2" thick
- **Perimeter:** 8'x8'x1'-6" thick
- **Interior:** 11'x11'x2'-2" thick
Design of footings for perimeter moment frame
7 Story Frame, Deformed
Combining Loads

- Maximum downward load:
 \[1.2D + 0.5L + E \]
- Minimum downward load:
 \[0.9D + E \]
- Definition of seismic load effect \(E \):
 \[E = \rho_1 Q_{E1} + 0.3 \rho_2 Q_{E2} \pm 0.2 S_{DSD} \]
 \(\rho_x = 1.0 \quad \rho_y = 1.0 \quad \text{and} \quad S_{DS} = 1.0 \)
Reactions

<table>
<thead>
<tr>
<th>Grid</th>
<th>Dead</th>
<th>Live</th>
<th>E_x</th>
<th>E_y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-5</td>
<td>P</td>
<td>203.8 k</td>
<td>43.8 k</td>
<td>-3.8 k</td>
</tr>
<tr>
<td></td>
<td>M_{xx}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M_{yy}</td>
<td></td>
<td>53.6 k-ft</td>
<td>21.3 k</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-243.1 k-ft</td>
<td>-1011.5 k-ft</td>
</tr>
<tr>
<td>A-6</td>
<td>P</td>
<td>103.5 k</td>
<td>22.3 k</td>
<td>-51.8 k</td>
</tr>
<tr>
<td></td>
<td>M_{xx}</td>
<td></td>
<td></td>
<td>-281.0 k</td>
</tr>
<tr>
<td></td>
<td>M_{yy}</td>
<td></td>
<td>47.7 k-ft</td>
<td>-891.0 k</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-246.9 k-ft</td>
<td>13.4 k-ft</td>
</tr>
</tbody>
</table>
Reduction of Overturning Moment

• NEHRP Provisions allow base overturning moment to be reduced by 25% at the soil-foundation interface

• For a moment frame, the column vertical loads are the resultants of base overturning moment, whereas column moments are resultants of story shear

• Thus, use 75% of seismic vertical reactions
Additive Load w/ Largest eccentricity

• Combining loads on footings A-5 and A-6, applying the 0.75 multiplier for overturning effects to the axial loads, and neglecting the weight of the foundation and overlying soil,
• P = 256 kips
• $M_{xx} = -6,717 \text{ ft-kips}$
• $M_{yy} = -126 \text{ ft-kips}$ (which is negligible)
Counteracting Load w/ Largest e

- Again combining loads on footings A-5 and A-6, including the overturning factor, and neglecting the weight of the footing and overlying soil,
- $P = 8$ kips
- $M_{xx} = -5,712$ ft-kips
- $M_{yy} = -126$ ft-kips (negligible)
Elastic Response

- Objective is to set L and W to satisfy equilibrium and avoid overloading soil.
- Successive trials usually necessary.
Additive Combination

Given $P = 256 \text{ k}$, $M = 6717 \text{ k-ft}$

Try 4.5 foot around, thus $L = 34 \text{ ft}$, $B = 9 \text{ ft}$

- Minimum $W = \frac{M}{(L/2)} - P = 139 \text{ k} = 455 \text{ psf}$

Try 2 foot soil cover & 3 foot thick footing

- $W = 214 \text{ k}$; for additive combo use $1.2W$
- $Q_{max} = \frac{(P + 1.2W)}{(3(L/2 - e)B/2)} = 9.74 \text{ ksf}$
- $\phi Q_n = 0.7(3)B_{min} = 18.9 \text{ ksf}$, OK by Elastic
Plastic Response

- Same objective as for elastic response
- Smaller footings can be shown OK thus
Counteracting Case

Given $P = 8$ k; $M = 5712$

Check prior trial; $W = 214$ k (use $0.9W$)
- $e = \frac{5712}{(214 + 8)} = 25.7 > 34/2$ NG

New trial: $L = 40$ ft, 5 ft thick, 2 ft soil cover
- $W = 360$ k; $e = 17.2$ ft; plastic $Q_{max} = 8.78$ ksf
- $\phi Q_n = 0.7(3)4.1 = 8.6$ ksf, close
- Try plastic solution, $L' = 4.2$ ft, $\phi Q_n = 8.82$ ksf
- $M_R = (0.9(360)+8)(40/2-4.2/2) = 5943 > 5712$
Additional Checks

- Moments and shears for reinforcement should be checked for the overturning case.
- Plastic soil stress gives upper bound on moments and shears in concrete.
- Horizontal equilibrium: $H_{\text{max}} < \phi \mu (P + W)$
 in this case friction exceeds demand; passive could also be used.
Results for all Seismic Resistant System Footings

Corner: 9'x40'x5'-0" w/ top of footing 2'-0" below grade

Middle: 5'x30'x4'-0"

Side: 8'x32'x4'-0"
Design of footings for core-braced 7 story building

25 foot square bays at center of building
Solution for Central Mat

Very high uplifts at individual columns; mat is only practical shallow foundation

Mat: 45'x95'x7'-0" with top of mat 3'-6" below grade
Bearing Pressure Solution

Plastic solution is satisfactory; elastic is not

(a) Plastic solution

(b) Elastic solution pressures (ksf)
Pile/Pier Foundations

Passive resistance (see Figure 4.2-5)

p-y springs (see Figure 4.2-4)

View of cap with column above and piles below
Pile/Pier Foundations

Pile Stiffness:
- Short (Rigid)
- Intermediate
- Long

Cap Influence
Group Action

Soil Stiffness
- Linear springs – nomographs e.g. NAVFAC DM7.2
- Nonlinear springs – LPILE or similar analysis
Sample $p-y$ Curves

Soil resistance, p (lb/in.) vs. Pile deflection, y (in.)

- Site Class C, depth = 30 ft
- Site Class C, depth = 10 ft
- Site Class E, depth = 30 ft
- Site Class E, depth = 10 ft
Passive Pressure

![Graph of Passive Pressure](image)

- **P/P_\text{ult}**
- \(\delta/H \)

[Image of graph showing the relationship between \(P/P_\text{ult} \) and \(\delta/H \).]
Group Effect Factor

Pile group size (number of rows)

- $s = 7D$
- $s = 5D$
- $s = 3D$
- $s = 2D$
Pile Shear: Two Soil Stiffnesses

Shear, V (kip)

Depth (ft)

Site Class C

Site Class E
Pile Moment vs Depth

- Site Class C
- Site Class E

Depth (ft)

Moment, M (in.-kips)
Pile Reinforcement

- Site Class C
- Larger amounts where moments and shears are high
- Minimum amounts must extend beyond theoretical cutoff points
- “Half” spiral for 3D

4" pile embedment

Section A

- #4 spiral at 3.75 inch pitch

Section B

- #4 spiral at 7.5 inch pitch

Section C

- #4 spiral at 11 inch pitch
Pile Design

- Site Class E
- Substantially more reinforcement
- “Full” spiral for 7D
- Confinement at boundary of soft and firm soils (7D up and 3D down)
Other Topics for Pile Foundations

- Foundation Ties: \(F = P_G(S_{DS}/10) \)
- Pile Caps: high shears, rules of thumb; look for 3D strut and tie methods in future
- Liquefaction: another topic
- Kinematic interaction of soil layers
Tie between pile caps

- Designed for axial force (+/-)
- Pile cap axial load times $S_{DS}/10$
- Oftentimes use grade beams or thickened slabs on grade

![Diagram of pile cap with dimensions and reinforcement details]
Questions
The subtitles are effectively a table of contents, although the topics are not really treated in that specific order. This unit is primarily aimed at the structural engineering of foundations, not at the geotechnical engineering.

This presentation relates to example computations in Chapter 5 of the FEMA P752, *NEHRP Recommended Provisions: Design Examples*.
First model: soil pressures in unmoving soil caused by force at top of deep pile; most of stress resisted at top of pile; only small stresses below about twice the characteristic length of pile. Second model: unloaded pile subject to earthquake ground motion; small stresses induced by upper levels of soil lagging behind deep motion. Note opposing directions of “push”. Third model: both types of force act on pile. The lag of structure induces inertial forces at top of pile similar to static force in first model; net force shape similar to static situation.
As building lags behind ground motion, induced inertial forces must be transferred between footing and soil. Design may consider that inertial forces are transferred as passive earth pressure on face of footing, friction on bottom of footing, or both.
Same single story structure; now on deep pile foundation. One leg shows pile displacements; other shows resulting earth pressures; third diagram shows bending moment in pile. One reference that has long been used for laterally loaded piles is the Navy Design Manual 7.2, Foundations and Earth Structures. However, it and most other older methods are based upon assumptions of linear behavior in soil. Over the past two decades considerable progress has been made in developing design tools rooted in the strongly nonlinear behavior of soil. “LPILE” is one widely used example that allows the user to specify soil parameters that model resistance of soil to lateral movement of piles.
As aspect ratio of building height to width increases, overturning moment becomes significant; induced vertical forces must be transferred in addition to horizontal pressures. (Similar vertical forces in footing result from column moments not specifically related to overturning.) Slide shows overturning moment being resisted below basement of medium sized building; horizontal pressures are transferred at the basement walls.
This example of tall building with shear wall continuing through deep basement shows that the horizontal and vertical forces can be resisted by different portions of foundation structure. Basement wall resists horizontal forces near ground surface; vertical forces resisted by piles at base of wall.
Reinforced concrete footings are proportioned according to the provisions of ACI 318, *Building Code Requirements for Structural Concrete*. It is often opined that foundations should not yield, due to the high cost of foundation repair. However, nonlinear soil behavior is common in strong ground shaking, and it is traditional to design foundations for the reduced forces computed with the response modification factor, R, used for the superstructure. Neither the NEHRP Recommended Provisions nor earlier model building codes required the use of amplified forces for foundation design.
ASCE 41 has a good discussion of the plastic behavior of soil beneath eccentrically loaded footings. Just as for analysis of structural members, plastic analysis of a footing is simple “by hand”, but not so with a computer.

Both uplift and nonlinear behavior introduce complications in conventional analysis. Many commercially available software packages for structural analysis now handle the uplift case; a smaller set can also handle nonlinear behavior.
Title slide for 7-story building showing plan of steel building.
The gravity load allowables are set to control settlements. The values between 20 and 40 feet should be interpolated. The bearing capacity is the classic value from theoretical soil mechanics (normal gravity loads are checked). The subject of strength design in soils is in its infancy, and many geotechnical professionals are not yet comfortable with strength design concepts.

Note that the term phi is Resistance Factor for bearing capacity. B is the footing width.
The size of the square footing is controlled by the allowable bearing pressure at total loads, and the thickness is controlled by two-way shear at the critical section ("punching shear").

The point of this information is primarily for later comparison with footings designed for seismic loads.
The only portion of the steel frame that resists lateral forces is at the perimeter, thus, the only footings that will be affected by the seismic load are at the perimeter.
The image is taken from the RAM Frame analysis used to design the steel moment resisting frame for seismic loads.
Load combinations for strength-based design, which is the fundamental method for earthquake resistant design.

Greek rho is the redundancy factor. Q is the effect of horizontal seismic motions. The 0.2SdsD is an approximation for the effect of vertical earthquake motions.

For the footings, the horizontal motions produce vertical and horizontal forces, as well as bending moments, at the base of each column. Dead and Live loads are taken to produce only vertical forces in this example.

Combining Loads

- Maximum downward load:
 \[1.2D + 0.5L + E \]
- Minimum downward load:
 \[0.9D + E \]
- Definition of seismic load effect \(E \):
 \[E = \rho_1 Q_{E1} + 0.3 \rho_2 Q_{E2} + \text{/-} 0.2 S_{DS}D \]
 \[\rho_x = 1.0 \quad \rho_y = 1.0 \quad \text{and} \quad S_{DS} = 1.0 \]
Grid A-6 is at the lower left corner of the plan, and A-5 is adjacent. (Go back three slides to show the location on the plan.) Recall that the seismic reactions can be positive or negative; what is given here is for motion in the positive x and y directions. Carefully note that subscripts x and y on the load effect E refer to the global north-south and east-west, respectively, but the subscripts x and y on the moments at the column bases refer to the local strong and weak axes, respectively, which is just the opposite as the global directions, unfortunately.

The most significant point of this slide is that seismic uplift at A-6 exceeds the dead load by a considerable margin. It is possible to place a footing with sufficient size to resist the uplift and the overturning moment, but it is much more economical to combine one footing for the two locations. These reactions include the effects of horizontal torsion on the system. Also recall that the footing must resist horizontal forces.
The Provisions allow an overturning moment reduction of 25% at the soil-foundation interface.
Additive Load w/ Largest eccentricity

- Combining loads on footings A-5 and A-6, applying the 0.75 multiplier for overturning effects to the axial loads, and neglecting the weight of the foundation and overlying soil,
 - \(P = 256 \) kips
 - \(M_{xx} = -6,717 \) ft-kips
 - \(M_{yy} = -126 \) ft-kips (which is negligible)

None of these loads include the weight of the footing.

P is positive in compression. M is positive by the local right hand rule.

This is not the maximum downward load; it is the maximum ratio of moment to axial load for the additive combos.
Counteracting Load w/ Largest e

- Again combining loads on footings A-5 and A-6, including the overturning factor, and neglecting the weight of the footing and overlying soil,
- $P = 8 \text{ kips}$
- $M_{xx} = -5,712 \text{ ft-kips}$
- $M_{yy} = -126 \text{ ft-kips (negligible)}$

Note that the net vertical load is upward without the weight of the footing. It so happens that this combo also gives the maximum eccentricity, when combined with the weight of footing and soil.
Elastic Response

- Objective is to set L and W to satisfy equilibrium and avoid overloading soil
- Successive trials usually necessary

Slide is drawn for the case with substantial moment, such that uplift will occur at the heel. Note that eccentricity e changes as W changes.

For our footing, L will exceed 25 feet by some margin, given that the two columns are 25 feet apart.
Initial approximation of W is simply to keep the resultant of earth pressure within the footing. It must be somewhat larger in order to control the bearing pressures. Note that the load factor on W does not include the amplifier for vertical seismic acceleration; this is the author’s interpretation of the NEHRP Provisions.

The minimum B used to find the nominal bearing capacity is found by comparing the width of the footing and the half length of the loaded area. The half length is used because the soil pressure is not uniform.
Slide shows basis of plastic design of foundation.

- Same objective as for elastic response
- Smaller footings can be shown OK thus
Counteracting Case

Given $P = 8$ k; $M = 5712$

Check prior trial; $W = 214$ k (use $0.9W$)
• $e = \frac{5712}{(214 + 8)} = 25.7 > 34/2$ NG

New trial: $L = 40$ ft, 5 ft thick, 2 ft soil cover
• $W = 360$ k; $e = 17.2$ ft; plastic $Q_{max} = 8.78$ ksf
• $\phi Q_n = 0.7(3)4.1 = 8.6$ ksf, close
• Try plastic solution, $L' = 4.2$ ft, $\phi Q_n = 8.82$ ksf
• $M_R = (0.9(360)+8)(40/2-4.2/2) = 5943 > 5712$

Note how much larger the footing must be for the counteracting case. Also, it would have been even larger if the elastic solution were used in lieu of the plastic solution.
Additional Checks

- Moments and shears for reinforcement should be checked for the overturning case.
- Plastic soil stress gives upper bound on moments and shears in concrete.
- Horizontal equilibrium: $H_{max} < \phi \mu (P + W)$
 in this case friction exceeds demand; passive
 could also be used.

Notes for additional checks for foundation design.
Given the combined footing strategy, footing sizes are more strongly influenced by the uplift on columns at the ends of frames than by the moments transmitted by the columns. Note that a complete perimeter grade beam would be a very feasible solution for this project, especially in cold climates where a continuous perimeter wall for frost control is necessary. A 4 ft by 4 ft continuous grade beam would be sufficient.
The screen capture is from the RAM Frame analysis of the structure, and the small plan is based on the same grids used for the 7 story moment frame. The braced frames appear to be 8 stories high, because there is a small penthouse over the core.
The fundamental method is the same as used in the previous example: Determine the total applied vertical and horizontal loads and the moments. The complicating factor here is that the bending is significant about two axes simultaneously. Elastic solutions can be found from software that has the capacity for compression-only springs; SAP2000 was used in this case. Plastic solutions typically need to be done “by hand,” although spreadsheets are a great asset for the successive trial nature of the solution.

Solution for Central Mat

Very high uplifts at individual columns; mat is only practical shallow foundation

Mat: 45'x95'x7'-0" with top of mat 3'-6" below grade
Slide shows the results from “hand” analysis for plastic distribution and for SAP2000 elastic solution. See Chapter 5 of FEMA P-751 for more detail on the solution, as well as the design of the footing cross section for moment and shear.
Title slide for pier foundations.
Most pile analysis for lateral loads is performed assuming linear response in the pile itself, although it is now common to consider nonlinear soil response. Some “by-hand” plastic techniques do make use of the classic pile stiffness idealizations.
Note the logarithmic scale on the vertical axis.
This passive pressure mobilization is useful for inclusion of the pile cap. It is from ASCE 41. Delta/H is the imposed displacement as a fraction of the minimum dimension of the face being pushed into the soil mass.
Plots of group effect factors computed based on Rollins et al., “Pile Spacing Effects on Lateral Pile Group Behavior: Analysis,” *Journal of Geotechnical and Geoenvironmental Engineering*, October 2006. The plot shows four curves, each for a different spacing (in terms of pile diameter). The horizontal axis is the number of rows of piles, and the vertical axis is the Group Effect Factor.
Note that the shear forces in the pile (as well as deformations and bending moments) carries to greater depths in soft soils than in firm soils. Pile (or pier) foundations are often used in stiff soils to control settlement of heavy structures or heave of expansive soils.
See Chapter 5 of FEMA P-751.
Diagram and notes indicate requirements for pile reinforcement. “D” is pile diameter.

- Site Class C
- Larger amounts where moments and shears are high
- Minimum amounts must extend beyond theoretical cutoff points
- “Half” spiral for 3D
The drawing shows one of the piles with detail of reinforcement. “D” is pile diameter.

See Chapter 5 of FEMA P-751.
Additional considerations for Pile Foundations. The equation is from ASCE 7-10 Section 12.13.5.2, where F is the design tension/compression force in the foundation tie beam and P_G is the load in the pile.
Tie between pile caps

- Designed for axial force (+/-)
- Pile cap axial load times $S_{DS}/10$
- Oftentimes use grade beams or thickened slabs on grade

Required in higher seismic design categories for softer soils. It is designed for “pure” axial force. Fundamental objective is to prevent relative lateral displacement between column bases. It “fixes” the column bases for translation, but it is not intended to restrain rotation at the column bases.
Slide to initiate questions from the participants.
FOUNDATION DESIGN

Proportioning Elements for:
- Transfer of Seismic Forces
- Strength and Stiffness
- Shallow and Deep Foundations
- Elastic and Plastic Analysis

Load Path and Transfer of Seismic Forces

soil pressure

Force on a pile EQ on unloaded pile Pile supporting structure

Unmoving soil EQ Motion

deflected shape soil pressure deflected shape soil pressure deflected shape soil pressure
Load Path and Transfer of Seismic Forces

foundation force transfer

- Passive earth pressure
- Shallow
- EQ motion

Load Path and Transfer of Seismic Forces

soil to foundation force transfer

- Deep
- Soil pressure
- EQ motion
- Bending moment

Load Path and Transfer of Seismic Forces

vertical pressures - shallow

- Overturning moment
- EQ motion
Load Path and Transfer of Seismic Forces
vertical pressures - deep

Overturning moment

EQ Motion

Reinforced Concrete Footings:
Basic Design Criteria (concentrically loaded)

Outside face of concrete column or line midway between face of stud column and edge of steel base plate (typical)

(a) Critical section for flexure
Point of footing (typical)

(b) Critical section for one-way shear

(c) Critical section for two-way shear

Footing Subject to Compression and Moment:
Uplift Nonlinear

(a) Loading

(b) Elastic, no split

(c) Elastic, at split

(d) Elastic, after split

(e) Some plastification

(f) Plastic limit
Example 7-story building: shallow foundations designed for perimeter frame and core bracing.

Shallow Footing Examples

Soil parameters:
- Medium dense sand
- (SPT) N = 20
- Density = 120 pcf
- Friction angle = 33°

Gravity load allowables
- 4000 psf, B < 20 ft
- 2000 psf, B > 40 ft

Bearing capacity (EQ)
- 2000B concentric sq.
- 3000B eccentric
- $\phi = 0.7$

Footings proportioned for gravity loads alone

Corner: 6'x6'x1'-2" thick
Perimeter: 8'x8'x1'-6" thick
Interior: 11'x11'x2'-2" thick
Combining Loads

- Maximum downward load:
 \[1.2D + 0.5L + E \]
- Minimum downward load:
 \[0.9D + E \]
- Definition of seismic load effect \(E \):
 \[E = \rho_1 Q_{E1} + 0.3 \rho_2 Q_{ES} +/- 0.2 S_{DS}D \]
 \[\rho_2 = 1.0 \quad \rho_1 = 1.0 \quad \text{and} \quad S_{DS} = 1.0 \]
Reactions

<table>
<thead>
<tr>
<th>Grid</th>
<th>Dead</th>
<th>Live</th>
<th>E_x</th>
<th>E_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-5</td>
<td>203.8 k</td>
<td>43.8 k</td>
<td>-3.8 k</td>
<td>21.3 k</td>
</tr>
<tr>
<td></td>
<td>53.6 k-ft</td>
<td>-243.1 k-ft</td>
<td>8.1 k-ft</td>
<td></td>
</tr>
<tr>
<td>A-6</td>
<td>103.5 k</td>
<td>22.3 k</td>
<td>-51.8 k</td>
<td>-281.0 k</td>
</tr>
<tr>
<td></td>
<td>47.7 k-ft</td>
<td>-246.9 k-ft</td>
<td>13.4 k-ft</td>
<td></td>
</tr>
</tbody>
</table>

Reduction of Overturning Moment

- NEHRP Provisions allow base overturning moment to be reduced by 25% at the soil-foundation interface
- For a moment frame, the column vertical loads are the resultants of base overturning moment, whereas column moments are resultants of story shear
- Thus, use 75% of seismic vertical reactions

Additive Load w/ Largest eccentricity

- Combining loads on footings A-5 and A-6, applying the 0.75 multiplier for overturning effects to the axial loads, and neglecting the weight of the foundation and overlying soil,
- $P = 256$ kips
- $M_{xx} = -6,717$ ft-kips
- $M_{yy} = -126$ ft-kips (which is negligible)
Counteracting Load w/ Largest e

- Again combining loads on footings A-5 and A-6, including the overturning factor, and neglecting the weight of the footing and overlying soil,
- $P = 8$ kips
- $M_{xx} = -5,712$ ft-kips
- $M_{yy} = -126$ ft-kips (negligible)

Elastic Response

- Objective is to set L and W to satisfy equilibrium and avoid overloading soil
- Successive trials usually necessary

Additive Combination

Given $P = 256$ k, $M = 6717$ k-ft

Try 4.5 foot around, thus $L = 34$ ft, $B = 9$ ft
 - Minimum $W = M/(L/2) - P = 139$ k = 455 psf

Try 2 foot soil cover & 3 foot thick footing
 - $W = 214$ k; for additive combo use $1.2W$
 - $Q_{max} = (P + 1.2W)/(3(L/2 - e)B/2) = 9.74$ ksf
 - $\phi Q_n = 0.7(3)B_{min} = 18.9$ ksf, OK by Elastic
Plastic Response

- Same objective as for elastic response
- Smaller footings can be shown OK thus

Counteracting Case

Given \(P = 8 \text{ k} \); \(M = 5712 \)

Check prior trial: \(W = 214 \text{ k} \) (use 0.9\(W \))

- \(e = \frac{5712}{214 + 8} = 25.7 > 34/2 \text{ NG} \)

New trial: \(L = 40 \text{ ft}, 5 \text{ ft thick}, 2 \text{ ft soil cover} \)

- \(W = 360 \text{ k}; e = 17.2 \text{ ft}; \text{ plastic } Q_{\text{max}} = 8.78 \text{ ksf} \)
- \(\phi Q_n = 0.7(3)(4.1) = 8.6 \text{ ksf, close} \)
- Try plastic solution, \(L' = 4.2 \text{ ft}, \phi Q_n = 8.82 \text{ ksf} \)
- \(M_R = (0.9(360)+8)(40/2-4.2/2) = 5943 > 5712 \)

Additional Checks

- Moments and shears for reinforcement should be checked for the overturning case
- Plastic soil stress gives upper bound on moments and shears in concrete
- Horizontal equilibrium: \(H_{\text{max}} < \phi (P + W) \)

 in this case friction exceeds demand; passive could also be used
Results for all Seismic Resistant System Footings

Corner: 9'x40'x5'-0" w/ top of footing 2'-0" below grade

Middle: 5'x30'x4'-0"

Side: 8'x32'x4'-0"

Design of footings for core-braced 7 story building

25 foot square bays at center of building

Solution for Central Mat

Very high uplifts at individual columns; mat is only practical shallow foundation

Mat: 45'x95'x7'-0" with top of mat 5'-0" below grade
Bearing Pressure Solution

(a) Plastic solution

12.2 ksf

(b) Elastic solution pressures (ksf)

Plastic solution is satisfactory; elastic is not

Pile/Pier Foundations

Pile cap

Passive resistance (see Figure 4.2-5)

Pile

P-y springs (see Figure 4.2-4)

View of cap with column above and piles below

Pile/Pier Foundations

Pile Stiffness:
- Short (Rigid)
- Intermediate
- Long

Cap Influence

Group Action

Soil Stiffness
- Linear springs – nomographs e.g. NAVFAC DM7.2
- Nonlinear springs – LPILE or similar analysis
Sample p-y Curves

Passive Pressure

Group Effect
Pile Shear: Two Soil Stiffnesses

Depth (ft)

Site Class C

Site Class E

Shear, V (kip)

0
5
10
15
20
25
30
-5
0
10
15

Pile Moment vs Depth

Depth (ft)

Site Class C

Site Class E

Moment, M (in.-kips)

-1000
-500
0
500

Pile Reinforcement

- Site Class C
- Larger amounts where moments and shears are high
- Minimum amounts must extend beyond theoretical cutoff points
- "Half" spiral for 3D

(4) #5

(6) #5

4" pile embedment

21'-0" 23'-0" 6'-4"
Pile Design

- Site Class E
- Substantially more reinforcement
- "Full" spiral for 7D
- Confinement at boundary of soft and firm soils (7D up and 3D down)

Other Topics for Pile Foundations

- Foundation Ties: $F = P_d(S_{df}/10)$
- Pile Caps: high shears, rules of thumb; look for 3D strut and tie methods in future
- Liquefaction: another topic
- Kinematic interaction of soil layers

Tie between pile caps

- Designed for axial force (+/-)
- Pile cap axial load times $S_{df}/10$
- Oftentimes use grade beams or thickened slabs on grade