

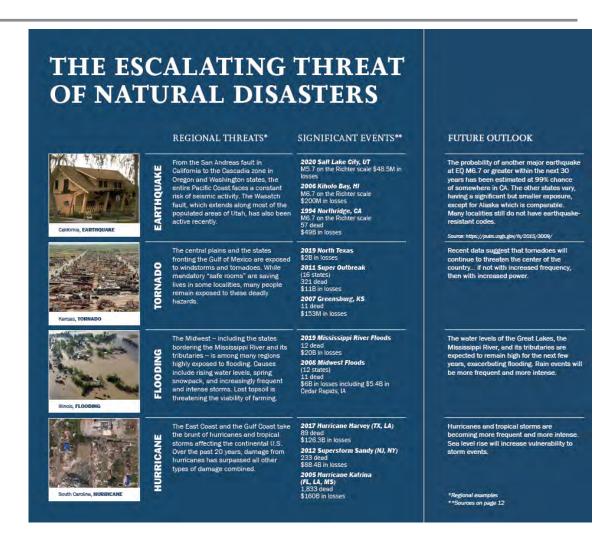
Losses Avoided As a Result of Adopting Hazard-Resistant Building Codes

Presentation Agenda

- Introduction
- Methodology
- Data Collection and Filtering
- Analysis and Findings by Hazard
- Nationwide Findings
- Study Brochure

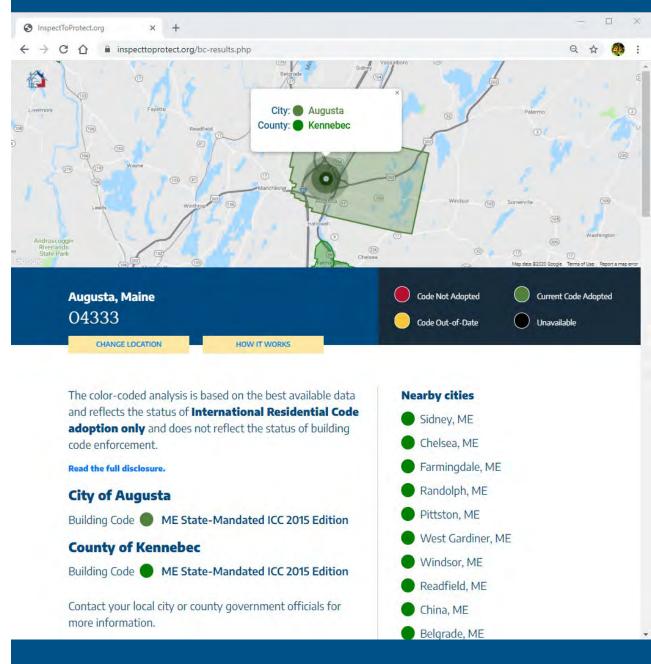
Building Codes Save: A Nationwide Study

Losses Avoided as a Result of Adopting Hazard-Resistant Building Codes


August 2020

Building Codes Save (BCS) Study Goals

- Demonstrate the monetary benefit of adopting hazard resistant building codes
- Quantify the effect of building codes in lowering disaster risk for new construction
- Use results to incentivize code adoption, determine opportunities for risk reduction, and engage public officials

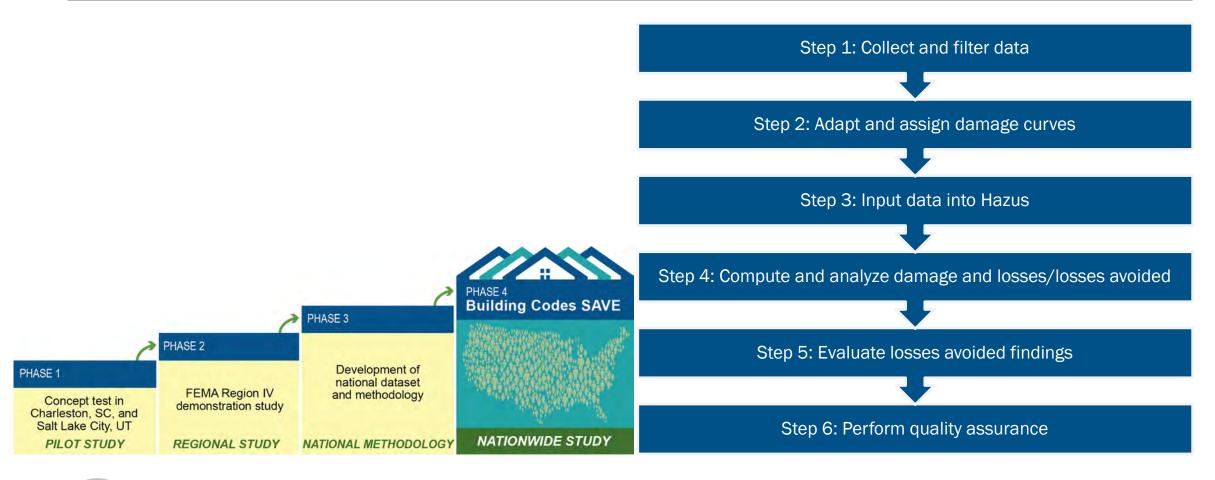


Portfolio of Supporting Elements and Programs and Partnerships

- Mitigation Investment Strategy Goal 3
- FEMA Strategic Plan
- BRIC, DRRA 1206, HMA, MT Planning
- No Code. No Confidence. (InspectToProtect.org) by FLASH
- Natural Hazard Mitigation Saves by NIBS
- US Code Adoption Database by ICC

BCS Study Summary

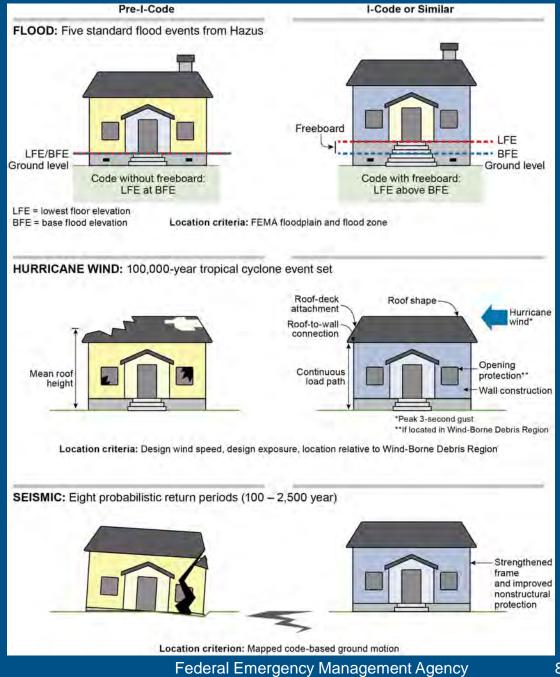
How much are the hazard-resistant codes that have been adopted since 2000 saving counties, states, and the nation?


*Average annualized savings as of 2018

Key Highlights

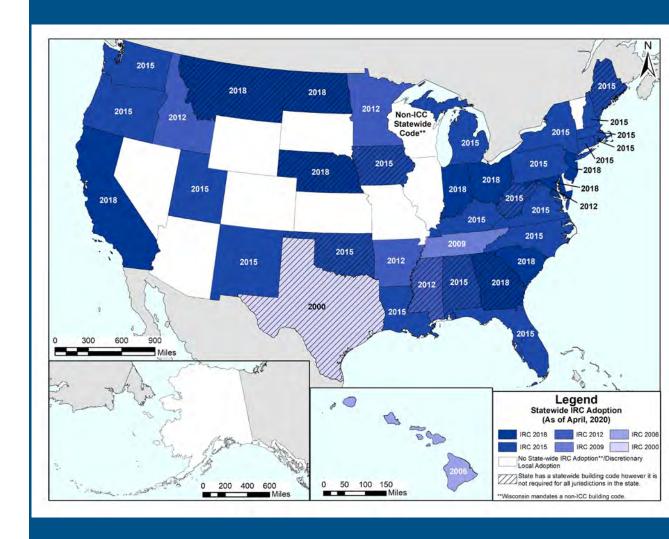
- First time engineering-based parcel analysis using Big Data (18.1 million post-2000 structures)
- Hazards: flood, hurricane wind, seismic
- Hazard risk and code adoption varies
- \$32 Billion saved over 20 years
- \$132 Billion in savings possible by 2040
- Building and Contents damages only, just the tip of the iceberg!

BCS Methodology



Losses Avoided Computations

- Hazus simulations
- Direct property damage (building and contents)
- Compare pre-I-Code provisions to I-Code or similar provisions
- Not modeled: lost wages, business interruption, relocation costs, PTSD, debris, other code provisions, etc.



Data Collection

- CoreLogic and Microsoft Bing parcel-level data
- Building code adoption data
 - National data sources (ICC, BCEGS, FEMA CRS)
 - State/local provisions and modifications
 - Adoption date with one-year lag
- Hazard-specific maps
 - National Flood Hazard Layer, Flood Insurance Rate Maps, CoreLogic flood layer
 - ASCE 7 wind maps/NOAA coastline
 - USGS probabilistic ground motion data

Data Processing

PARCEL DATA FILTERING

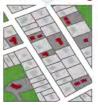
~147M CoreLogic raw parcels

Remove parcels with no buildings:

~123M parcels

Remove parcels with no building date or size:

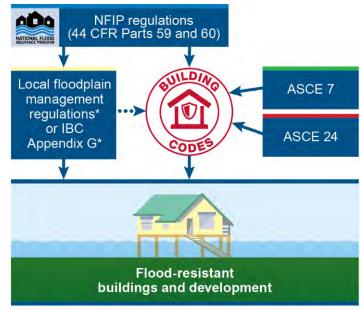
~90M parcels


Remove parcels with pre-2000 buildings:

~16M parcels

Convert parcels to buildings:

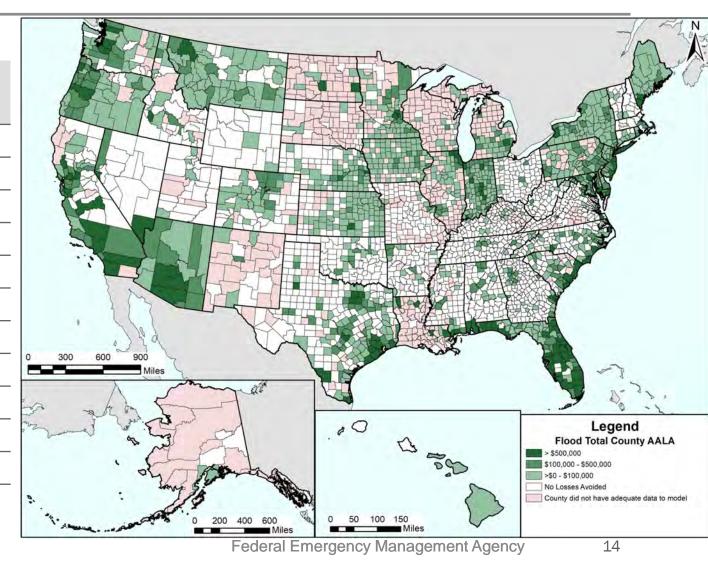
~18.1M buildings



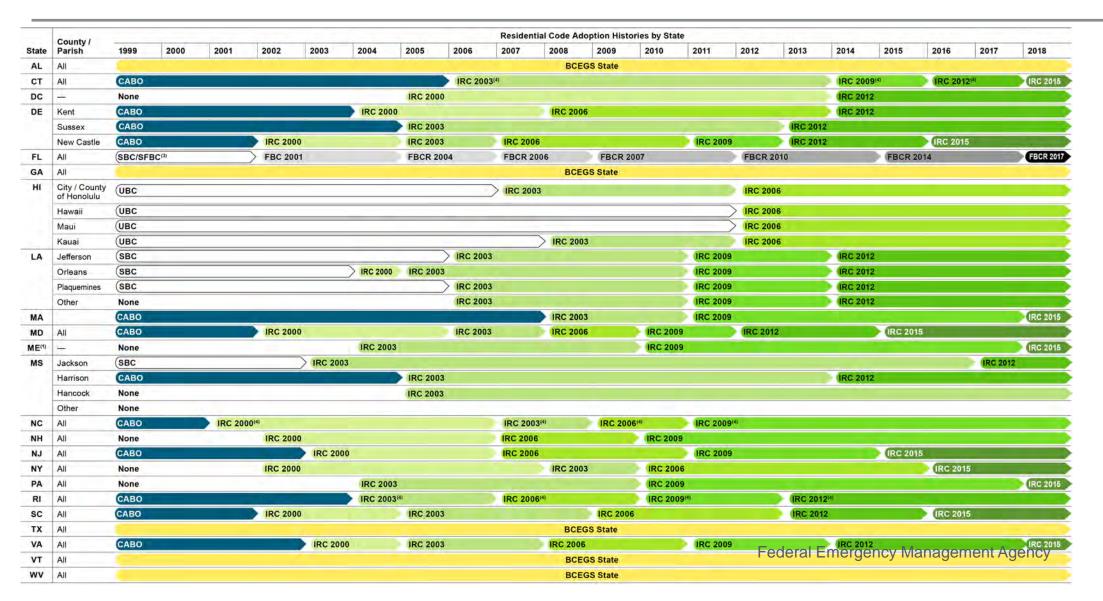
Flood Code: Freeboard Adoption

- I-Code adoption: State and local
- Other statewide and local codes/regulations
- Sources: State, CRS, local (including BCEGS)

LFE = lowest floor elevation BFE = base flood elevation


* NFIP-consistent administrative provisions, community-specific adoption of FISs and maps, and technical requirements for development outside the scope of the building code (and higher standards in some communities)

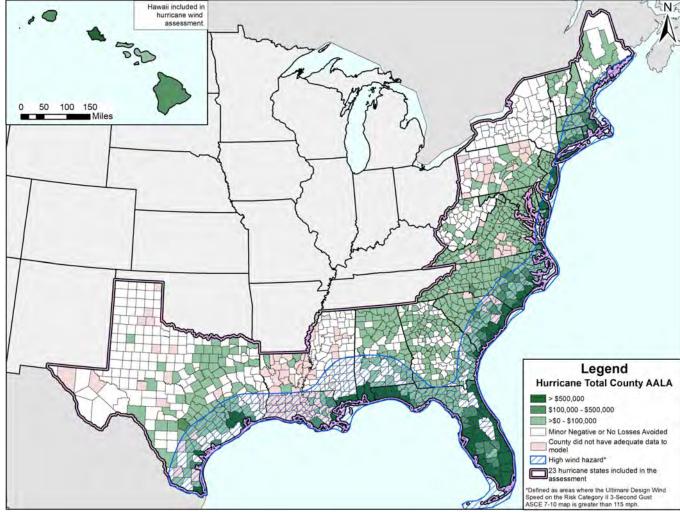
Flood Results Summary


Top Ten States for Flood AALA

State	Building Count (modeled/freeboard)	Total AALA
Florida	310,963 / 150,173	\$169 million
Texas	95,287 / 59,035	\$63 million
California	44,611 / 24,853	\$47 million
New York	12,182 / 6,281	\$24 million
New Jersey	36,932 / 22,476	\$20 million
South Carolina	38,363 / 20,163	\$18 million
Arizona	11,355 / 11,350	\$18 million
Louisiana	19,517 / 11,504	\$17 million
Indiana	9,574 / 9,462	\$16 million
North Carolina	25,902 / 10,229	\$10 million
Total	786,473 / 400,498	\$484 million

Hurricane Wind Code Adoption

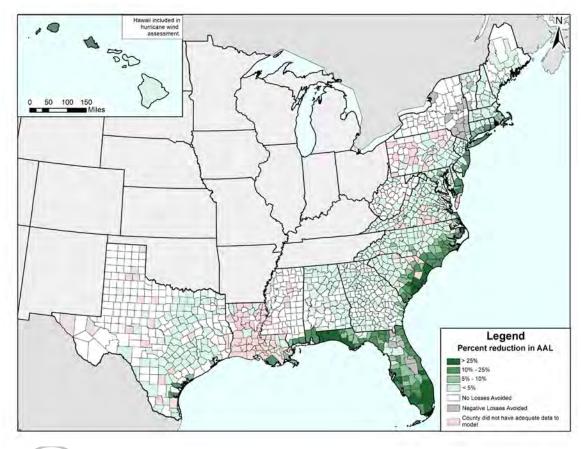
CABO = Council of American Building Officials


IRC =
International
Residential
Code

BCEGS State =
Partial building
code adoption
histories at
jurisdictional
level obtained
from a BCEGS
(Building Code
Effectiveness
Grading
Schedule)
database.

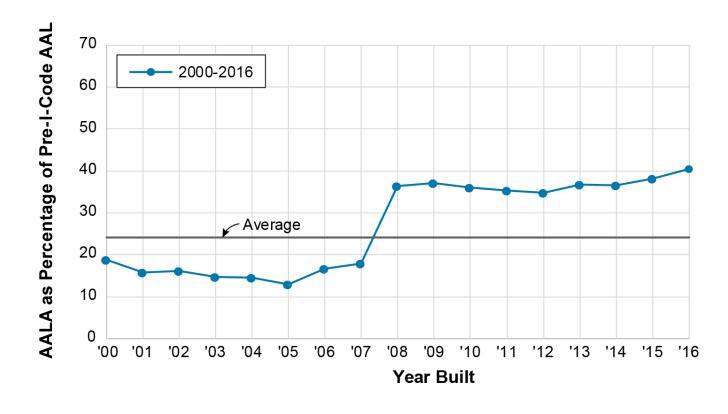
Hurricane Wind Results Summary

Top 11 States for Hurricane Wind AALA


State	Building Count Modeled	Total AALA
Florida	1,666,348	\$857 million
South Carolina	415,686	\$68 million
North Carolina	870,586	\$34 million
Alabama	351,452	\$31 million
Texas	2,445,030	\$29 million
Mississippi	218,613	\$15 million
New Jersey	244,001	\$7.4 million
New York	296,846	\$5.6 million
Massachusetts	149,853	\$5.2 million
Virginia	463,801	\$1.6 million
Hawaii	54,402	\$1.6 million
Total	9,200,267	\$1.1 billion

Hurricane Wind Results

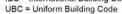
Percent Reduction in AAL



- Depicts the reduction in AAL as a percentage of the pre-I-Code AAL
- Some counties reduced their hurricane wind losses by more than 25% through the adoption of codes

Hurricane Wind Results

- 2000-2008: Early codes post-Andrew
- 2008: 2006 IBC and
 2006/2007 amendments to
 2004 FBC after 2004 hurricane season
- 2008-2016: additional jurisdictions adopting I-Codes

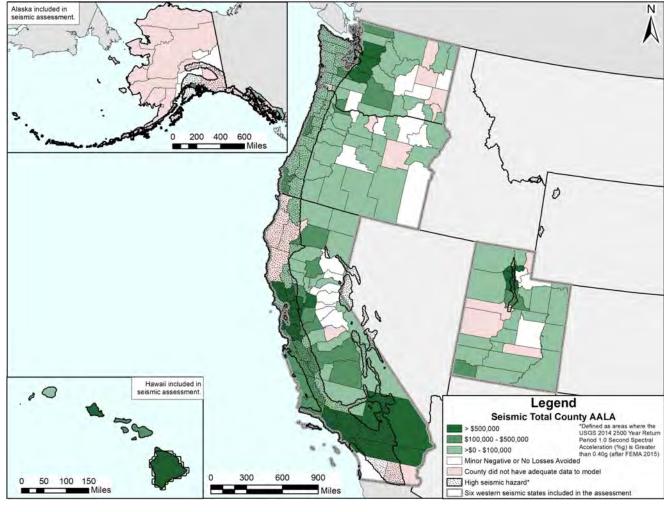


Seismic Code Adoption

	County /	Commercial Code Adoption Histories by State							е													
ate		City	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
K	All	All	UBC 1997		IBC 2000				IBC 2003		IBC 2006					IBC 2009					BC 2012	
	Fairbanks North Star	Fairbanks	UBC 1997			IBC 2000			IBC 2003			IBC 2006		-	IBC 2009					BC 2015		
	Kenai Peninsula	Kenai	UBC 1997				IBC 2000		IBC 2003	1		IBC 2006					IBC 200	19				
	Ketchikan Gateway	Ketchikan	UBC 1994	UBC 1997	7 - 1				IBC 2003					IBC 2006			IBC 201	2				
	Matanuska- Susitna	Palmer	UBC 1997							IBC 200	3	IBC 2006	in the second	-	IBC 2009						IBC 201	5
	Anchorage	Anchorage inside BSSA	UBC 1997				IBC 2000		IBC 2003		-	IBC 2006	h		IBC 2009					BC 2012		
	Juneau	Juneau	UBC 1997					IBC 2003					IBC 200	6				BC 200	9		IBC 2012	
A	All	All	UBC 1997	V								IBC 2006	П		IBC 2009			BC 201	2	- 3	BC 201	5
41	All	All	None											IBC 2006								IBC :
C	City / County of Honolulu	All	UBC 1994	UBC 1997							IBC 2003					IBC 2006	3					
	Hawaii	All	UBC 1991	w/Zone 41												IBC 2006	3					
	Maui	All	UBC 1994	UBC 1997												IBC 2006	3					
	Kauai	All	UBC 1991		UBC 1997	7						IBC 2003			-	IBC 2006	3					
R	All	All	UBC 1997					IBC 2003			IBC 2006			IBC 2009				BC 201	2			
JT	All	All	UBC 1997			IBC 2000		IBC 2003			IBC 2006	1		IBC 2009			IBC 201	2		BC 2015	6	-
/A	All	All	UBC 1997					IBC 2003			IBC 2006			BC 2009			IBC 201	2		BC 2015		

(1) UBC 1991 and UBC 1991 w/ Zone 4 are assumed equivalent to UBC 1994 (pre-I-Code) BSSA = Building Safety Service Area

IBC = International Building Code



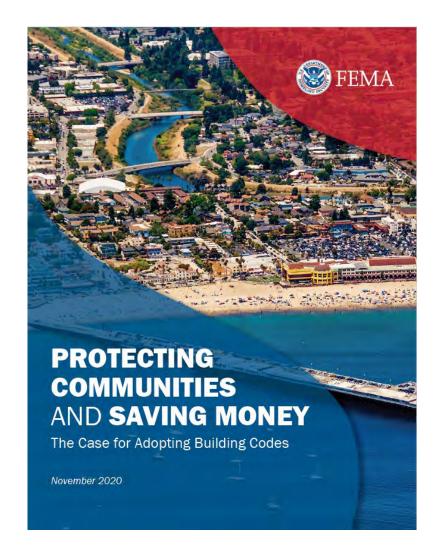
Seismic Results Summary

Ranked States for Seismic AALA

State	Building Count Modeled	Total LA
California	1,337,104	\$41 million
Washington	507,453	\$11 million
Utah	252,990	\$3.2 million
Hawaii	54,162	\$3.0 million
Oregon	249,149	\$1.3 million
Alaska	41,055	\$162,000
Total	2,441,923	\$60 million

Seismic Results: Hawaii

- Buildings elevated on post/pier vulnerable to damage
- After 2000, code required improvements in place
- Used custom Hazus fragility curves
- Higher than average losses avoided for this building type
 - 25% losses avoided as percentage of pre-I-Code loss (compared to 8% overall)



Findings

Hazard	Building Count Modeled	Total LA
Flood	786,473	\$484 million
Hurricane Wind	9,200,267	\$1.1 billion
Seismic	2,441,923	\$60 million
Total	n/a	\$1.6 billion

- Florida, Texas, California, and South Carolina account for 80% of the total AALA
- Residential dwellings make up 85% of building inventory
- Areas of high growth and high hazard provide a starting point for improvement



Breaking the Chain of Destruction

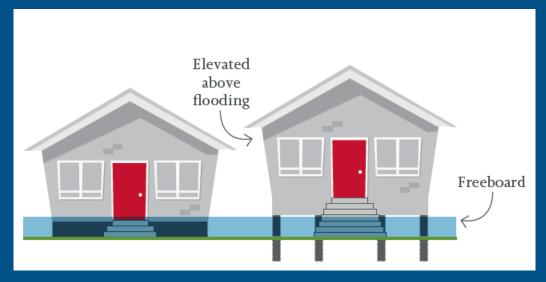
Pioneers:

- FL and CA have had hazard-resistant codes since the 1990s
- CA has avoided \$1.8 billion in losses over 20 years

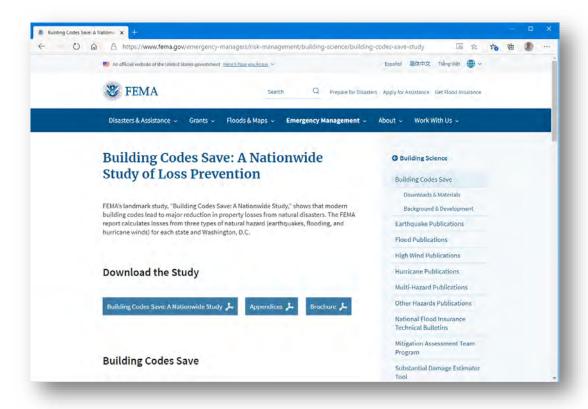
Trailblazers:

- San Antonio, TX regularly adopts modern code updates
- Miami-Dade County, FL: higher standards incorporated into FL Building Code

Opportunities:


- States that lack a statewide modern building code
- South, central, and northern midwest regions

Spotlight: Cedar Rapids, Iowa


After 2008 floods: Implemented flood mitigation measures, including modern building codes

2016 floods: 2nd highest flood on record, but less damage than in 2008

Next Steps

- Launched Study on 11/20 in coordination with EA, FLASH, ICC, and IBHS
- Marketing Strategy, website, brochure and companion resources
- Coordination with partners on extended outreach campaigns
- Future BCS Studies
- Inspire Building Code Advocates!

https://www.fema.gov/emergency-managers/risk-management/building-science/building-codes-save-study

For more information

https://www.fema.gov/emergency-managers/risk-management/building-science/building-codes-save-study

Jonathan Westcott
Civil Engineer, Building Science Branch
Jonathan.Westcott@fema.dhs.gov

FEMA Building Science Helpline FEMA-BuildingScienceHelp@fema.dhs.gov

